

ECE 499 - Senior Project Report

Komatsu Sponsored - ECU Communication and Networking

Team Members: ​Zach Oakes, Christian West

Project Advisor: Aleksander Malinowski

Department of Electrical and Computer Engineering

March 29​th​, 2018

Abstract

Controller Area Network (CAN) communication is standard throughout the automotive and
construction equipment industries. This is due to its low-cost, durability, and communication
structure that enables it to broadcast messages to each device on the network in real time with a
given priority. Testbenches in these industries commonly use CAN bus technology to detect
faults in products that are both existing and under development. These testbenches provide the
environment that is required to validate proper operation and ensure quality. This project aims to
create a low-cost and easily-repurposable testing and development platform for academic
projects relating to CAN communication. To achieve this, we mounted six Raspberry Pi 3b
single-board computers with commercially available CAN shields, along with an Ethernet
switch, and power supply. This topology also allows for direct access to each device, enabling a
developer to easily control them over Ethernet. The result of this projects yields a viable testing
and development bench for CAN network communication at a low cost due to the use of
common off-the-shelf components. The accessibility of this test bench will make for smoother
development of future projects related to networking or automotive applications.

Oakes, West 2

Abstract 2

I. Introduction 4

II. Problem Statement 4

III. Background 5
i. CAN Communication 5
ii. ISO Layers 6
iii. Comparison of Encryption Methods 7

IV. Implementation 8
i. Hardware 8

a. The Physical Layer 9
b. Data Link 10

ii. Software 10

VI. Results And Future Work 10
i. Results 10
ii. Future Work 11

References 11

Appendix A - Bill Of Materials 12

Appendix B - Source Code 12
Python Code 12
Example ecu_info.xml file 14

Appendix C - Raspberry Pi Initial Setup 15

Oakes, West 3

I. Introduction

The automotive industry uses an Electronic Control Unit (ECU) to control electrical systems or
subsystems in a vehicle. Networks of these units are capable of controlling and monitoring entire
machines such as those found in the construction and mining industries. As the number of ECUs
in a network continue to increase they become more complex. Managing this increase in
sophistication has become an important challenge for companies to overcome. This is where
testing and validation becomes useful. This is a step in the development cycle where
manufacturers perform FMEAs (failure mode and effect analysis) to discover bugs and failures
early on in the development process. These tests are typically performed on testbenches:
hardware (or virtual) environments that enable the testing of other hardware and software
features.

It would be advantageous for automotive companies producing heavy machine equipment to
implement a robust ECU network that is “smart” enough to recognize each connected module
along with important information. Such information could include serial numbers, ECU
identifiers, and the truck frame number​i​ the network is on. Additionally, such a network might
have the ability to handle memory retainment for the swapping of ECUs or detecting the addition
of unauthorized modules. This is very appealing, as this type of network can serve as a platform
to monitor where and when a machine is located and to collect data such as diagnostics and
prognostics that could potentially be sent to a central database for monitoring. This will also
increase security ensuring that paid features will only be enabled on the intended machines.

This project should deliver a prototype of a simulated ECU network that encompasses these
features along with proposing alternative methods in order for these features to exist.

II. Problem Statement

Komatsu is interested in exploring new designs to modify the current ECU networks on their
ultra-class mining trucks. The goal would be to increase security and introduce more
functionality. This research and development will serve as an early step to enable Komatsu to
uniquely identify and track every ECU in the field. The ability to track every ECU individually
will create accountability for each Komatsu truck in service as well as allowing for autonomy in
servicing these ECU networks.

The following are the required functionality that will need to be implemented into the test
network:

1. Simulate a CAN Network of ECU’s utilizing Master-Slave topology
2. Develop software to obtain each module’s ID number along with the truck frame number

(a unique identifier for each truck chassis, like a VIN for on-road vehicles)
3. Information retainment in case of network powering off
4. Develop a method to recognize, authorize, and update new modules replaced or added to

each system
5. Create a protocol to allow for a secure transfer of ECU information

Oakes, West 4

Completing this work will allow for current and future ECU networks to become “smart” while
saving time and money, with the potential for increased autonomy.

Currently, if a unit were to fail, an agent is sent to the site with equipment to manually program
the new ECU with its installation information. If this information was already capable of being
automatically obtained, then a smart network would eliminate the labor cost for programming
and the potential for operator error.

III. Background

i. CAN Communication
CAN protocol is a communication method that allows different devices to communicate without
a host computer. It accomplishes this by reducing the amount of harnessing to a single network,
known as the CAN Backbone, that typically consists of a twisted pair of wire. This simple design
allows for an inexpensive, durable network. ​CAN communication enables peer-to-peer or
broadcast data transmissions meaning that all modules can transmit and receive data on the bus.
Each module decides whether a message is relevant or if it should be filtered. With the
intelligence within each module and not the network itself, modules may be added or modified
with minimal impact. Another advantage to using CAN bus is message prioritization. This
allows for non-interrupted transmission of higher priority messages and for the network to be
deterministic. Finally CAN specification includes error detecting code. This is otherwise known
as Cyclic Redundancy Code (CRC), that performs an error check on each frame. Errored frames
are ignored.

In order to satisfy the physical layer of our testbench, the requirements of CAN communication
were referenced. CAN High-Speed is defined by ISO11898-2 as a differential data bus. This
behavior can be seen in the following image:

Figure 5.1 - ​CAN Traffic

From an idle voltage of 2.5 V, CAN_H and CAN_L pins are driven apart for logical 0 (dominant
state) and back together for logical 1 (recessive state). If the bus is recessive, any device on the
bus can assert dominant. This behavior is how messages are acknowledged: the sending unit
writes recessive for one cycle and the receiving unit sends back dominant. If the bus still reads

Oakes, West 5

recessive at this time then the transmitting unit thinks that transmit failed since it hasn’t been
acknowledged.

Each node on the network are connected to a two wire bus that serves as the backbone of the
network. This backbone supports all the communication done throughout the network. The wires
used are a twisted pair at a nominal impedance of 120 ​Ω​.

Figure 6.1 - ​CAN FRAME

The following defines the CAN frame in figure 6.1:

SOF ​(start-of-frame) bit – Start a message with a dominant (logic 0) bit.

Arbitration ID​ – identification and priority for the message. Indicates a standard 11-bit
arbitration ID or extended 29-bit arbitration ID.

IDE ​(identifier extension) bit – differentiates between standard and extended frames.

RTR ​(remote transmission request) bit – bit used to request ID from a module that did not
transfer within the time period. Normally the RTR bit is set to a dominant (logic 0) but set to a
recessive (logic 1) RTR bit to indicate a remote frame.

DLC ​(data length code) – indicates the number of bytes the data field contains (0 - 8 bytes).

CRC ​(cyclic redundancy check) – 15-bits and a recessive delimiter bit for error detection.

ACK ​(ACKnowledgement) slot – single bit that is generated by any receiving module to indicate
proper CRC. Transmission will reattempt no ACK is detected.

EOF ​(end of frame) – seven bit recessive sequence to indicate the end of the frame

ii. ISO Layers

The International Standard Organization (ISO) has developed a conceptual model to standardize
terminology for talking about communications over a network. This model is called the Open
Systems Interconnection model (OSI model). This model defines the seven layers that can be
seen below in figure 5.1. The scope of this project only includes the first three layers: the
Physical, Data Link, and Network Layers (bordered in blue in figure 5.1).

Oakes, West 6

Figure 5.1​ - OSI Model Layers

The Physical Layer of a network is the lowest layer. It addresses the physical characteristics of
the network. These details include the electrical, mechanical, and procedural properties of the
transmission media; anything that describes the physical data link connecting network nodes that
will transmit the raw bits. For example: the types of connectors used, twist level of wires used,
length of cable, etc.

The Data Link Layer is second layer of the model that is the first to assign meaning to the bits
being transmitted over a network. Details include size of each packet, timing, basic error
detection and correction, etc. Each device on the network at this level possesses its own unique
identifier, commonly assigned during production.

Considered as the backbone of the OSI model, the Network Layer will decide what path data
transfer will follow between nodes. These protocols, commonly Internet Protocol or Netware
IPX/SPX, exist in every host and routers. This layer accepts requests from the Transport Layer
above is, and sends requests to the Data Link Layer.

iii. Comparison of Encryption Methods

There are two schemes for encryption. These involve using either symmetric-key or
asymmetric-key methods. The symmetric-key scheme, also known as private-key cryptography,

Oakes, West 7

uses the same key for encryption and decryption. This means that the key must remain secure.
The asymmetric-key scheme, also known as public-key cryptography, uses two keys separately
for encryption and decryption; a private key and a public key. The public key is used to encrypt
messages and is made available, while only the holder may use their private key to decrypt the
message. The following further describes a few different data encryption algorithms:

Blowfish ​-a symmetric cipher that is much faster than the methods Data Encryption Standard
(DES) and the International Data Encryption (IDEA). It works by splitting messages into 64-bit
blocks, encrypting each piece separately. This method is unpatented and royalty-free making it
widely used in the public domain. Due to these reason, and that our goal is simply to encrypt
CAN messages, we decided to use this method in our implementation.

Twofish ​-the successor to the blowfish algorithm and another symmetric cipher. It uses block
sizes of 128-bits with keys that may be up to 256 bits. Twofish is also unpatented and freely
available. This algorithm has proven to perform well where little RAM and ROM is available
and where keys are changed frequently.

AES ​- another symmetric block cipher that is held as the standard by the U.S. government to
protect classified information. It is capable at handling 128-bit blocks with keys up to 256 bits.

IV. Implementation

i. Hardware

Although Master-Slave topology is not required for CAN protocols such as J1939, we followed
this topology to mirror our software implementation. Note that this has no effect on the build
physically but it further illustrates our implementation- see ​figure 8.1. ​Each ECU is simulated
using a Raspberry Pi; one serves as the Master ECU and the rest as slave ECUs. The CAN
network will connect in parallel to each ECU with the ends terminated by 120 Ohm resistors.

Figure 8.1​ - ​System Diagram of ECU Network

Oakes, West 8

a. The Physical Layer

The above topology is realized in the physical build as seen in figure 9.1. This encompasses the
CAN backbone that is created by using twisted pairs of wires. The blue wire is designated as
CAN_H where as the green is CAN_L. This backbone connects to each of the ECUs in parallel,
which are being simulated with raspberry pis paired with a CAN shield called piCAN2. This
shield, developed by Copperhill technologies, enables the raspberry pi to easily interface with the
CAN network with its onboard DB9 connector, in our case, the screw terminal. Lastly, the red
circles highlight the 120 Ω resistors used that yield the 60 Ω impedance between the CAN_H and
CAN_L lines.

Figure 9.1 ​- ECU Network Implementation

Figure 9.2​ - Platform Design

Oakes, West 9

b. Data Link

The platform design can be seen in figure 9.2 which includes the previously described ECU
network and is highlighted by the red circle. ​The power is supplied by the Tigeo Power Adapter
(highlighted by the green circle) which can supply up to 5V at 12 Amps. Since the Pi’s are only
running scripts and sending messages back and forth, this is sufficient. In terms of the data link
layer, there is a network switch (highlighted by the blue circle) that is used as a network bridge.
This allows for a user to directly access each module via ethernet. Each module is configured
with a static IP address.

The full setup for development consists the entire platform connected to a laptop via the ethernet
switch. Using other tools such as SSH, via putty, and a shared internet connection through the
laptop, higher levels of the OSI model were utilized. This enabled us to install necessary python
libraries, Coperhill’s drivers, and full web access when developing.

ii. Software
All the code for our demos lives in one directory on the Raspberry Pi, this allows for easy
deployment of changed code with only one ​scp​ command. The directory tree of the source code
is as follows:
/home/pi/ecu

├── blowfish

│ └── __init__.py

├── ecu_comms

│ ├── ecu_info.xml

│ └── __init__.py

└── __init__.py

The top level ​__init__.py ​file is empty, but is required for using Python imports.

When the device is initialized by a call to ​python ~/ecu/ecu_comms/__init__.py
under Python 2.7.x, it will make a new ​ECU​ object. This object will then read from the
~/ecu/ecu_comms/ecu_info.xml​ file to find out the password for encryption and
information about itself along with the rest of the devices that it thinks are on the network. Once
this information is loaded, the master device iterates over the list of ECUs that it expects to find
and confirms that they all still exist and have the parameters that it expected to see.

VI. Results And Future Work

Overall this project was pretty successful, our client is happy and we won the Dean’s award for
our work.
i. Results
Recall our functional requirements for this project:

1. Simulate a CAN Network of ECU’s utilizing Master-Slave topology
2. Develop software to obtain each module’s ID number along with the truck frame number

(a unique identifier for each truck chassis, like a VIN for on-road vehicles)
3. Information retainment in case of network powering off

Oakes, West 10

4. Develop a method to recognize, authorize, and update new modules replaced or added to
each system

5. Create a protocol to allow for a secure transfer of ECU information

Most of the items here have been accomplished. Number 2 was decided to be out of scope, and a
solid groundwork for number 4 is in place. The network is simulated in hardware, and
information can be passed along it securely due to the blowfish encryption. The system is
protected from power down by storing the network information in an XML file in nonvolatile
memory.
ii. Future Work
Our project, while complete, has some optimization left to do.

It was pointed out to us at IAB presentations that our network doesn’t do a good job of
simulating the conditions found on an actual machine, because of the shortness of the wiring
harness and the lack of ambient electrical noise in the lab. A good extension would be to try and
add some realism by adding an electrical noise generator to the CAN bus.

Upon reviewing the XML file used to store network information it was brought up that XML
might not be the best tool for the task of storing this information. A future implementation of the
same functionality might instead use a JSON file, which is less verbose and maps better onto a
Python dictionary than an XML file does.

Heartbeat functionality would also be good. Right now the only time that the network is scanned
and verified is on boot. Ideally this would be a regular action ever couple of minutes, to make
sure that the network hasn’t been tampered with since boot.

References

http://copperhilltech.com/pican2-controller-area-network-can-interface-for-raspberry-pi/
http://sgframework.readthedocs.io/en/latest/cantutorial.html
http://copperhilltech.com/content/CIA_article.pdf
http://www.axiomatic.com/whatiscan.pdf​ ----C CAN traffic picture

https://www.schneier.com/academic/archives/1998/12/the_twofish_encrypti.html
https://www.schneier.com/academic/blowfish/
List data sheets
http://ww1.microchip.com/downloads/en/AppNotes/00228a.pdf

Oakes, West 11

http://copperhilltech.com/pican2-controller-area-network-can-interface-for-raspberry-pi/
http://sgframework.readthedocs.io/en/latest/cantutorial.html
http://copperhilltech.com/content/CIA_article.pdf
http://www.axiomatic.com/whatiscan.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00228a.pdf

Appendix A - Bill Of Materials

Table 1​: Parts List ECU Network

Appendix B - Source Code

The entire source for this project can be cloned from Bitbucket

git clone git@bitbucket.org:km_ecu/ecm_software.git

This is a private repository as per the terms of our non-disclosure agreement with Komatsu,
contact either of the authors to ask for access.

A. Python Code

The pure-python blowfish library used in this project was written by Larry Bugbee, and is
available from his website (​http://www.seanet.com/~bugbee/crypto/blowfish/blowfish.py​),
renamed to ​blowfish/__init__.py ​so it could be imported as a module.

The remainder of the code was contained the ​~/ecu/ecu_comms/__init__.py ​file,
included below:
import xml.etree.ElementTree as ET

import can

from textwrap import wrap

import re

import sys

sys.path.append("/home/pi/ecu/")

from blowfish import blowfishCTR

class ECU:

 def __init__(self):

 """Read from disk the demographic info about this device and then set the

parameters appropriately """

Oakes, West 12

http://www.seanet.com/~bugbee/crypto/blowfish/blowfish.py

 # Read in the info from the disk, if we have any

 self.bus = can.interface.Bus(channel='can0', bustype='socketcan')

 try:

 file_ = './ecu/ecu_comms/ecu_info.xml'

 root = ET.parse(file_).getroot()

 for child in root.find('self'):

 setattr(self, child.tag, child.text)

 self.network = list()

 for ecu in root.findall('ecu'):

 child_dict = dict()

 for child in ecu:

 child_dict[child.tag] = child.text

 self.network.append(child_dict)

 self.password = root.find('password').text

 self.build_list()

 # This will be thrown if the file doesn't exist yet or hasn't set the right

values

 except (IOError, AttributeError) as e:

 print 'File for the attributes is corrupted or missing'

 raise e

 def poll(self):

 """Go down the list of ECUs and comfirm that we have all of them. Only the

master should do this"""

 for device in self.network:

 self.send_data(dest=device['serial'], data='{}?{}'.format(device['nick'],

self.serial))

 # todo recieve response and store it to a new array of devices

 print self.recv_data()

 def send_data(self, data, dest=0x0):

 """Send data to dest over the CAN network.

 For our purposes this will just mean that dest will be the CAN header

 and if data is bigger than one frame it'll be wrapped. This should work to

 send strings as bytearrays, 8 characters at a time"""

 print "enter send action, data is {}".format(data)

 secure = self.encode(data)

 print "encrypted message is {}".format(secure)

 secure = wrap(str(secure), width=8, replace_whitespace=True)

 for chunk in secure:

 print "trying to send {}".format(chunk)

 self.bus.send(can.Message(arbitration_id=int(dest), data=map(ord, chunk)))

 # send a blank message to show that it's the end

 self.bus.send(can.Message(arbitration_id=int(dest), data=[]))

 print 'Sent message: {} to {}'.format(data, dest)

 def recv_data(self):

 """Listen for messages to us and reassemble them back into strings

 todo make this have a timeout

 """

 data = ''

 for msg in self.bus:

 if msg.arbitration_id == int(self.serial):

 data += msg.data

 if msg.data == '':

 break

 if data:

 return self.decode(data)

 else:

 return 'No Response'

Oakes, West 13

 def build_list(self):

 """Build a list of devices on the network. If we're a slave we'll do this by

listening

 and if we're a master then we'll do this by polling for devices on the network

 """

 if self.MasterSlave == 'Master':

 self.poll()

 else:

 msg = self.recv_data()

 # if the message looks like an ID request

 if re.match('.+\?\d+'.format(self.nick), msg) is not None:

 # If it's asking about us specifically

 if self.nick in msg:

 self.send_data("{}\n{}\n".format(self.MasterSlave, self.role),

dest=int(re.findall('\d+', msg)[-1]))

 def encode(self, message):

 encrypted_msg = blowfishCTR('e', self.password, message)

 return encrypted_msg

 def decode(self, secure_text):

 decrypted_msg = blowfishCTR('d', self.password, str(secure_text))

 return decrypted_msg

if __name__ == '__main__':

 device = ECU()

B. Example ecu_info.xml file
The ​ecu_info.xml​ file contains information about the current device (under the ​self​ tag)
and the rest of the devices that are expected to be on the network (under the ​ecu​ tags).
Additionally this file contains the password used for Blowfish encryption (under ​password​).
The file used in demos is below; note that only five ECUs are defined, as the sixth was used as
an activity monitor.

<ecu_list>

 <self>

 <MasterSlave>Master</MasterSlave>

 <serial>001</serial>

 <role>Everything</role>

 <nick>Alice</nick>

 </self>

 <ecu>

 <MasterSlave>Slave</MasterSlave>

 <serial>002</serial>

 <role>Wheels</role>

 <nick>Bob</nick>

 </ecu>

 <ecu>

 <MasterSlave>Slave</MasterSlave>

 <serial>003</serial>

 <role>Brakes</role>

 <nick>Carol</nick>

 </ecu>

 <ecu>

 <MasterSlave>Slave</MasterSlave>

Oakes, West 14

 <serial>004</serial>

 <role>Hydraulics</role>

 <nick>Dave</nick>

 </ecu>

 <ecu>

 <MasterSlave>Slave</MasterSlave>

 <serial>005</serial>

 <role>Suspension</role>

 <nick>Eve</nick>

 </ecu>

 <password>thisisthepasswordtobeusedforkomatsu123456</password>

</ecu_list>

Appendix C - Raspberry Pi Initial Setup

For the initial setup, the Raspberry Pi will need to have internet access. First, install the PiCAN2
shield onto the Raspberry Pi. Next, install any updates to Raspian that have been published since
the last version.

sudo apt-get update

sudo apt-get upgrade

Then you’ll need to get the setup for SPI communication added to the ​/boot/config.txt
file. The easiest way to do this is with an elevated ​nano​ editor.

sudo nano /boot/config.txt

Add these lines to the bottom of the file:

dtparam=spi=on

dtoverlay=mcp2515-can0,oscillator=16000000,interrupt=25

dtoverlay=spi-bcm2835-overlay

Save the file and reboot the Pi.
If you’d like some debugging tools for the Pis, then you can get the CopperHillTech
recommended ones at ​http://www.skpang.co.uk/dl/can-test_pi2.zip​, just unzip that somewhere
convenient on the Pi.

The next thing that you’ll need to do is install Hardbyte’s Python-CAN library. It can be found at
https://github.com/hardbyte/python-can​. Either clone the repo or download as a zip and unzip it
somewhere convenient. Install the library proper with a setup.py command, except that Raspian
doesn’t usually ship with the needed library for this, so install the ​python-setuptools
library first

sudo apt-get install python-setuptools

sudo python3 setup.py install

Oakes, West 15

http://www.skpang.co.uk/dl/can-test_pi2.zip
https://github.com/hardbyte/python-can

At this point everything that you’ll need is installed on the Pi, so it’s probably easier to make
copies of that SD card than it would be to run through this whole process again.

Before you use the CAN bus you’ll need to bring the interface up:

sudo /sbin/ip link set can0 up type can bitrate 500000

Once that is all done you should be able to run our code, so pull down our code as described in
Appendix B and run by calling

python ~/ecu/ecu_comms/__init__.py

Oakes, West 16

