Experiments on 2-DOF Helicopter Using Approximate Dynamic Programming

Anthony Birge Andrew Fandel Advisor: Dr. Suruz Miah

Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL 61625

Saturday, April 28, 2018

BRADLEY

1 / 47

April 28, 2018

Outline

- Approximate Dynamic Programming
- 3 Quanser AERO
- 4 Modeling
- MATLAB Simulations
- 6 V-REP
 - 7 Simulink
- 8 Raspberry Pi
- O Android Application
- 10 Conclusion
 - 1 Future Directions
 - 2 References

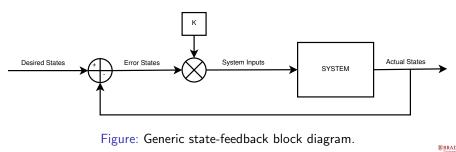
Discussion

э

Image: A matrix and a matrix

- Most physical systems are nonlinear one example being a helicopter with the stochastic nature of weather
- Control techniques frequently only apply to linear systems
- Machine learning has seen significant growth in the areas of diagnostics, forecasting, and optimization
- With the growth of machine learning, is there a way to learn the most efficient control strategy for a nonlinear system
- One such machine learning algorithm is a reinforcement learning model-based approach known as approximate dynamic programming

- Investigate the use of approximate dynamic programming in nonlinear systems
- Demonstrate approximate dynamic programming on a 2-DOF helicopter, the Quanser AERO, using theoretical simulations
- Design virtual simulation platforms for the Quanser AERO
- Implement approximate dynamic programming on the Quanser AERO
- Extend approximate dynamic programming via an embedded system and smart phone
- Research the Quanser AERO for future teaching experiments at Bradley University


Introduction

Abbreviations

- 2-DOF 2 Degrees-Of-Freedom
- ADP Approximate Dynamic Programming
- FAA Federal Aviation Administration
- LQR Linear Quadratic Regulator
- SPI Serial Peripheral Interface
- UDP User Datagram Protocol
- V-REP Virtual Robot Experimentation Platform

- $J_{\rho}(J_y)$ Total moment of inertia about pitch (yaw) axis
- $D_p(D_y)$ Damping constant about pitch (yaw) axis
- K_{sp} Stiffness about pitch axis
- $K_{pp}(K_{py})$ Torque thrust gain acting on pitch from pitch (yaw) rotor
- $K_{yy}(K_{yp})$ Torque thrust gain acting on yaw from yaw (pitch) rotor
- $V_0(V_1)$ Applied voltage to pitch (yaw) motor
- $heta(t)[\psi(t)]$ Pitch [yaw] angle at time $t\geq 0$

- Most systems can be controlled by state-feedback
- Determining the most efficient gains of the system can be difficult
- ADP uses an approximate model of the system and measured data to estimate possible future system states
- Dynamically, ADP adjusts the gains as the system progresses through time

• Linearized system model:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \tag{1}$$

• Error of system model:

$$\mathbf{e}[k+1] = \mathbf{f}(\mathbf{e}[k]) + \mathbf{Gu}[k]$$
(2)

$$\mathbf{f}(\mathbf{e}[k]) = e[k] + T\mathbf{A}e[k] - T\mathbf{A}\mathbf{x}^{[d]}$$
(3a)
$$\mathbf{G} = -T\mathbf{B}$$
(3b)

Image: A matrix and A matrix

BRADLEY University

8 / 47

э

April 28, 2018

• The cost function to be minimized by ADP is

$$J(\mathbf{u}) = \sum_{k=0}^{\infty} \left(\mathbf{e}^{\mathsf{T}}(k) \mathbf{Q} \mathbf{e}(k) + \mathbf{u}^{\mathsf{T}}(k) \mathbf{R} \mathbf{u}(k) \right)$$
(4)

• Cost-to-go function (value function):

$$V(\mathbf{e}(k)) = \sum_{\kappa=k}^{\infty} \left(\mathbf{e}^{\mathsf{T}}(\kappa) \mathbf{Q} \mathbf{e}(\kappa) + \mathbf{u}^{\mathsf{T}}(\kappa) \mathbf{R} \mathbf{u}(\kappa) \right)$$
(5)

• The cost-to-go function can be rewritten as

$$V(\mathbf{e}(k)) = \mathbf{e}^{\mathsf{T}}(k)\mathbf{Q}\mathbf{e}(k) + \mathbf{u}^{\mathsf{T}}(k)\mathbf{R}\mathbf{u}(k) + V(\mathbf{e}(k+1))$$
(6)
^{(BRADLEY}

• Optimal control inputs found by

$$\mathbf{u}^{*}(k) = \operatorname{argmin}_{\mathbf{u}(k)} \left(\mathbf{e}^{\mathsf{T}}(k) \mathbf{Q} \mathbf{e}(k) + \mathbf{u}^{\mathsf{T}}(k) \mathbf{R} \mathbf{u}(k) + V^{*}(\mathbf{e}(k+1)) \right)$$
(7)

• The minimization problem is solved by using the discrete-time Hamilton-Jacobi-Bellman equation:

$$V^*(\mathbf{e}(k)) = \min_{\mathbf{u}(k)} \left(\mathbf{e}^{\mathsf{T}}(k) \mathbf{Q} \mathbf{e}(k) + \mathbf{u}^{\mathsf{T}}(k) \mathbf{R} \mathbf{u}(k) + V^*(\mathbf{e}(k+1)) \right)$$
(8)

• Calculating the gradient of the right side of (8) yields

$$\frac{\partial}{\partial \mathbf{u}(k)} (\mathbf{e}(k)^T \mathbf{Q} \mathbf{e}(k) + \mathbf{u}^T(k) \mathbf{R} \mathbf{u}(k)) + \left(\frac{\partial \mathbf{e}(k+1)}{\partial \mathbf{u}(k)}\right)^T \nabla V^* (\mathbf{e}(k+1)) = \mathbf{0} \quad (9)$$

• The optimal inputs at time instant k are given by

$$\mathbf{u}^*(k) = -\frac{1}{2} \mathbf{R}^{-1} \mathbf{G}^T \nabla V^*(\mathbf{e}(k+1))$$
(10)

• The cost-to-go function can be expressed as a quadratic function:

$$V(\mathbf{e}(k)) = \mathbf{e}^{\mathsf{T}}(k)\mathbf{P}\mathbf{e}(k)$$
(11)

April 28, 2018

11 / 47

• The cost-to-go function can then be approximated by

$$V(\mathbf{e}(k)) = (\operatorname{vec}(\mathbf{P}))^{T}(\mathbf{e}(k) \otimes \mathbf{e}(k)) \equiv \mathbf{w}_{c}^{T} \phi(\mathbf{e}(k))$$
(12)

where \otimes is the Kronecker product operator and the weight $\mathbf{w}_c = \operatorname{vec}(\mathbf{P})$, where the operator $\operatorname{vec}(\mathbf{P})$ forms the vector by stacking columns of the matrix \mathbf{P}

• The weight vector, **w**_c, is approximated using a critic neural network using collected error data as inputs

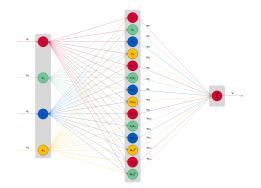


Figure: Critic neural network.

BRADLEY

12 / 47

April 28, 2018

• The estimated cost-to-go function is defined as

$$\hat{V}(\mathbf{e}(k)) \cong \mathbf{w}_c^T \phi(\mathbf{e}(k)) \tag{13}$$

• The target value function is determined by using

$$V(\mathbf{e}(k)) = \mathbf{e}^{\mathsf{T}}(k)\mathbf{Q}\mathbf{e}(k) + \mathbf{u}^{\mathsf{T}}(k)\mathbf{R}\mathbf{u}(k) + \mathbf{w}_{c}^{\mathsf{T}}\phi(\mathbf{e}(k+1))$$
(14)

• The least square error is then defined as

$$\delta_c = \frac{1}{2} \sum_{\kappa=0}^{\bar{n}-1} [V(\mathbf{e}(k)) - \hat{V}(\mathbf{e}(k))]^2$$
(15)

April 28, 2018

 The weight vector, w_c, that minimizes the sum-of-square error δ_c is given by

$$\mathbf{w}_{c} = \left(\mathbf{\Lambda}^{T} \mathbf{\Lambda}\right)^{-1} \mathbf{\Lambda}^{T} \mathbf{V}$$
(16)

where the matrix $\mathbf{\Lambda} = [\mathbf{a}_0, \mathbf{a}_1, \dots, \mathbf{a}_{\bar{n}-1}]^T$ with $\mathbf{a}_{\kappa} = \phi^T(\mathbf{e}(k+\kappa))$ and $\mathbf{V} = [v_0, v_1, \dots, v_{\bar{n}-1}]^T$ with $v_{\kappa} = V(\mathbf{e}(k+\kappa))$ for $\kappa = 0, 1, \dots, \bar{n}-1$

• We then extract our state-feedback gain using

$$\mathbf{u}^*(k) = -\frac{1}{2}\mathbf{R}^{-1}\mathbf{G}^T \nabla V^*(\mathbf{e}(k+1))$$
(17)

April 28, 2018

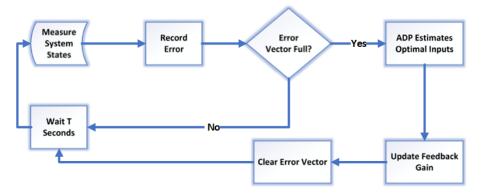


Figure: ADP flowchart.

A. Birge, A. Fandel (Bradley University)

April 28, 2018 15 / 47

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Quanser AERO Overview

- Advanced control research platform used in education and industry
- Configurable as a half-quadcopter or 2-DOF helicopter
- System inputs motor voltages
- System outputs pitch, yaw, angular pitch velocity, and angular yaw velocity
- Difficulty arises due to the coupling effect

Figure: Quanser AERO configured as 2-DOF helicopter. Image courtesy of Quanser [8].

April 28, 2018

Quanser AERO Coordinates

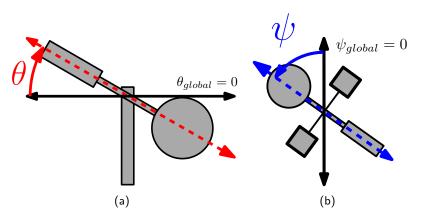


Figure: (a) pitch $[\theta]$ and (b) yaw $[\psi]$ are the measured system states.

BRADLEY University

17 / 47

April 28, 2018

Quanser AERO Coupling Effect

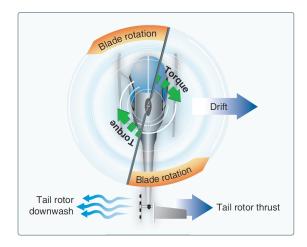


Figure: Controlling a helicopter can be difficult due to a coupling effect. Image courtesy of the FAA Helicopter Pilot's Handbook [1].

Quanser AERO Coupling Effect

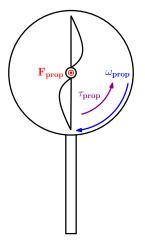


Figure: Quanser AERO rotor.

(日) (周) (三) (三)

Quanser AERO Coupling Effect

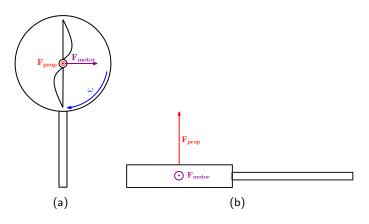


Figure: (a) Force diagram (top view) and (b) force diagram (side view).

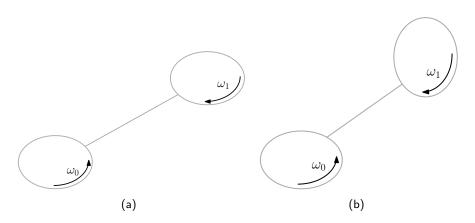


Figure: (a) Half-quadcopter blade rotations ($V_0 = V_1$) and (b) 2-DOF helicopter blade rotations ($V_0 = V_1$).

Quanser AERO Methods of Control

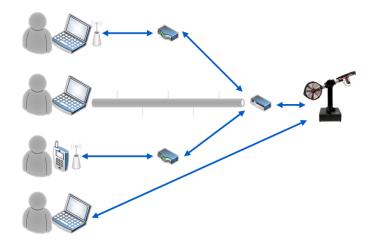


Figure: High-level system block diagram.

Image: A math a math

April 28, 2018

BRADLEY University

Modeling State-Space Models

- ADP utilizes a linearized state-space model of the system
- Half-Quadcopter

$$\begin{bmatrix} \dot{\theta} \\ \dot{\psi} \\ \ddot{\theta} \\ \ddot{\psi} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{-K_{\text{sp}}}{J_{p}} & 0 & \frac{-D_{p}}{J_{p}} & 0 \\ 0 & 0 & 0 & \frac{-D_{y}}{J_{y}} \end{bmatrix} \begin{bmatrix} \theta \\ \psi \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{K_{\text{pp}}}{J_{p}} & \frac{-K_{\text{pp}}}{J_{p}} \\ \frac{K_{\text{yy}}}{J_{y}} & \frac{-K_{\text{yy}}}{J_{y}} \end{bmatrix} \begin{bmatrix} V_{0} \\ V_{1} \end{bmatrix}$$
(18)

• 2-DOF Helicopter

$$\begin{bmatrix} \dot{\theta} \\ \dot{\psi} \\ \ddot{\theta} \\ \ddot{\psi} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{K_{sp}}{J_p} & 0 & -\frac{D_p}{J_p} & 0 \\ 0 & 0 & 0 & -\frac{D_y}{J_y} \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\psi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{K_{pp}}{J_p} & \frac{K_{py}}{J_p} \end{bmatrix} \begin{bmatrix} V_0 \\ V_1 \end{bmatrix}$$
(19)

MATLAB Simulation

Results

- Specified desired trajectories and ADP constants
- Exactly simulating coupling is difficult which hindered more realistic results
- Simulation results limited due to approximate linear system model

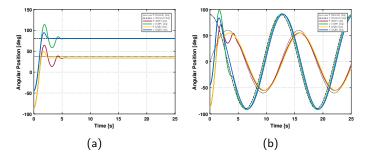


Figure: MATLAB simulation results for 2-DOF helicopter with (a) constant desired trajectories and (b) sinusoidal desired trajectories.

April 28, 2018

24 / 47

- Integrated development environment offering tools to experiment with robotic prototypes through a wide array of control techniques
- Provides a graphical result realizing the Quanser AERO through software
- Utilized in industry for simulating factory automation systems
- Very limited resources available
- Real-time algorithms frequently limited by processing power of the host system

April 28, 2018

Collision handing enabled Calculations: 0, deter Distance by a set of the calculations: 0, detail Procenty's ensor handing enabled Calculations: 0, detail Argon prevaling enabled Calculations: 0, detail Rectancian interim gerapheter Mechanism interim gerapheter Calculations: 0, detail Calculations: 0, detail Calculat	0 q=0.00.00 ws.auricing threads. 0 (0 ms) domy. 0 (0 ms) domy. 0 (0 ms) domy. 0 (0 ms)	
3 Gapti Tempta (Mgab) 0	microsof (are of) - Microsof (are of) - Microsoft (are of) - M	
a di contra di c	-	Ē.

Less selected object nence Less selected object previous Less selected object presisten Less selected object presisten Simulation time Simulation time Collution time Collution time Disguest Practing enabled Provinty sensor handing getablied Vision sensor handing getablied	Detail:1,1,1,1 Detail:2,1,1,1 Detail:2,1,1,1 A: 0000 b: -0000 0; 0000 b: -0000 0; 0	/		
Dispute having enabled Provinty-sense having gatabled Vition sensor handing enabled (BD) IK group having enabled Matchnism handing enabled Dynamics handing enabled Dynamics handing enabled	Calculations: 0 (0 ms) Calculations passes: 10 (2 ori) Calculations: 0. surface put 0 mm*2 (0 ms)			
3 ough			8	
Graph Time graph				
	Middeared (Jae unit) TracCeret (Jae unit) Nit) Express) Trav (Pares)			
	150 150 200 250			

Simulink _{Overview}

- Graphical programming language that uses a model-based approach
- Algorithm must be converted to a model in order to use
- Simulink and its various support packages can generate C-code for other application uses
- Widely supported in the automotive industry for C-code generation

April 28, 2018

Simulink Modeling

- ADP can be structured in the form of a Simulink model by adapting the previous MATLAB simulation code
- Quanser AERO can be controlled directly via Simulink and licensed Quanser software

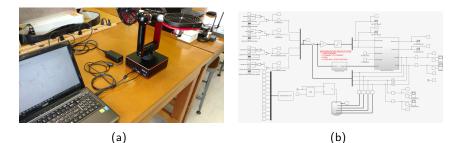
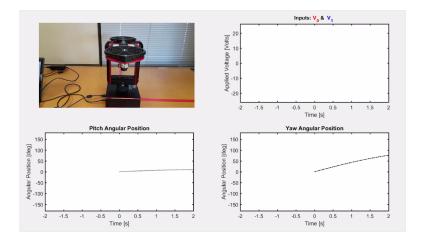
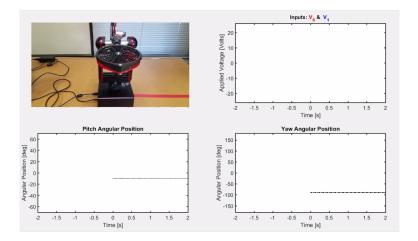



Figure: (a) Laptop connected directly to Qunaser AERO via USB. (b) Simulink model of ADP.


Simulink Results - Half-Quadcopter

A. Birge, A. Fandel (Bradley University)

イロト イ団ト イヨト イヨト

Simulink Results - 2-DOF Helicopter

A. Birge, A. Fandel (Bradley University)

April 28, 2018 31 / 47

イロト イ団ト イヨト イヨト

- Quanser AERO can be controlled via an embedded system through a different interfacing panel
- QFLEX 2 Embedded panel utilizes SPI communication between the embedded system and the Quanser AERO
- To realize ADP feasibility, ADP was implemented for use on a Raspberry Pi 3
- Simulink support packages allow C-code generation compatible with a Raspberry Pi and its GPIO pins

Figure: Raspberry Pi 3. Image courtesy of the Raspberry Pi Foundation [2].

April 28, 2018

Raspberry Pi 3 Modeling

- Utilize the Simulink model of ADP
- Model the SPI communication by correlating information between the Quanser AERO and ADP outputs
- To our knowledge, this is the first time a Raspberry Pi controlled a Quanser AERO using Simulink

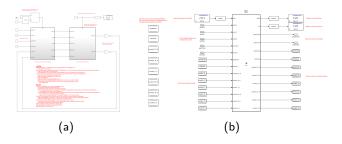


 Figure: (a) High-level Simulink model of ADP and SPI communication. (b) SPI communication subsystem.

 A. Birge, A. Fandel (Bradley University)

- Raspberry Pi is accessible through MATLAB and Simulink support packages
- Simulink C-code generation can result in unexpected results through unknown compiling solutions
- Raspberry Pi GPIO pins can only produce a 10 kHz clock signal
- Generated code can be executed on Raspberry Pi via PuTTY
- Once C-code is implemented on the Raspberry Pi, there is no easy way to modify the desired pitch and yaw

April 28, 2018

Raspberry Pi 3 Results

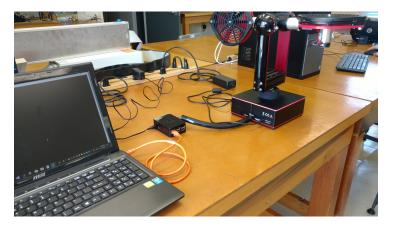


Figure: System connections for the Quanser AERO to be controlled via a Raspberry Pi.

BRADLEY University

35 / 47

April 28, 2018

Android Application

- No easy way to modify C-code generated for the Raspberry Pi
- Some sort of communication is needed between the Raspberry Pi and another external device
- Simulink offers a support package capable of compiling Android applications
- Application makes use of local network to stream commands from phone to Raspberry Pi

April 28, 2018

36 / 47

• Allows remote articulation of pitch and yaw through ADP

Android Application

- Modify Raspberry Pi Simulink model to accept/receive UDP packets
- Design an Android smart phone application to accept/receive UDP packets

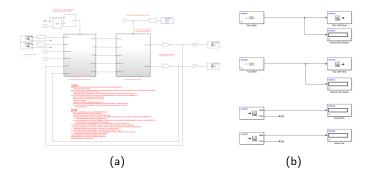


Figure: (a) Modified Raspberry Pi Simulink model. (b) Simple Android model for the setting desired pitch and yaw.

April 28, 2018

37 / 47

Android Application Results

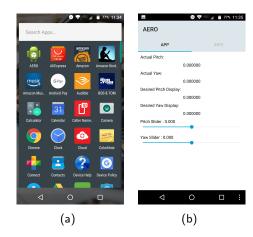


Figure: (a) Android application created on smart phone. (b) Running application to change desired pitch and yaw.

(日) (同) (三) (三)

Android Application Results

- Simulated ADP for the Quanser AERO in MATLAB
- Designed V-REP testing platforms for the Quanser AERO
- Implemented ADP in Simulink for direct-use on the Quanser AERO
- Integrated ADP to the Raspberry Pi through SPI communication
- Designed a simple Android smart phone application which can communicate with the Raspberry Pi
- Provided a framework for Bradley University in using the the Quanser AERO for further research

April 28, 2018

Conclusion Research

- Quanser AERO provides a quasi-linear system for research
- Questionable advantages of using ADP for this system due to higher complexity
- Latency issues can arise between MATLAB and V-REP with complex control strategies
- C-code generation using Simulink can be difficult if the model is not ideal for the compiler
- Raspberry Pi GPIO pins are limited to approximately 10 kHz when using generated C-code

April 28, 2018

Future Directions

- Research a more advanced reinforcement learning strategy that does not utilize a system model
- Implement ADP on a more chaotic or nonlinear system
- Optimize ADP calculation times such that MATLAB and V-REP can execute in real-time
- Research increasing GPIO pin frequency of the Raspberry Pi
- Discover methods to make a more compiler-friendly ADP Simulink model

April 28, 2018

References I

Federal Aviation Administration. "Helicopter Flying Handbook". English. In: Journal of Electrical Engineering Technology (2012). Helicopter Dynamics, pp. 2-14. URL: https: //www.faa.gov/regulations_policies/handbooks_manuals/ aviation/helicopter_flying_handbook/media/hfh_ch02.pdf.

- Raspberry Pi Foundation. Raspberry Pi Model 3 B. Website. 2018. URL: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.
- W. Gao and Z. P. Jiang. "Data-driven adaptive optimal output-feedback control of a 2-DOF helicopter". In: 2016 American Control Conference (ACC). July 2016, pp. 2512–2517. DOI: 10.1109/ACC.2016.7525294.

April 28, 2018

References II

- Eswarmurthi Gopalakrishnan. "Quadcopter Flight Model and Control Algorithms". In: *Czech Technical University Department of Control Engineering*. May 2016. DOI: 10.1109/CDC.2011.6160521.
 - M. Hernandez-Gonzalez, A.Y. Alanis, and E.A. Hernandez-Vargas. "Decentralized discrete-time neural control for a Quanser 2-DOF helicopter". In: *Applied Soft Computing*. Feb. 2012, pp. 2462–2469. DOI: 10.1016/j.asoc.2012.02.016.
 - Quanser Inc. *QFLEX 2 Embedded for Quanser AERO*. Datasheet. 2016.
- Quanser Inc. Quanser AERO. Datasheet. 2016.
 - Quanser Inc. Quanser AERO. Website. 2018. URL: https://www.quanser.com/products/quanser-aero/.
 - Quanser Inc. Quanser AERO 2-DOF Lab Guide. Tutorial. 2016.

References III

- Quanser Inc. User Manual Quanser AERO Experiment. Datasheet. 2016.
- E. Kayacan and M.A. Khanesar. "Recurrent interval type-2 fuzzy control of 2-DOF helicopter with finite time training algorithm". In: *IFAC-PapersOnLine*. July 2016, pp. 293–299. DOI: 10.1016/j.ifacol.2016.07.977.
- Teppo Luukkonen. "Modelling and control of quadcopter". In: 2014 American Control Conference. Vol. Aalto School of Science. June 2011.
 - S. Miah. "Value iteration based approximate dynamic programming for mobile robot trajectory with persistent inputs". In: ().

References IV

- R.G. Subramanian and V.K. Elumalai. "Robust MRAC augmented baseline LQR for tracking control of 2-DOF helicopter". In: *Robotics and Autonomous Systems*. Aug. 2016, pp. 70–77. DOI: 10.1016/j.robot.2016.08.004.
 - J.H. Moon W. Chang and H.J. Lee. "Fuzzy Model-Based Output-Tracking Control for 2 Degree-of-Freedom Helicopter". English. In: Journal of Electrical Engineering Technology 12.00.1 (2017). Quanser product(s): 2 DOF Helicopter, pp. 1921–1928. ISSN: 1975-0102. URL: http://www.jeet.or.kr/LTKPSWeb/ uploadfiles/be/201705/290520170957344003750.pdf.

April 28, 2018

Discussion

Motivation Project Objectives Abbreviations Mathematical Symbols	Simulink	Overview Modeling Results - Half-quadcopter Results - 2-DOF Helicopter
Overview Mathematics Flowchart	Raspberry Pi 3	Overview Modeling Research Findings
Overview Coordinates Coupling Effect Methods of Control	Android Application	Results Overview Modeling
State-Space Models Results	Conclusion	Results Objectives Research
Overview Results - Half-Quadcopter Results - 2-DOF Helicopter	Future Directions References	BRADLEY UNIVERS
	Project Objectives Abbreviations Mathematical Symbols Overview Mathematics Flowchart Overview Coordinates Coupling Effect Methods of Control State-Space Models Results Overview Results - Half-Quadcopter	Project Objectives Simulink Project Objectives Abbreviations Abbreviations Mathematical Symbols Overview Raspberry Pi 3 Mathematics Flowchart Overview Coordinates Coupling Effect Android Application Methods of Control State-Space Models State-Space Models Conclusion Overview Future Directions Overview Future Directions Results - 1alf-Quadcopter References