

BRADLEY University

EMG-Based Human Machine Interface

By Aditya Patel and Jim Ramsay Advised by Dr. Yufeng Lu and Dr. In Soo Ahn

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

EMG Explained

- Electromyography Signals (EMG)
 - Electrical signals produced by muscle activation
- Surface EMG (sEMG):
 - A technique for acquiring EMG
 signals by using electrodes placed
 on the skin of the body, directly
 above the desired muscle

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

Uses of EMG

- Primarily for medical purposes
 - $_{\circ}\,$ Diagnosing and testing for muscle and nerve injuries
- Control of prosthetic limbs
- Gesture control
 - Drones
 - Computers

 \circ TV

Background •Literature •Previous Work

Problem Statement

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

November 28th, 2017

Background

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

Applicable Literature

• Study of Virtual Control of a Robotic Arm via a Myo Armband for the Self-Manipulation of a Hand Amputee

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 2 (2016) pp

775-782 © Research India Publications. http://www.ripublication.com

November 28th, 2017

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

2016-2017 Senior Capstone Project

- Developed an EMG-based
 HMI for a mobile robot
- Used a neural network to

detect user motion

2016-2017 EMG System

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

2016-2017 Senior Capstone Project

Limitations:

November 28th, 2017

- Uncomfortable
- Short battery life
- One sensor limited information

2016-2017 EMG System

Background •Literature •Previous Work

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

2016-2017 Senior Capstone Project

Improvements:

• Armband design - easy to slide

on/off

• Extended battery life

Myo Armband

BackgroundLiteraturePrevious Work

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

November 28th, 2017

Project Overview

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

Problem Statement

- Current market for gesture control of security systems is limited
 - Based on image recognition
- Security monitoring can be tedious
- Solution: gesture-based control of cameras

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

Project Goals

- 1. Collect and analyze sEMG data
- 2. Develop pattern recognition algorithms
- 3. Control security camera system with hand gestures

Background •Literature •Previous Work

System Diagram

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

Functional Requirements

- Myo armband worn on right forearm
- Bluetooth connection between Myo and Pi
- Calibration process executed by Pi
 - Based on machine learning
- Generate PWM signals for pan

action

November 28th, 2017

- Display camera video feed on monitor
- User controls
 - Myo armband sleep/wake up
 - $_{\circ}$ Calibration
 - Camera selection
 - $_{\circ}$ Pan camera view

Operating Modes

Project	Function	Gesture	Haptic Feedback
Overview •Problem / Goals •System Diagram •System Functions •Operating Modes •Flow Chart •Specifications	Toggle armband lock/unlock	Fingers spread (hold for 2 seconds)	Vibration (3 seconds)
	Calibration Mode	Make fist (hold for 2 seconds)	3 Vibrations (1 second each)
	Camera Selection Control Activate	CCW circle with fist	1 Vibration (1 second)
	Camera Position Control Activate	CW circle with fist	2 Vibrations (1 second each)
Engineering Efforts Completed •Data collection	Next Camera	 Start with palm facing in Move wrist outward 	N/A
•Analysis Parts List •Submitted •Possible Additions	Previous Camera	 Start with palm facing in Move wrist inward 	N/A
	Pan Left	 Start with palm facing in Move wrist inward 	Vibrate low while moving
Looking Forward •Division of Labor •Schedule	Pan Right	 Start with palm facing in Move wrist outward 	Vibrate low while moving
	November 28 th , 2017	EMG-Based Human Machine Interfa Aditya Patel and Jim Ramsay	ace 14

•Schedule

System Flow Chart

November 28th, 2017

Background •Literature •Previous Work

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

Specifications – Myo Armband

- 8 EMG sensor electrode pairs •
- Sampling rate = 200 Hz
- EMG data sent via Bluetooth
 - 8-bit signed integer
 - Unitless, represents muscle activation

- Compatible with:
 - $_{\circ}$ Windows 7, 8, and 10
 - $_{\circ}~$ OSx 10.8 and up
 - $_{\circ}\,$ Android 4.3 and up
- Battery life

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

Specifications – Raspberry Pi 3B

- Broadcom BCM2387 64-bit ARMv7
 I Quad Core Processor (1.2 GHz)
- BCM43143 WiFi
- Bluetooth (BLE 4.1)
- Boots from Micro SD
- Runs Linux or Windows 10 IoT (Internet of Things)

- Input / Output
 - 40-Pin 2.54 mm expansion header
 (2x20 strip)
 - CSI Camera port for Raspberry PiCamera
 - $_{\circ}$ 4 Port USB
 - \circ HDMI
 - Ethernet

BackgroundLiteraturePrevious Work

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Engineering Efforts Completed

Looking Forward •Division of Labor •Schedule

November 28th, 2017

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

Initial Data Collection

- Use Visual Studio (C++) to record and save data
- Import the data and analyze in MATLAB

November 28th, 2017

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

Initial Data Collection

- Control Variables
 - Test duration: 10 seconds
 - Armband worn the exact same way for each test
 - Movements, repeated multiple times:
 - Palm facing in, wrist action in
 - Palm facing in, wrist action out

•Division of Labor

•Schedule

Revised Data Collection

Multiple datasets of wrist moving outward for 10 seconds

November 28th, 2017

Background •Literature Previous Work

Looking

Forward

•Schedule

•Division of Labor

Data Analysis

6 (gp) 5 3 Myo Gesture Control Armband

with labeled sensors

	Palm in, wrist action outward	Palm in, wrist action inward
High Sensor Activity	2, 3, 4, 5	1, 6, 7, 8
Moderate Sensor Activity	1, 6	2
Low Sensor Activity	7, 8	3, 4, 5

November 28th, 2017

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

Data Analysis

- Data Analysis
 - Envelope detection
 - Fourier Analysis
 - Thresholds
 - Dominance table
- Gesture Recognition
 - Supervised / unsupervised learning
 - Look-up table
 - Neural network

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

Future Data Collection

- Continue to collect data
 - Different users
 - $_{\circ}$ Test all gestures
- Pattern recognition
 - Choose method for pattern recognition
 - $_{\rm \circ}$ Associate patterns with gestures

BackgroundLiteraturePrevious Work

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

November 28th, 2017

Parts List

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

- Thalmic Labs Myo Armband (1)
- Raspberry Pi 3B and Power Supply (3)
- Raspberry Pi 3b Camera (2)
- 8GB Micro SD Card (3)
- HDMI / VGA / DVI Cable (only need one of these options)
- Computer Monitor (1)
- Servo Motor (2, one motor to pan each camera)

Background •Literature •Previous Work

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

- Case for the Raspberry Pi boards
- Material to make a mount for the servo motors and Pi board cases
- Second Myo armband

BackgroundLiteraturePrevious Work

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

November 28th, 2017

Looking Forward

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

Division of Labor

Aditya Patel	Jim Ramsay	
Communication	Data Collection	
Video feed communications	Pattern recognition	
System component communication network	Armband configuration	
Monitor connections	Data analysis	
Website design		
Computing	Camera Hardware Design	
 Raspberry Pi 3B setup / code 	• Case	
PWM generator	• Mounts	
Pi GPIO configuration	Servo motor wiring	

November 28th, 2017

Background

Literature
Previous Work

•Division of Labor

•Schedule

Schedule

Project Overview		Weeks 1 & 2	Weeks 3 & 4
 Problem / Goals System Diagram System Functions Operating Modes Flow Chart Specifications 	November	 Write proposal Submit parts list to Chris Mattus Get raw data from armband Discuss/consider filtering options 	 Make website Draft project proposal presentation Practice presentation Revise proposal for final submission
•Analysis	December	 Finalize the website design Post project deliverables 12/7/2017 	 Collect data Start thinking about data analysis options
Parts List •Submitted •Possible Additions	January	 Start pattern recognition Develop preliminary tests for gesture detection 	 Compare gesture detection options and choose which to continue with Begin Raspberry Pi development
Looking Forward			

Background

Literature
Previous Work

Schedule

Project Overview		Weeks 1 & 2	Weeks 3 & 4
 Problem / Goals System Diagram System Functions Operating Modes Flow Chart Specifications 	February	 Configure Raspberry Pi and peripherals Hardware design and building 	 Finalize and compile code Gather any data needed for final submission
Engineering Efforts Completed •Data collection •Analysis	March	1. Begin work on final draft	 Make poster Finish final draft
Parts List •Submitted •Possible Additions	April	 Practice poster presentation Begin drafting project presentation 	 Finalize project presentation Practice project presentation Finalize project report

•Division of Labor •Schedule

November 28th, 2017

BackgroundLiteraturePrevious Work

Project Overview

Problem / Goals
System Diagram
System Functions
Operating Modes
Flow Chart
Specifications

Engineering Efforts Completed •Data collection •Analysis

Parts List •Submitted •Possible Additions

Looking Forward •Division of Labor •Schedule

November 28th, 2017

Questions?

Sources

<u>https://www.ripublication.com/ijaer16/ijaerv11n2_05.pdf</u>