
Experiments on 2-DOF Helicopter Using Approximate Dynamic Programming
Anthony Birge, Andrew Fandel, Advisor: Dr. Suruz Miah

Department of Electrical and Computer Engineering · Bradley University · Peoria, IL

Objectives
�Utilize the Quanser AERO as the platform system to be controlled
by a machine learning controller (approximate dynamic program-
ming)

�Simulate real-time control of the Quanser AERO using industry-
standard software e.g. V-REP and MATLAB

�Model the controller architecture in Simulink which can access the
Quanser AERO directly via licensed software

�Embed the controller on a Raspberry Pi 3

Problem Setup

�Derive the state-space model of the physical system in order to im-
plement model-based reinforcement learning

�Verify proper controller operation via MATLAB simulations prior to
hardware implementation

�Construct the Quanser AERO in Virtual-Robot Experimentation
Platform (V-REP) in order to obtain real-time simulations

� Implement the model-based learning controller in an industry-
standard graphical programming language (e.g. Simulink) for em-
bedding C-code on a Raspberry Pi 3

θ θglobal = 0

(a)

 
 global = 0

(b)
Figure 1: Quanser AERO orientation. (a) pitch [θ] and (b) yaw [ψ] are the directly
measured system states.

(a) (b)
Figure 2: (a) High-level system block diagram. Control of the Quanser AERO can
be achieved through various interfaces. (b) Generic state-feedback block diagram.
System control is realized by determining the proper K value, but determining this
value can be difficult or impossible.

Model-Based Reinforcement Learning
Approximate Dynamic Programming Overview

(1) t = kτ where τ is given
(2)Advance the system by applying determined inputs to the system and

measure system states
(3)Calculate state error as e[k] = xref[k]− x[k], save state error
(4) If t 6= T , increment k and start at (1)
(5) If t = T , update K using collected error data
(5a)Use error states since last update of K as inputs to the neural net-

work
(5b)Recursively determine wc values for each of the instances
(5c)Approximate new wc value using regression analysis of the individ-

ually calculated wc values
(6)Calculate new K using wc values
(7) Increment k and start at (1)

Figure 3: Neural network used in approximate dynamic programming. The neural
network optimizes its weights to minimize V , the value function.

Real-Time Simulation (V-REP)

�Developed a dynamic model of the Quanser AERO using V-REP
�The dynamic model, shown in Figure 4(a) and Figure 4(b), can serve
as a platform for testing other control techniques in future work

(a) (b)
Figure 4: Dynamic model of the Quanser AERO in V-REP.

MATLAB Simulation Results

0 5 10 15 20 25

Time [s]

-100

-50

0

50

100

150

A
n

g
u

la
r 

P
o

s
it

io
n

 [
d

e
g

]

(a)

0 5 10 15 20 25

Time [s]

-100

-50

0

50

100

A
n

g
u

la
r 

P
o

s
it

io
n

 [
d

e
g

]

(b)

0 5 10 15 20 25

Time [s]

-20

-15

-10

-5

0

5

10

15

20

In
p

u
t 

V
o

lt
a
g

e
 [

V
]

(c)

0 5 10 15 20 25

Time [s]

-20

-15

-10

-5

0

5

10

15

20

In
p

u
t 

V
o

lt
a
g

e
 [

V
]

(d)
Figure 5: MATLAB simulation results for various trajectories. (a) and (c) represent
steady state tracking. (b) and (d) represent tracking of a sinusoidal waveform in both
θ and ψ.

Hardware Implementation

(a) (b)
Figure 6: (a) Simulink model of the approximate dynamic programming algo-
rithm. (b) The SPI (Serial Peripheral Interface) protocol is used for communication
between embedded system and the Quanser AERO. The SPI protocol was also mod-
eled in Simulink for C-code generation.

Conclusion and Future Work
�Successfully simulated controller in MATLAB and V-REP and suc-
cessfully implemented controller in Simulink and Raspberry Pi 3

�Began implementation of position control using Android cell phone
communication with Raspberry Pi 3

�Future work will include tuning the algorithm, extending imple-
mentation applications, and updating the framework provided


