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Introduction

e Unmanned Aerial Vehicles (UAVs) offer a small-form solution to many
aerial tasks and provide many benefits such as cost effectiveness and
the lack of a pilot.

@ One of the most challenging tasks in control applications is to model
a system, such as the quadcopter, half-quadcopter, and helicopter
considered in this project, using a set of ordinary nonlinear differential
equations.

@ There are many applications of quadcopters, half-quadcopters, and
helicopters.
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Introduction

Applications/Examples

@ Quadcopter

e Standard quadcopter
o Industrial drone
o Personal drone

o Half-Quadcopter

e Chinook helicopter
o Concrete power screeder

@ Helicopter

e Standard helicopter
e Hobby helicopter
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Introduction

Objectives

@ Understand the Quanser AERO and methods of controlling it which
will allow for development of teaching materials for future classes.

@ Implement the proposed approximate dynamic programming
algorithm in [7] to both the half-quadcopter and helicopter
configuration of the Quanser AERO (seen on next slide).

@ Implement other controllers to the Quanser AERO to measure the
effectiveness of the proposed approximate dynamic programming
control algorithm.
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Introduction
Quanser AERO

Figure: Quanser AERO configured as a 2-DOF helicopter.
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Introduction

Approximate Dynamic Programming

@ Approximate dynamic programming is the strategic method of
dividing a complex problem into simpler problems and then solving
those simpler problems with use of applicable algorithms.

o General steps proposed in [7]

e Divide the total time of control into periods of T seconds.

o Collect error data every T seconds in each period T.

e Use an actor-critic neural network as the data is collected to find the
optimal inputs to minimize the error.

o Use the updated optimal inputs for the next period T.

0 T 2T 3T AT

T 2T 3T T 217 3T T 2T 3T T 2T 3T

Figure: Timing in the approximate dynamic programming algorithm. @z
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Background Study

Quadcopter

Various control techniques have been proposed for the quadcopter
including the following:

e PD Controller [6]
e PID Controller [3]
e PI Control [6]
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Background Study

Helicopter

Various control techniques have been proposed for the 2-DOF helicopter
like the following:

Sliding mode control [1]
Fuzzy model-based control [10, 5]
Data-driven adaptive optimal control [2]

Neural control [4]

Reinforcement learning optimal control [8]
Augmented baseline LQR [9]
These control techniques use complicated, advanced mathematics. We

also found that few techniques use approximate dynamic programming for
real-time implementation.
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Functional Requirements

High-Level System Block Diagram

V) =
& g M gy

Figure: High-level system block diagram.
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Functional Requirements

Helicopter Subsystem Block Diagram

Desired Configurations Helicopter's Response/Outputs
| System (Helicopter)

Figure: Helicopter subsystem block diagram
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Preliminary Work

Quadcopter

Researching derivations of the quadcopter state-space model

Developing a method in MATLAB to plot the quadcopter (use a
standard Pl controller to verify the results)

Simulating a quadcopter in V-REP for a visual representation

Goal is to extend these projects to the approximate dynamic
programming control algorithm
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Quadcopter

Mathematical Modeling

The quadcopter free-body diagram is shown below.

Figure: Free-body diagram in body frame - top view.
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Quadcopter

Mathematical Modeling

Zbody

Lhody

¢rol l

epitch
Yvody

Zglobal

Yglobal

Tglobal

Figure: Global frame, body frame, and position vector.
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Quadcopter

Mathematical Modeling - Force Variables and Constants

The variables used in the quadcopter state-space model are as follows:

lg is the length of a quadcopter arm.

m is the mass of the quadcopter.

g is the gravitational constant.

b is the drag coefficient for the propellers.

Tm; = bw,-2 is the yaw processional torque from a single propeller.
F4 is the drag force coefficient.

¢t is the thrust coefficient.

wj is the propeller (1-4) angular speed.

T = c,_»w,-2 is the single motor (1-4) thrust.

Tg = 3.7 ciw? is the body frame thrust.
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Quadcopter

Mathematical Modeling - Lateral Variables

@ x is the quadcopter’s center of mass X coordinate in the global frame.
@ x is the quadcopter's center of mass X velocity in the global frame.

@ X is the quadcopter's center of mass X acceleration in the global
frame.

@ y is the quadcopter’s center of mass Y coordinate in the global frame.
@ y is the quadcopter’s center of mass Y velocity in the global frame.

@ y is the quadcopter’s center of mass Y acceleration in the global
frame.

@ z is the quadcopter’s center of mass Z coordinate in the global frame.
@ z is the quadcopter’s center of mass Z velocity in the global frame.

@ Z is the quadcopter’s center of mass Z accleration in the global frame.
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Quadcopter

Mathematical Modeling - Rotational Variables

@ ¢ is the roll (about X).
e ¢ is the angular velocity about the body frame X.

@ ¢ is the angular acceleration about the body frame X.
@ 0 is the pitch (about Y).

e 0 is the angular velocity about the body frame Y.

o 0 is the angular acceleration about the body frame Y.
@ ¢ is the roll (about Z).

e 1 is angular velocity about the body frame Z.

o 7is angular acceleration about the body frame Z.
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Quadcopter

Mathematical Modeling - Rotational Constants and R-Matrix

Ixx is the moment of inertia of quadcopter about body x axis.
ly, is the moment of inertia of quadcopter about body y axis.
Note that /i = /,,, by symmetry.

I, is the moment of inertia of quadcopter about body z axis.

R is the matrix that transforms the body frame to the global frame
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Quadcopter
Mathematical Modeling - R Matrix

First, we introduce the following shorthand:

() = cos () (1a)
s(-) =sin () (1b)
c(W)c(8) c(¥)s(0)s(9) — s(¥)c(6) c()s(6)c(d) + s(t))s(0)
R=|s(@)c(8) s()s(0)s(9) + c(¥)c(9) s()s(0)c(6) — c(1)s(9)
~s(9) c(6)s(v) c(6)c(9)
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Quadcopter

Mathematical Modeling - State Variable Declaration

s{

xx=[x 'y Z] (3a)
=[x y 2 (3b)
=6 0 v (3¢)
=10 6 )" (3d)
g=[x x x3  x] ! (3e)
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Quadcopter

Mathematical Modeling - State Space Realization

X1 = X2 (4a)
[0
1 1
X2=10|+—=RTp+ —Fq (4b)
m m
|—&
1 0 —sind
x3 =10 cos ¢ cosfsing| x4 (4c)
K —sin¢ cos fsin ¢
M1
. Tox ? 0 Ith( WQ + w4) + 0¢( Yy — ZZ)
X4 = 0 Tyy ? /th( wl + wi) + le)( zz XX) (4d)
i 0 0 Ty D im1 Tm;
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Quadcopter

Mathematical Modeling - Linear State Space - Continued

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 )
w
0 0 0 0 0 !
< a a oa 1| |w2
m m m m w2
0 0 0 0 0 3
0 &= o0 & o |
0O 0 0 0 O0]L¢
e 0 &= 0 0
I}’y I.V}’
0 0 0 0 0
' b —b b —b 0
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Quadcopter

Mathematical Modeling - Nonlinear State Space Representation

'x1 T X 17 70 0 0 0 07

)'e % Ctn:"—x Ctn?'—x Ct’Z’—x Ctn:ll—x 0

y y 0 0 0 0 0

y i Ct Ty Ct Ty Ct Ty Ct Ty 0 )

m m m m m

z z 0 0 0 0 o0f|*
2 _Q Ct Tz Ct Tz Ct Tz Ct Tz 71 w%
. — m m m m m

o = é Tlooo 0 0 o4 (5)
o1 |00l — Iz) R U O
6 6 o 0 o0 0 o]L"%
) —lct ler

0 U (lzz — lo) o 0 o 0 0

Y 0 0 0 0 0 0

L] i 0 | L —-b b —b 0]

[BBRADLEY
University

A. Birge, A. Fandel (Bradley University) ADP Helicopter Control (Proposal) November 28, 2017 25 / 57


http://www.bradley.edu

Quadcopter

Mathematical Modeling - Nonlinear State Space Representation

Where:

= (sin ¢ sin ) + cos 1) sin 6 cos @) (6a)
(—sin ¢ cos ) + sin i sin § cos @) (6b)
= (cos 1) cos ¢) (6¢)

Tx
Ty
T;
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Quadcopter

MATLAB Simulations

We were able to implement the non-linear model for the quadcopter in
MATLAB.

@ Step 1 - Use thrusts to generate lateral acceleration.
@ Step 2 - Use thrusts to generate angular accelerations.

o Step 3 - Keep a running total of velocity by adding instantaneous
accelerations multiplied by sampling time to perform running total
integration.

o Step 4 - Keep a running total of position by adding instantaneous
velocity multiplied by sampling time to perform running total
integration.

@ Step 5 - Rotate struct of points locating motor mounts, and shift into
position by adding position vector, as shown in Equation 9 and
presented graphically next.
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Quadcopter

Mathematical Modeling - MATLAB Plotting

2t body

Zglobal

Ygiobal

Figure: Vectors locating motor mounts at time t.
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Quadcopter

MATLAB Simulations

P =[x Yi z]" (7a)
FCoMjpiy = [O 0 O]T (7b)
/
Linit = Ea 0 O]T (7c)
/
Py = [0 . oar (1)
/
P3ii = [_Ea 0 O]T (7e)
2
Biniv — [0 ) O]T (7f)
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Quadcopter

MATLAB Simulations

The location of the motor mounts in the body frame can then be rotated
as follows

P = Re Piinit (8)

itfbody

And then shifted into the global frame by position vector for the
quadcopter’s center of mass:

Pitfglobal - rCOMt + Pitfbody (9)

Fori =1, 2, 3, 4, where rcom, is the location of the center of the
quadcopter at time instant t.
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Quadcopter

MATLAB Simulations
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Quadcopter

MATLAB Simulations
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Figure: Quadcopter moving backwards.
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Quadcopter

MATLAB Simulations
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Figure: Quadcopter moving left.

[BBRADLEY

University

A. Birge, A. Fandel (Bradley University) icopter Control (Proposal) Novembe


http://www.bradley.edu

Quadcopter

MATLAB Simulations
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Figure: Quadcopter moving right.
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Quadcopter

MATLAB Simulations - ADP

The proposed error model is

é = Ae — Bu— Ax? (10)

The error vector will be expressed as:

€1

€
es5
€

€10
€11

_512_

-
yd—y
Z_d—Z
xd — x
yd —y
Zd*Z
? — ¢
09 — o
v -9
¢ — ¢
07 -0
Lpd — o]

d_x (11)
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Quadcopter

MATLAB Simulations - ADP

Because we want the quadcopter to hover on a point, we assume that
¢9,09 and ¥ are 0 as well as ¢9, 69, and 9. Further, we can assume
x9,yd and z9 to be zero as well. Thus the error vector is:

o S
d _
€2 y y
e3 Zd — Z
€4 —X
es -y
e —Z
e=| °| = =x9 —x (12)
€7 -
€g —0
d _
€ Ve =
€10 -9
€11 —0 )
| €12 | Y]
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Quadcopter

V-REP Simulations
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Figure: Quadcopter hovering in V-REP.
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Quadcopter

V-REP Simulations
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Preliminary Work

Helicopter

@ Researching the derivation of the 2-DOF state-space model

@ Researching the proposed approximate dynamic programming
algorithm in [7]

@ Simulating the proposed approximate dynamic programming
algorithm in [7] for the 2-DOF helicopter

@ Configuring the Quanser software to operate the Quanser AERO
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Helicopter

Mathematical Modeling

Complete state-space model of the 2-DOF helicopter was derived.

. 0 o0 1 0 0 0 0
Z 0 0 0 1 z 0 0 y 0
— Rpb ,main G, Re Mpody &5in(6)
il =10 ° —Ble 0 o | e 0 [vﬁ]'{' ,—577"‘,%
P ) 0 _ReBy |9 0 Ky tail _&
ly Iy Iy
(13)
@ 0 is the pitch.
@ 1 is the yaw.
@ V), is the voltage applied to the main rotor.
@ V) is the voltage applied to the tail rotor.
BamanEy
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Helicopter

Mathematical Modeling

The variables used here are as follows for the Quanser AERO:

@ R, is the distance from the pitch rotor to the fork.

@ R, is the distance from the tail rotor to the fork.

@ R. is the distance from the fork to the center of mass of the body.
@ 3, is the damping coefficient associated with the main rotor.

@ f3, is the damping coefficient associated with the tail rotor.

@ |/, is the rotational inertia of the main rotor.

@ /, is the rotational inertia of the tail rotor.

® Kp main is the thrust constant associated with the main rotor.

@ K| tai is the thrust constant associated with the tail rotor.

@ G, is the nonlinear coupling on the main rotor due to the tail rotor.
@ G, is the nonlinear coupling on the tail rotor due to the main rotor.
® Mpody is the mass of the body.

@ g is the acceleration due gravity. P
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Helicopter

Mathematical Modeling

We then linearized the 2-DOF helicopter state-space model.

Assumptions
e sin(f) ~ 6
o Gp = Kptair Vy

o Gy = Ky mainVp
) 0 0 1 0 0 0
z_} 0 0 0 1 3) 0 0 y
" — Rempody & RpBp A Kp, main Kp, tail [ P]
ol — [T . T 0 0 + K/p P Tp Vy (14)
b 0 0 0 Ry By ) _ Ky, main 'y, tail
T, 7 v

[BBRADLEY
University

A. Birge, A. Fandel (Bradley University) ADP Helicopter Control (Proposal) November 28, 2017


http://www.bradley.edu

Helicopter

Mathematical Modeling

Using measurements provided by Quanser, the state-space model for the
Quanser AERO becomes Equation 15.

6 0 0 1 0 0 0 0

L - 0 0 0 1 P 0 0 Vp

6| — |[-17442 0 —0.3307 0 o T | oosi2 00077 Vy (15)
& 0 0 0 —0.9283] |4 —0.1139  0.0928

Our derived state-space model matches the state-space model provided by
Quanser within rounding.
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Helicopter

MATLAB Simulations

@ Using the state-space model of the 2-DOF helicopter, we are
currently trying to simulate the proposed algorithm in [7].

@ The proposed algorithm in [7] uses an actor-critic neural network to
find the optimal inputs to minimize the error model.

@ The proposed error model is

é = Ae — Bu — Ax¢ (16)
where the error vector is
€1 9d -0
d
€| (0 - 1/} _yd
e= el = 4 =x% —x (17)
€4 —¢
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Helicopter

MATLAB Simulations

@ We are currently researching the regulator control problem.
@ The initial states are arbitrary, and the desired states are all zero.

@ Linear quadratic regulator (LQR) control is often used with the
2-DOF helicopter, so we are using this as a baseline controller.
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Helicopter

MATLAB Simulations

100
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Figure: Angular position using the approximate dynamic programming algorithm
and LQR.
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Helicopter

MATLAB Simulations
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Figure: Angular velocity using the approximate dynamic programming algorithm
and LQR.
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Helicopter

MATLAB Simulations
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Figure: Motor voltage inputs using the approximate dynamic programming
algorithm and LQR.
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Helicopter

MATLAB Simulations

@ In theory, the approximate dynamic programming algorithm should
provide a better response than LQR control.

o Further research is needed to determine tuning parameters to make
the approximate dynamic programming algorithm better than LQR.
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Parts List

@ Quanser AERO (Dr. Miah currently has one.)
@ Software

o MATLAB (Purchased for other classes)
o V-REP (Free)
o QUARC (Free)

@ Raspberry Pi/BeagleBone (Dr. Miah currently has some.)
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Deliverables

Division of Labor

Anthony

@ Quadcopter Mathematical
Modeling

@ Quadcopter MATLAB
Simulations

@ Quadcopter V-REP Simulations

o Half-Quadcopter MATLAB
Simulations

o Half-Quadcopter V-REP
Simulations

@ Simulink Integration of Quanser
Half-Quadcopter

Andrew

@ Helicopter Mathematical
Modeling

@ Helicopter MATLAB
Simulations

@ Quanser Software Setup

@ Simulink Integration of Baseline
Controllers

@ Simulink Integration of
Helicopter

@ Single-Board Microcomputer
Integration
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Schedule for Completion

Fall 2017

Research

Quanser Software Setup

Helicopter State-Space Derivation

Quadcopter and Half-Quadcopter State-Space Derivation
V-REP Simulation

Quadcopter Simulation

Half-Quadcopter Simulation

MATLAB Simulations

Helicopter Simulation

Half-Quadcopter Simulation

Quadcopter Simulation

Nov

60%

A. Birge, A. Fandel (Bradley University)

Figure: Fall 2017.

icopter Control (Proposal)

November 28
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Schedule for Completion

Spring 2

2017
Jan Feb [ Mar Apr [ May |
Simulink Integration 0%
Baseline Controllers for Testing Comparisons 0%
Quanser Half-Quadcopter 0%
Quanser 2-DOF Helicopter %
Single-Board Microcomputer Integration 0%

Figure: Spring 2018.
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Future Directions

@ Research the approximate dynamic programming algorithm in order to
make it better than LQR control

@ Finish both the V-REP and MATLAB simulations

@ Implement the tuned algorithm into Simulink to control the Quanser
AERO (next semester)

@ Implement the single-board microcomputer as a cost-effective solution
(next semester)
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