
Building Energy Managment
Internet of Things

by

Reece Bachman and Jordan Ingram and Robert O’Malley

Advisor: Dr. Suruz Miah

Electrical and Computer Engineering Department

Caterpillar College of Engineering and Technology

Bradley University

c© Reece Bachman and Jordan Ingram and Robert O’Malley,

Peoria, Illinois, 2019

Abstract

This paper presents a method for controlling multiple Internet of Things (IoT) devices.
This work uses an open source software from Virginia Tech called Building Energy Man-
agement Open Source Software (BEMOSS) to connect multiple IoT devices to one server.
This server is run on a linux laptop and manage a variety of IoT devices. This papers work
allows the use of BEMOSS on a Raspberry Pi, a cheap commercially available microcon-
troller, to run commands through BEMOSS. Currently BEMOSS supports a number of
commercial IoT devices and in this work, a new device, a DC motor, has been implemented
to be run on BEMOSS. Lastly a heating, ventilating, and air conditioning (HVAC) control
algorithm has been implemented to be later introduced onto BEMOSS.

ii

Acknowledgements

We would like to thank our advisor, Dr. Suruz Miah, for the guidance and insight for
this project. We would also like to thank Mr. Christopher Mattus for the aide in the
construction process of our research project.

iii

Dedication

This is dedicated to the one I love.

iv

Table of Contents

List of Tables vii

List of Figures viii

Nomenclature 1

1 Introduction 1

1.1 Background Study . 1

1.2 Project Statement . 2

2 Overview 3

3 Control Algorithm 5

3.1 System Modeling . 5

3.1.1 Motor . 5

3.2 Motor Control . 6

3.2.1 HVAC Model . 7

3.2.2 State-Space Representation of HVAC System 8

3.3 Control of HVAC Model . 8

3.4 HVAC Control Results . 9

4 Implementing BEMOSS 12

4.1 Overview . 12

4.2 Discovery . 12

4.3 Control . 13

4.4 HTML . 13

4.5 Django . 13

v

5 Interfacing New IoT Device 15

5.1 Overview . 15

5.2 Central Node . 15

5.3 XBEE Radio Frequency Modules . 15

5.4 DC Motor and Control Circuit . 17

5.5 Central Node Software . 17

5.6 Search and Control Software . 18

5.7 Future Work . 18

6 Software Set Up Appendix 19

6.1 Step 1: Installing Linux . 19

6.2 Step 2: Installing Software . 19

6.3 Step 3: Installing BEMOSS . 20

6.4 Step 4: Adding functionality . 21

7 Hardware Set Up Appendix 22

7.1 Step 0: Parts used in this project . 22

7.2 Step 1: Libraries and Settings Utilized . 22

7.3 Step 2: Hardware Connections . 23

7.4 Step 3: Configure XBEE Modules . 25

7.5 Step 4: Software . 26

7.6 Step 4: Trouble Shooting . 26

8 Control Appendix 28

8.1 Software used . 28

8.2 Step 1 - Motor Model Creation . 28

References 29

vi

List of Tables

vii

List of Figures

2.1 High level BEMOSS structure . 4

3.1 Motor Model in Simulink . 6

3.2 Motor Model With Position Control . 6

3.3 Motor Position Step Response . 7

3.4 HVAC House Model . 8

3.5 System Matrices . 8

3.6 CO2 HVAC Response . 9

3.7 Temperature HVAC Response . 10

3.8 Humidity HVAC Response . 11

4.1 Caption . 12

5.1 Central Node . 16

5.2 Remote DC Motor . 16

7.1 L298N Dual H Bridge Schematic. 23

7.2 XBee Pin Configuration . 24

7.3 XBee Electric Data . 24

8.1 Electrical Motor Specifications . 29

8.2 Mechanical Motor Specs . 29

viii

Chapter 1

Introduction

As smart power grids become more prevalent and data on smart building energy usage
becomes more available, the opportunity for energy efficiency increases drastically. Data
collected from smart buildings allows control algorithms to dictate the workings of a build-
ing in a more efficient manner. We propose an expansion of the supported loads that
can be controlled through BEMOSS by enabling control of a DC motor. Building energy
management open source software (BEMOSS) is an internet of things (IoT) software that
was developed at Virginia Tech under the Department of Energy funding. This proposed
control of a DC motor through an IoT software presents the opportunity to close blinds,
open barriers, and move objects throughout the building. The ability to open and close
blinds building wide permits the ability to regulate the interior temperature of a building
with a considerably lower power consumption. For instance, closing blinds during a hot
day will naturally cool a room while opening blinds during a cold day will naturally heat
the room. This added ability to control the interior environment will reduce the energy
consumed by a heating ventilation air conditioning (HVAC) system.

1.1 Background Study

Authors in [?] proposed a energy management system based around Zigbees and PLCs.
Han’s system would place a energy measurement and communication unit in each outlet
and light in the consumer’s home. The energy usage will be measured and the data collected
will be sent to a home server run on a Zigbee. These Zigbees will analyze the data and give
feedback to the user on how to better manage their energy usage. Renewable energy will
be connected to a PLC to allow the use of renewables as they need to converted to AC.
The home server on the Zigbee will predict the amount of energy that will be obtained by
renewables by accessing weather data and automatically adjust the user’s device schedule.

In [?] the authors once again proposed sensors in all outlets and lights to measure the
energy usage in homes. Renewable energy sources, like solar panels and wind energy, are
connected to an inverter and battery system, to allow the storage of excess power. Collotta
connects the internet of things devices using Bluetooth rather than WiFi, due to the lower

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 1 of 29

Chapter 1. Introduction 1.2. Project Statement

power consumption. The system checks the current time and cross checks it with the peak
time for energy consumption by the user’s energy provider. If it is during peak times, the
system checks the battery system for excess stored energy. When the user is trying to use
energy during a peak time and without a battery charge the system warns the user, but
allows the user to ignore these warnings.

In [?] the energy system uses two model predictive controllers (MPC), one for the
building’s HVAC system and one for the system’s battery power flow. The building’s
energy management system predicts the temperature of each room separately using sensors
and a Kalman filter for robustness. The battery system put in place by Mantovani can
run on two modes, one to minimize energy cost and another to minimize power flow. The
building is also c-onnected to wind turbines and photo-voltaic cells and predicts the energy
produced using a simplified model.

The authors in [?] propose a Internet of Energy network rather than an IoT network. An
IoE combines IoT and smart grid technology using four key components: Energy Router,
Storage System, renewable sources, and plug-and-play appliances. The IoE allows for an
easier way to produce a net zero energy building, that produces as much or more energy
than it consumes. The energy router consists of a solid-state-transformer, grid control, and
communication meant for data management. The storage system like batteries, reduce
the stress on the power grid and lower voltage fluctuation. Renewable sources reduce
carbon emmisions, however they reduce harmonics that need to be handled with additional
hardware. Lastly the plug-and-play appliances are the devices that the end-user uses in a
home.

In [?] the system heavily interfaces with the users’ smartphones as a way to monitor the
building occupants. Since smartphones almost all have a way to track GPS, the system
tracks the users’ location and send it to the building’s server. The building’s server is
broken up into a number of subservers to handle an individual room’s needs. By tracking
location the building can do such things like pre-heating or pre-cooling a room before the
user is even in the building. All the subservers are connected to the main server which is
connected to cloud storage which is used for hosting the large amount of data and handling
the intense computations.

1.2 Project Statement

Our project had three main goals. The first goal was to implement a new device not
currently supported by BEMOSS on BEMOSS. The second goal was to run BEMOSS on
a single board computer, such as a raspberry pi. The last goal is to develop a control
algorithm to reduce energy consumption and implement the algorithm on BEMOSS.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 2 of 29

Chapter 2

Overview

Below is the high level topology of our proposed BEMOSS system. The top right box titled
”BEMOSS control center” represents the server and control module responsible for creating
and executing commands to the supported IoT devices. BEMOSS runs a server to host and
relay commands to the connected IoT devices. The control of these devices can be done on
the same machine or by connecting to the server’s web page on a separate machine. The
control center communicates to our proposed ”Wireless sensor central node” via a TCP/IP
network. This node’s purpose is to relay the WiFi commands from the control center to
radio frequency commands to be received by the new DC motor IoT device. Here, we
employ a Raspberry Pi 3B. Our Raspbery PI 3B connects to the same WiFi network as
the control center. Commands from the WiFi network call scripts to relay communications
over a Zigbee network. Commands from the control center to the already supported IoT
devices are delivered through the TCP/IP network directly without passing through the
central node.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 3 of 29

Chapter 2. Overview

Building

HVAC

Light

Fan

Motors

Wireless

sensor

central

node

TCP/IP
Building
Network

Building energy management
control center (BEMOSS work
station)

InternetInternet

Building energy management
control center

(BEMOSS work station)

Electrical power system

Figure 2.1: High level BEMOSS structure

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 4 of 29

Chapter 3

Control Algorithm

To start the group wanted to create an algorithm that would monitor all devices on BE-
MOSS and use machine learning to optimize the consumer’s behavior. To begin however
we developed models for an HVAC system that could currently be controlled on BEMOSS
but has no built in energy management support and a model of a motor that we developed
to be controlled on BEMOSS.

3.1 System Modeling

To develop our models we used Matlab and Simulink and created block diagram models for
a HVAC system as well as a motor controlled using a PWM signal and H-bridge. To create
realistic models we used a Simulink library, Simscape, that has built in electromechanical
blocks that we can adjust the parameters of to better model our real world system.

3.1.1 Motor

The model of the motor was based on the initial design constraints of our hardware. As
can be noted the model is controlled witha PWM signal and H-bridge that can be used to
run the motor in clockwise and counterclockwise directions. A current sensor is used to
read the current output so that the power calculation can be done later in the model. A
rotational sensor reads the rotation of the motor in rotations per minute. The DC motor is
based on the Pittman 24V DC motor we are currently controlling through BEMOSS in the
lab. To do this a DC motor block from simscape is used and the specifications are defined
as they appear in the Pittman datasheet. This allows an accurate reading, however it
should be noted that the blocks used in Simulink are ideal blocks with no losses to friction
or transmission losses.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 5 of 29

Chapter 3. Control Algorithm 3.2. Motor Control

Figure 3.1: Motor Model in Simulink

Figure 3.2: Motor Model With Position Control

3.2 Motor Control

As stated earlier a usage for the motor device being developed for this project is for opening
and closing a curtain for home automation. As this is the case a control algorithm was
developed using the simulink model in the previous section to control the position of the
motor. The input variables for the system are motor applied voltage and the output
variables are motor position.
An extension of the simulink model was needed to be added to control the motor position.
The motor speed measurement block in simscape can also output motor angular position
which allows the motor angle to be read. This is feedback to the start of the model and
the difference between the reference angle that is desired and the current position. This
creates the error signal that is run through a classic controller, the PID, or proportional
integral and derivative controller. For this controller the user defines three gains to control
the system that can be found in simulation through trial and error.

In figure 3.2 it can be seen that a discrete PID controller is used to power the PWM

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 6 of 29

Chapter 3. Control Algorithm 3.2. Motor Control

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0

10

20

30

40

50

60

70

P
o

s
it
io

n
 [

ra
d

]

Motor Position

Motor Angle

Reference

Figure 3.3: Motor Position Step Response

signal being fed into the motor. The gains of the controller are: KP = 2, KI = 0, and
KD = 0.025. A discrete PID control is more practical for embedded implementation for
future works.
In figure 3.3 the step response to the motor is recorded with the motor rotating ten times.
The rise time for the system was found to be 0.875 seconds with an 8 percent overshoot.
The settling time is 1.25 seconds and the system converges onto the reference angle.

3.2.1 HVAC Model

In this HVAC House Model in Figure 3.2, the thermal properties of a one room home is
modeled. An on-off heating control is used to control the temperature of the house. A
thermostat block is used to determine if the current temperature in the house model is
below the reference signal and using this basic check switches the heating system on or off.
The house model itself exchanges heat between three components: air to window, air to
wall, and air to roof. This is a simple modeling that is used to show the typical behavior
of a house, even if the house itself is not a real world object. The outside temperature
is a fluctuating sine wave to determine if the simple on off control will handle changes in
temperature.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 7 of 29

Chapter 3. Control Algorithm 3.3. Control of HVAC Model

Figure 3.4: HVAC House Model

Figure 3.5: System Matrices

3.2.2 State-Space Representation of HVAC System

To better design a more realistic model the team looked at the works of [?]. The design
put forth by the team in [?] is designed using a State-Space Representation. The typical
control problem is defined as

ẋ = Ax + Bu (3.1)

The system used in [?] is a conventional HVAC system used in many buildings that controls
temperature and humidity. In addition the system also measures and controls CO2.

3.3 Control of HVAC Model

To begin a conventional HVAC system that controls only temperature and humidity will be
defined and later in the report, built upon to include CO2 monitoring. The modeling of the
system begins by defining the system equations based on the control variables which are:
volumetric air flow rate, the chilled water flow rate, and the outdoor air flow rate. Using
these control inputs with outputs of: temperature, humidity ratio, and CO2 concentration
of the thermal space, the system of equations is as follows.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 8 of 29

Chapter 3. Control Algorithm 3.4. HVAC Control Results

10 20 30 40 50 60 70 80 90 100

Time [hr]

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

C
O

2
 L

e
v
e

ls
 [

p
p

m
]

HVAC LQR CO2 Levels

Figure 3.6: CO2 HVAC Response

Using the matrices from figure 3.3 the system can be converted to its error dynamical
model using the following method.

Ā =

[
A 0nxp

−C 0pxp

]
B̄ =

[
B

0pxm

]
(3.2)

In this model the LQR control can easily be created by using MATLAB’s built in function
for LQR generation. The n in this case for the above equations comes from the system
order, in this case n=9. The p is from output dimensions, in this case p=3. The m is from
input dimenisons, in this case m=3.
To create the optimal PI controller using the LQR function, the user also needs to define
the Q and R matrices which create the weights for the state variables and control variables,
respectfully. In this case Q and R were found through trail and error until a output was
found that was robust and converged in a reasonable time.

3.4 HVAC Control Results

From the figures 3.6, 3.7, and 3.8, it can be seen that the proposed LQR control for the
system is stable.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 9 of 29

Chapter 3. Control Algorithm 3.4. HVAC Control Results

10 20 30 40 50 60 70 80 90 100

Time [hr]

70

71

72

73

74

75

76

77

T
e

m
p

e
ra

tu
re

 [
d

e
g

re
e

s
 F

]

HVAC LQR Temperature

Figure 3.7: Temperature HVAC Response

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 10 of 29

Chapter 3. Control Algorithm 3.4. HVAC Control Results

10 20 30 40 50 60 70 80 90 100

Time [hr]

1180

1200

1220

1240

1260

1280

1300

1320

H
u

m
id

it
y
 [

lb
/l
b

]

HVAC LQR Humidity

Figure 3.8: Humidity HVAC Response

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 11 of 29

Chapter 4

Implementing BEMOSS

4.1 Overview

Adding a new device into the supported devices of BEMOSS requires 4 segments of code:
Ability to find the device, ability to control the device, editing the HTML file for added
interface for the user, and editing the Django python files.

4.2 Discovery

The most critical part of adding new implementation to BEMOSS is being able to find the
device that will be used. The way this is done is by finding all devices that are on the
network. This in turn means the device must be able to connect to the network in order to
be discovered by BEMOSS. Once all of the devices on the network have been discovered,
the user must find the interesting device using the data that was given, as shown in the
figure below.

Figure 4.1: Caption

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 12 of 29

Chapter 4. Implementing BEMOSS 4.3. Control

The data that we receive has the IP address as well as the MAC address of every device
on the network. Using the MAC address, we can determine the important device since
different manufacturers are provided different MAC address beginnings. Since we got the
IP address, we are able to communicate with the device via internet. This will require a
separate script that controls the motor. In order to enable the use of ssh, which is the way
we were communicating with the motor, the following commands must be executed in the
raspberry pi.

sudo systemctl enable ssh

sudo systemctl start ssh

From here the user is able to run a script on the raspberry pi from the main computer

4.3 Control

Controlling a device is a different task for each device that needs to be controlled so this
section will talk specifically about the motor. There needs to be a python script on the
raspberry pi that is able to control the motor however we want. Once that script is in
place, we use the previously discovered ip to connect to the device and run the created
script. This will control the motor how we want.

4.4 HTML

Editing the HTML file will allow for the use of Django web server that BEMOSS is currently
employing. Finding the directory that the HTML file is under is a bit of a task considering
there is different HTML files for each area. This project will be discussing only adding the
HTML files for discovery. The directory in which the HTML file is located is the following

BEMOSS3.5\Web_Server\webapps\discovery\templates\discovery

This directory path can be changed anywhere after webapps to find the different HTML
files located in BEMOSS.

4.5 Django

The final task to add functionality to BEMOSS is to add the scripts into a known directory
and edit the correct Django python scripts, located in the directory below

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 13 of 29

Chapter 4. Implementing BEMOSS 4.5. Django

BEMOSS3.5\Web_Server\webapps\discovery

In views.py, a new function must be defined which will execute the commands to control
the motor and then provide a response to BEMOSS with relevant information depending
on the outcome of the process. This python function will be called by going into a url that
has been specified in the next script.

urls.py defines the function that is called when a request is made to a specific url. The
function defined in views.py is called when clicked on a button that was defined within the
HTML file.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 14 of 29

Chapter 5

Interfacing New IoT Device

5.1 Overview

The new IoT device has 3 main parts: DC motor/ DC motor control circuit, Radio Fre-
quency (RF) communication modules, and the central node. The central node receives
commands from the BEMOSS control center over WiFi communications. In this central
node, the processes, algorithms, and control methods of the new device are implemented
and executed. The central node relays commands to the remote DC motor through the RF
XBEE communication modules. The control circuit is kept cheap but utilizing simple pin
toggling of the XBEE module to control the motor direction. Lacking on-board logic allows
the system to expand without significantly raising the system price or part requirements.
The DC motor control circuit simply reads the remote toggling of the XBEE General Pur-
pose Input Output (GPIO) pins which toggle the H-Bridge pins, thus rotating the DC
motor in the desired position.

5.2 Central Node

The central node is the command center of the newly developed IoT device. The central
node utilized in this project is a Raspberry Pi 3. Any single-board computer capable of
serial and WiFi communication will suffice for this role. As stated, the control algorithms
for all wireless transmissions and feedback processes happen at the central node. Python
scripts saved on this single-board computer can be called by WiFi commands. The python
scripts in the project setup the communication ports, call XBEE transmission libraries,
and send AT-commands through the serial port to command XBEE transmission.

5.3 XBEE Radio Frequency Modules

XBEE RF modules provide a robust and simple method of wireless communication and
control. In an XBEE network, a command/ master module transmits commands to numer-

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 15 of 29

Chapter 5. Interfacing New IoT Device5.3. XBEE Radio Frequency Modules

Figure 5.1: Central Node

Figure 5.2: Remote DC Motor

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 16 of 29

Chapter 5. Interfacing New IoT Device 5.4. DC Motor and Control Circuit

ous slave XBEE modules. The XBEE modules can be initialized through many methods to
complete a wide array of tasks. In our case, we initialized our modules through the XCTU
software to toggle GPIO pins upon command from a user or computer. These commands
can be transmitted either from the XCTU software interface or from serial transmission
from a computer. Each XBEE has an address that can be used to communicate with
specific XBEE modules at a time. After initializing and dictating master /slave XBEE
relationships, the master XBEE was moved to be controlled by the central node. The
central node transmits serial commands to the master XBEE module from it’s TX GPIO
pin.

5.4 DC Motor and Control Circuit

The DC motor control circuit consists of a buck/boost converter, a slave XBEE RF module,
a H-Bridge, and a DC motor with an attached optical encoder. The buck/boost converter
allows for a single power supply input of 5-24 volts to the unit. The supply of 5-24 volts is
supplied directly to the motor while providing power to the buck/boost converter to supply
the proper logic voltage to the control circuit. The power from the buck/boost converter
is either bucked down or boosted up to a steady 5 volts. The H-Bridge requires a 5 volt
logic to operate, while the slave XBEE module requires 3.3 volts. 3.3 volts is supplied to
the slave XBEE module from the 5 volt on-board logic through a voltage regulator.

DC motors are simple as they only require 2 wires to control their speed and direction.
The DC voltage applied to the positive and negative wires dictates the speed of the motor
shaft rotation while the polarity of the applied voltage dictates the rotation direction. A
motor driver is employed to switch polarity of voltage applied to these 2 wires. H-Bridges
accept an input of motor supply voltage, pulse-width-modulation (PWM), and 2 pins to
toggle motor rotation direction. The motor’s leads are attached to the output of the H-
Bridge. Our H-Bridge, a L298N, uses 2 sets of 2 transistors to switch the flow of power
through the motor leads depending on the status it’s input 1 and 2 pins. Each pin dictates
the rotation direction. Both pins set to low results in no rotation. Pin 1 set to high while
pin 2 is low results in clockwise rotation. Pin 2 set to high while pin 1 is low results in
counterclockwise rotation. A short circuit will result if both pin 1 and pin 2 are set to
high. PWM control can be supplied from our XBEE slave module’s GPIO pins to the
H-Bridge to control the speed of the motor rotation. PWM commands rapidly switch the
power supply to the motor on and off resulting in a varied voltage supply to the motor.
As stated, varied voltages to a DC motor results in variable speeds.

5.5 Central Node Software

place snippets of python codes here with functionality explanations

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 17 of 29

Chapter 5. Interfacing New IoT Device 5.6. Search and Control Software

5.6 Search and Control Software

place snippets of Bash and python codes here with functionality explanations. Also place
flow of data diagram here

5.7 Future Work

A motor position feedback system shall be implemented to allow for the precise positional
control of the DC motor. With this precise control, the central node can command the
motor to turn a direction while reading it’s position from it’s starting point. This ability
allows a continuously monitored task to initiate the DC motor to turn and, when a desired
position is achieved, cease turning .

The feedback control of the remote DC motor and control circuit is allowed to remain
cheap through the use of the XBEE modules. The Pittman DC motor that is employed
in this project has an optical encoder reading the rotation of it’s shaft. As the motor
shaft rotates, the optical encoder outputs a square wave as light passes through holes on
a disk attached to the motor shaft. Through the count of high pulses from the encoder
multiplied by the circumference of drive attached to the motor shaft, the distance traveled
by the motor is calculated. As said, the remote DC motor control circuit has no logic on
board, but the high and low pulses from the optical encoder can feed into the slave XBEE
module on the motor and be initialized to relay high and low pusles to it’s master. The
relay of high and low pulses from the optical encoder to the slave XBEE module must pass
through a logic convert as the optical encoder operates on 5 volt logic while the XBEE
module opperates on 3.3 volt logic. The processing of the high and low toggles on the
remote XBEE module will be received and processed on the single board computer in the
central node. This process allows for numerous cheap motor control circuit to exist with a
single processing unit to connect to a WiFi network.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 18 of 29

Chapter 6

Software Set Up Appendix

6.1 Step 1: Installing Linux

A good explanation of this is written on the tutorials at

https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-desktop-1604

but will also be explained through this appendix BEMOSS currently only only supports one
distribution of Linux, Ubuntu 16.04. This is not an issue since this is a free distribution.
To install Ubuntu 16.04, we must first download it from the website onto a USB flash drive

http://releases.ubuntu.com/16.04/

Most computers have 64 bit processors but check the processor before downloading. After
downloading to the USB drive, boot up the computer from this flash drive. This is often
done by entering the BIOS upon start up unless no image has been written to the computer.
To enter the BIOS, a prompt will often appear to click either the del key or f12 depending
on the computer. Once entered, there are different options, one of which will be to choose
boot device. After choosing the USB flash drive, the user will be presented with a screen
to either try Ubuntu or to install Ubuntu.Click install Ubuntu and then follow the steps
provided. If the machine being used to install Ubuntu is being used only for Ubuntu click
Erase disk and install Ubuntu but if the machine also wishes to run another operating
system it is suggested to do further research. Complete the following prompts and restart
once Ubuntu is fully installed.

6.2 Step 2: Installing Software

This project requires a few different types of software for different functionalists within
the distribution of Linux that we will be using. Ubuntu 16.04 commonly has everything
except BEMOSS but it is important to make sure it is all there.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 19 of 29

Chapter 6. Software Set Up Appendix 6.3. Step 3: Installing BEMOSS

• BEMOSS

• git

• gedit

• Python

• bash

To check for installed software, open up a command terminal by right clicking the desktop
and click command terminal. type in the command ”dpkg –get-selections” and the terminal
will give the user a lot of information. This information is listing the installed packages on
the computer so look for git, gedit, python, and bash. if any of these are not installed, type
”sudo apt-get install ¡package¿” where ¡package¿ is the name of the package not installed,
git for example. Typing sudo will require the user to input the password. After git, gedit,
python, and bash are found when the command is typed, move on to the next step

6.3 Step 3: Installing BEMOSS

The BEMOSS project can be downloaded off the website github, which is why we needed
the git package. typing in the command

git clone -b master https://github.com/bemoss/BEMOSS3.5.git"

exactly as listed above will download BEMOSS into the current directory. After it has been
completely downloaded, the user will install BEMOSS by navigate to the GUI directory
within the BEMOSS folder that was created. To do so, the user will use the cd command
to enter a directory, BEMOSS in the first case and then again to enter the GUI directory.
The user will then type the following command in the terminal exactly as listed

./startBEMOSS_GUI.sh

This will launch the BEMOSS GUI where the user will then click run BEMOSS. The pro-
gram will prompt the user if they would like to install BEMOSS as it has not yet been
installed. After clicking yes, BEMOSS will install onto the machine with a few prompts at
the end if successfully installed. The first is the user name which must be admin currently.
Everything after user name is up to the users choice but should be remembered.

A few things still need to be changed in order to get BEMOSS to work. On the BE-
MOSS GUI, the user should click advanced setting and click database configuration files.
2 files open up and both need to be edited. the first one to edit, postgresql.conf, needs to
change line 59

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 20 of 29

Chapter 6. Software Set Up Appendix 6.4. Step 4: Adding functionality

listen addresses = ’localhost’ \# what IP address(es) to listen on;

listen addresses = ’*’ \# what IP address(es) to listen on;

The next file that needs to be add is hba.conf, line 82.

from

host all all 127.0.0.1/32

to

host all all 127.0.0.1/32 md5

host all all 10.0.2.15/32 md5

where 10.0.2.15 is the IP address of the machine being used. To check the ip address, open
up a command terminal and type ifconfig and look for the IP address

The final file that needs to be edited is multinode data.json. Modify the line that has
”address”: tcp://192.168.10.62:9000” so that it reads ”address”: tcp://10.0.2.15:9000
where the numbers that changed are your IP again. Make sure to save everything that you
have been editing and then restart the computer. The restart will finalize the changes and
once running bemoss again with the command and running BEMOSS, the server should
be deployed properly

./startBEMOSS_GUI.sh

6.4 Step 4: Adding functionality

In order to add functionality to BEMOSS, the user must have a python script that executes
the desired functionality. For the purpose of this tutorial, the python script controlling the
motor will be used. Replace the previous views.py and urls.py in the following directory

BEMOSS3.5/Web_Server/webapps/discovery]]

the html file must be edited in order to run the program which will take place on whatever
url is placed in the url file and is changed in the directory

BEMOSS3.5/Web_Server/webapps/discovery/templates/discovery

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 21 of 29

Chapter 7

Hardware Set Up Appendix

7.1 Step 0: Parts used in this project

• Raspberry Pi 3 Model B

• L298N Motor Driver

• 24V Pittman DC motor with attached optical encoder

• 2 XBEE S2C radio frequency modules

• Buck/Boost Converter

• 2 XBEE USB explorers

• 2 Micro USB cables

• 3.3V regulator

• 0.1 uF Capacitor

• Jumper Wires

• Power supply (4-24v)

7.2 Step 1: Libraries and Settings Utilized

A few libraries need to be installed on the Raspberry Pi 3 Model B to work this project.
The libraries listed at this time may not be sufficient as the software and protocols used in
this project are ever evolving. These libraries can be downloaded through the command
line. We wrote our code in python, so pip install commands in the command line was our
method of install. We had issues downloading the XBee libraries on our original Raspberry
Pi 3, so we exchanged for a new one and the libraries installed fine.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 22 of 29

Chapter 7. Hardware Set Up Appendix 7.3. Step 2: Hardware Connections

Figure 7.1: L298N Dual H Bridge Schematic.

• Enable Raspberry Pi General Purpose Input/ Output (GPIO) pins

• XBee libraries

• Enable serial port communication

• install EMACS (text editor to write python files in. Save Files as .py)

7.3 Step 2: Hardware Connections

• See below figures for XBEE and L298N diagrams, connections, and specifics

• Main power supply connected to the input of the Buck Boost

• L298N has 2 sets of 2 transistors to toggle motor direction. The pairs of transistors
are controlled by their designated I1 and I2 input pins. Reference pas 40-46 for Pin
toggle and motor rotation combinations

•

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 23 of 29

Chapter 7. Hardware Set Up Appendix 7.3. Step 2: Hardware Connections

Figure 7.2: XBee Pin Configuration

Figure 7.3: XBee Electric Data

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 24 of 29

Chapter 7. Hardware Set Up Appendix7.4. Step 3: Configure XBEE Modules

7.4 Step 3: Configure XBEE Modules

• Download XCTU to laptop/computer. This is the main XBEE configuration and
communication software

• review online tutorials of XBEE prior to changing settings

• Online tutorials thoroughly describe which parameters to set to fulfill your project.

• Thoroughly reading the lab notebook can result in avoiding time consuming errors
and findings.

• Master XBEE Setup

• we used a USB to XBEE board to configure the XBEE on the XCTU software.

• PAN ID: 1234 (all modules in network must have same PAN ID

• DL Destination Address: 415B96BF

• NI Node Identifier: RPi

• SH: 13A200

• SL: 415B96A7

• DH:0

• DL:FFFF

• modules transmissions received by all modules

• Slave XBEE setup

• DL: FFFF

• NI Node Identifier: MotorDrive

• SH: 0013A200

• SL: 415B96BF

• SL: 41630E56

• Channel C

• PAN ID: 1234

• DH=DL=0

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 25 of 29

Chapter 7. Hardware Set Up Appendix 7.5. Step 4: Software

• MY=16 bit source address =0

• SH=13A200

• SL: 41630E56

If a module’s DH is 0 and its DL is less than 0xFFFF (i.e. 16 bits), data transmitted by
that module will be received by any module whose 16-bit address MY parameter equals DL

If DH is 0 and DL equals 0xFFFF, the module’s transmissions will be received by all
modules.

If DH is non-zero or DL is greater than 0xFFFF, the transmission will only be received by
the module whose serial number equals the transmitting module’s destination address (i.e.
whose SH equals the transmitting module’s DH and whose SL equals its DL).

Successful Frame transmit to set IO4 on remote xbee high:
7E 00 10 17 01 00 13 A2 00 41 63 0E 56 FF FE 02 44 34 05 AE

Successful Frame transmit to set IO4 on remote xbee low:
7E 00 10 17 01 00 13 A2 00 41 63 0E 56 FF FE 02 44 34 04 AF

Successful Frame transmit D3 High:
7E 00 10 17 01 00 13 A2 00 41 63 0E 56 FF FE 02 44 33 05 AF
Successful Frame Transmit D3 Low:
7E 00 10 17 01 00 13 A2 00 41 63 0E 56 FF FE 02 44 33 04 B0

7.5 Step 4: Software

• Write code in a text file and save as a .py file

• Execute python files by navigating the directory (cd (directory) to change directories
and ls to list files in that directory) and typing the command ”python XBEETEST.py”
to execute the code to turn the motor both directions.

PLACE CCW.PY AND CW. PY CODE FILES HERE

7.6 Step 4: Trouble Shooting

• Beware of credentials deleting themselves in the XCTU software upon rediscovery

• Ensure the proper port communication in software. Raspberry PI 3 Model A vs
Model B employ different port protocols and naming conventions.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 26 of 29

Chapter 7. Hardware Set Up Appendix 7.6. Step 4: Trouble Shooting

• Our Raspberry Pi produced endless errors due to improper library downloads. Re-
install the OS or replace with a new Raspberry Pi and download the same libraries
and this problem should disappear.

• Some XBEE modules had trouble being discovered and communicating with each
other. Ensure the settings are proper and replace with a new module if necessary.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 27 of 29

Chapter 8

Control Appendix

8.1 Software used

• Matlab R2018a

• Simscape electrical 2018

8.2 Step 1 - Motor Model Creation

Begin by opening simulink. Create a new project and add a step block from the sources
library, this block will be your reference angle block that will tell the motor what position
to go to. Connect the step block to a sum block with a positive and negative sign. Create
a discrete time PID block. Go into the parameters of the PID block and change the
proportional gain to 2 and the derivative gain to 0.025. Go to the PID advanced tab and
check the box to limit output. Set the upper saturation level to 1 and the lower saturation
level to -1. Connect the output of the sum block to the input of the PID block. The output
of the PID block will be connected to a Simulink-PS converter block. Create a controlled
voltage source block and connect the PID output to the input of the voltage source with
an arrow. Create a controlled PWM voltage block and change its parameters. Change the
PWM frequency to 30 kHz. Go to the Input Scaling tab and change the input voltage for
zero percent duty cycle to -2 V and change the input voltage for 100 percent duty cycle to
-1V. Go to the Output Voltage tab and change the amplitude to 24V.
Add a H-bridge block and connect the PWM block’s PWM signal to the PWM input of
the H-bridge. Connect the REF output from the PWM to the REF and BRK inputs on
the H-bridge. Go back to the output of the PID block and connect it to another Simulink-
PS converter block. Connect this signal to another controlled voltage source. Create an
inverting op amp configuration with unity gain connecting from this voltage source to the
REV block on the H-bridge.
Add a DC motor block and connect the positive output of the H-bridge to the electrical
side of the dc motor. Connect the negative terminal to ground along with the negative

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 28 of 29

Chapter 8. Control Appendix 8.2. Step 1 - Motor Model Creation

Figure 8.1: Electrical Motor Specifications

Figure 8.2: Mechanical Motor Specs

references for the voltage sources, PWM signal generator, and H-bridge. For the mechanical
section of the motor, connect the C terminal to a mechanical rotational reference block.
Connect the R terminal to an ideal rotational motion sensor. Connect the A output to a
PS-Simulink block and connect that output to a simulink scope. Take the negative channel
of the summer block from the beginning and connect it to the angle signal, completing the
feedback loop.
Double click the motor block to open the configuration window. Set the parameters to the
same as in figures 8.1 and 8.2.

R. Bachman, J. Ingram, R. O’Malley (Bradley University) Page 29 of 29

	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Background Study
	Project Statement

	Overview
	Control Algorithm
	System Modeling
	Motor

	Motor Control
	HVAC Model
	State-Space Representation of HVAC System

	Control of HVAC Model
	HVAC Control Results

	Implementing BEMOSS
	Overview
	Discovery
	Control
	HTML
	Django

	Interfacing New IoT Device
	Overview
	Central Node
	XBEE Radio Frequency Modules
	DC Motor and Control Circuit
	Central Node Software
	Search and Control Software
	Future Work

	Software Set Up Appendix
	Step 1: Installing Linux
	Step 2: Installing Software
	Step 3: Installing BEMOSS
	Step 4: Adding functionality

	Hardware Set Up Appendix
	Step 0: Parts used in this project
	Step 1: Libraries and Settings Utilized
	Step 2: Hardware Connections
	Step 3: Configure XBEE Modules
	Step 4: Software
	Step 4: Trouble Shooting

	Control Appendix
	Software used
	Step 1 - Motor Model Creation

	References

