

EMG Based Human Machine Interface

Final Report

By Aditya Patel and Jim Ramsay

Advised by Dr. Yufeng Lu and Dr. In Soo Ahn

Published May 3, 2018

EMG Based Human Machine Interface

Project Deliverables

By Aditya Patel and Jim Ramsay

Advised by Dr. Yufeng Lu and Dr. In Soo Ahn

Published May 3, 2018

EMG-Based Human Machine Interface Page | 2

Abstract

Surface Electromyography (EMG) is a non-invasive technique which records the electrical activity

of muscles using electrodes placed directly on the skin. The use of EMG signals has been gaining

prevalence in prosthetic control and gesture-control applications. This project aims to develop

an EMG-based human machine interface system. A Myo Armband with eight electrode pairs is

worn by a user to acquire and wirelessly transmit EMG data to a central controller. A pattern

recognition algorithm is implemented on a central controller to recognize three different hand

gesture commands. As a demonstration, we built a camera system equipped with servo motors.

The recognized commands can remotely pan each camera and select one of multiple video

feeds to display. Our study demonstrates that the EMG-based pattern recognition could be a

viable human machine interface option for a broad range of applications in industrial, medical,

and consumer markets.

EMG-Based Human Machine Interface Page | 3

Acknowledgements

We would like to thank our advisors, Drs. Yufeng Lu and In Soo Ahn. The time and effort they

contributed in advising us was integral in the success of this project. We were the benefactors of

their willingness to share their extensive knowledge in signal processing and neural network

design. In addition to our advisors, we would also like to extend our gratitude to Bradley

University and the ECE department faculty and staff for their dedication to providing the highest

quality of learning experiences. Finally, we would be remiss to not express gratitude to our

friends and family for all of their support. The support provided by our friends and family has

enabled us to complete this project as well as our entire undergraduate degrees.

EMG-Based Human Machine Interface Page | 4

Table of Contents

1. Introduction .. 6

A. EMG Applications

B. Pattern Recognition Algorithms

2. Project Goals ... 9

3. System Design …………….. 10

A. Functions and Gestures

B. System Diagram

C. Myo Gesture Control Armband

D. Raspberry Pi

E. Servo Motors

F. Monitor

G. Software Packages

4. Technical Specifications ... 14

A. Myo Gesture Control Armband

B. Raspberry Pi 3B

C. Raspberry Pi Camera Module v2

5. Results .. 17

A. Raw Data Collection and Preliminary Results

B. Filtering

C. Implemented Classification Method

6. Future Work .. 25

7. Summary .. 26

8. References ... 28

Code Appendix ……………………………………………………………………………………………………… 29

EMG-Based Human Machine Interface Page | 5

List of Tables and Figures

Table 1: Functions and their associated gestures

Table 2: Sensor groupings

Table 3: Confidence values given for different pairings of top sensor groupings

Table 4: Example of confidence points awarded

Figure 1: Raw EMG data (normalized) from 8 sensors on one user, making one gesture

Figure 2: System flowchart

Figure 3: System Diagram

Figure 4: Raw EMG Data with Palm Facing In, Wrist Action Out

Figure 5: Raw EMG Data with Palm Facing In, Wrist Action In

Figure 6: – EMG sensor data (for all 8 sensors) when passed through each filter option

Figure 7: Three stages of preprocessing raw EMG data, for three different gestures.

Figure 8: Sensor group sum data with the group average lines

Figure 9: Line plots representing the group averages of different motions

Figure 10: Confusion matrix using the raw EMG data as the PNN inputs

Figure 11: Confusion matrix using the preprocessed EMG data as the PNN inputs

EMG-Based Human Machine Interface Page | 6

1. Introduction

Electromyography (EMG) is a technique for monitoring electrical signals associated with

movement of muscles. EMG signals can be obtained via an intramuscular needle, or by an

electrode placed directly on the skin. Intramuscular EMG (iEMG) is more accurate than surface

EMG (sEMG) but sEMG allows electrical signals to be measured without the need for intrusive or

bulky measurement tools. Acquiring sEMG signals only requires electrodes to be placed directly

above the target muscle. When placed on the forearm, sEMG electrodes detect muscle activity

associated with the movement of a user’s hand. Since this project is focused on the analysis of

sEMG signals, when the term “EMG signal(s)” is used throughout this report, the reader should

assume these signals were collected by using the sEMG method.

EMG signals can range from 0V to 10V, peak-to-peak. The difficult part of collecting and

analyzing the raw EMG data is the wide range of frequencies it can produce. EMG signals can be

anywhere between 10Hz to 500Hz, depending on the person and how active their muscles are.

As shown in Figure 1, even when the same person holds the same gesture for a period of time,

the amplitude and frequency of the EMG signal can still vary quite a bit.

Figure 1 – Raw EMG data (normalized) from 8 sensors on one user, making one gesture

EMG-Based Human Machine Interface Page | 7

 EMG Applications

Medical Diagnosis and Rehabilitation

Detection of EMG signals is becoming commonplace in the biomedical field. It is being

used in medical research for diagnosis and rehabilitation [1]. In the most common case,

an EMG test can be conducted to test for a variety of muscle and nerve related

conditions and injuries [2]. Conditions that EMG testing helps diagnose include carpal

tunnel syndrome, a pinched nerve, neuropathies, muscle diseases, muscular dystrophy,

and Lou Gehrig’s disease [3].

Prosthetic Control

In research, EMG signals are used to help recovering amputees control prosthetic limbs.

Even if an amputee is missing a limb, their mind can still try to move the limb that is not

there. In doing so, electrical impulses are sent to that region of the body as if the limb

was still there. For example, an individual missing their forearm can have a prosthetic

arm controlled by the EMG signals detected in their shoulder/upper arm [4].

There are great strides being made in EMG based prosthetics. For example, researchers

at Japan’s Hokkaido University developed an EMG prosthetic hand controller that uses

real-time learning to detect up to ten forearm motions with 91.5% accuracy [5].

Additionally, research done at Abu Dhabi University aimed to develop a virtual reality

simulation of an arm using EMG signals. They achieved an 84% success rate in simulating

the correct movements made by amputees [6]

 Pattern Recognition Algorithms

Pattern recognition is a subset of machine learning that can be broken into two main

categories: supervised and unsupervised. In supervised learning, the algorithm is

“trained” by giving the algorithm data that is already classified. This allows the program

to have a baseline understanding of the pattern so that it knows what to look for in the

future. In unsupervised learning, the algorithm is not given any classification information,

and must draw inferences from data on its own [7]. “The most common unsupervised

learning method is cluster analysis, which is used for exploratory data analysis to find

hidden patterns or grouping in data. The clusters are modeled using a measure of

similarity which is defined upon metrics such as Euclidean or probabilistic distance” [8].

A critical part of machine learning is an artificial neural network (ANN). ANN’s are

designed to mimic the human brain, where neurons and axons are represented by nodes

and wires. Neural networks can be designed in countless different configurations. One

form of neural network that is of interest to this project is a pattern recognition neural

EMG-Based Human Machine Interface Page | 8

network (PNN). These algorithms are used to classify input data. The network is trained

by associating training input data with known classifications. After the network is trained,

new input data is entered and the output of the neural network is a classification for the

input, based on the training stage results. The inputs for the network play a key role in

the accuracy of the network. The network will get increasingly more accurate with more

inputs, so long as there is a correlation to the classification. Some common inputs types

are raw data, filtered data, averaged data, RMS data and other forms of data

manipulation that help to relate each series of inputs to one classification.

EMG-Based Human Machine Interface Page | 9

2. Project Goals

The current market for gesture-based control of systems rely solely on the use of cameras to

detect user movements. These systems require heavy processing and restrict the user to gesture

only in the field of view of the cameras. To address these issues, this project created an EMG-

based controlled system with the following goals.

 Acquire EMG data from a user

The EMG data must be collected wirelessly so as to not restrict the user. The wireless

communication needs to be reliable and quick to connect. Additionally, the data must be

sampled at a rate high enough for real-time operation.

 Detect different user hand gestures in real time

This system uses three different hand gestures to control it: a fist, wave inward, and wave

outward. It has only been tested on the right hand, though it should be possible to use

any hand. The system needs a calibration mode to allow for anybody to use it. The

calibration should be quick and allow for fast and accurate gesture recognition. Users

must receive feedback about the state of the system through the console.

 Implement gesture detection to control a system

The system is comprised of two cameras, each attached to its own servo motor. The

hand gestures allow the user to adjust the position of the motors, as well as the camera

feed that is displayed on an external monitor. The motors rotate 180°, 90° in each

direction from the initial position. The cameras operate at 30 frames per second and

720p resolution.

EMG-Based Human Machine Interface Page | 10

3. System Design

In this project, gestures are captured by a Myo Gesture Control Armband made by Thalmic Labs

Inc. The armband houses eight electrodes for capturing EMG signals as well as an inertial

measurement unit (IMU). Since this project is focused on creating a system interface with the

use of EMG signals, the IMU data is ignored while collecting data from the armband. The

gestures are used to control a camera system.

 Functions and Gestures

Table 1: Functions and their associated gestures

Function Gesture

Toggle armband sleep / standby Fist

System Control Activate Palm in, wave out

Camera Control Activate Palm in, wave in

Switch to Camera 1 Palm in, wave out

Switch to Camera 2 Palm in, wave in

Pan left Palm in, wave in

Pan right Palm in, wave out

 The full flow of logic for our system is shown below.

Figure 2: System flowchart

EMG-Based Human Machine Interface Page | 11

 System Diagram

Figure 3: System Diagram

There are three Raspberry Pi 3B computers used in this project, one master and two

slaves. The Myo armband sends EMG data via Bluetooth to the master Raspberry Pi. The

master receives, processes and then communicates desired actions to one of the two

slave Pi’s. When the slave Pi gets a command, it executes a function to move the

attached servo motor in a specific direction. The camera feeds stream on a webpage and,

if the gesture calls for it, the master will switch the display to show the desired video

stream. All master/slave communication is done on a local area network.

 Myo Gesture Control Armband

The HMI device used for this project is an EMG armband, designed by Thalmic Labs. It is

comprised of eight EMG sensors as well as a nine-axis IMU. Once connected to the

armband via Bluetooth, the data is transmitted in real-time. The data is transmitted from

the armband at 200 Hz and is in the form of an 8-bit unsigned integer. The raw EMG

data is not the actual voltage that is sensed by the electrodes. Rather, it is a

representation of muscle activation. The exact activation-to-voltage relationship is not

made public by the developer of the armband.

 Raspberry Pi

Master

The master Pi board is the heart of the EMG Security Monitoring System. It receives the

armband signal via a Bluetooth USB dongle. This signal is then processed by algorithms

that identify gestures made by the user. The master Pi also sends commands to the

slaves when a gesture is made to move the motors. The master is responsible for

keeping track of and making adjustments to the duty cycle of the control signal sent to

EMG-Based Human Machine Interface Page | 12

the motors. The master also selects one of two different camera feeds to display on an

external monitor.

Slave(s)

There are two Raspberry Pi 3B computers that act as slaves to the master Pi board. Each

slave is equipped with an attached camera and servo motor. They process the video

signals from their respective cameras and stream the video to a webpage. The Pi

cameras connect directly to the Raspberry Pi 3b and have the ability to stream live video

in 1080P. These Pi boards also run the scripts (when directed by the master Pi board) to

generate a change in the servo motor’s PWM duty cycle. This, in turn, controls the angle

at which the camera is pointed.

 Servo Motors

The system includes two servo motors (one per camera) that are used to pan the camera

views from side to side. The motors are attached to a case which houses the Raspberry Pi

and camera. The motors are powered by +5V, from the Pi GPIO pins. The Pi’s also are

equipped with a GPIO pin (12) that is designed to support PWM signal outputs—this is

the pin used to transmit the PWM signal to the motor in this system. The camera angles

are adjusted by increasing/decreasing the respective motors PWM duty cycle. The

desired adjustment (per recognized gesture) is approximately 30 degrees. The master Pi

board keeps track of the duty cycle and has built-in limitations of ± 90°.

 Monitor

The monitor setup is initialized when the system is turned on. In this system, the display

switches between camera feeds based on the gestures recognized by the master

Raspberry Pi board. The display is in full screen and is changed by a Python script that

toggles between browser tabs that each video feed is streaming to.

 Software

Bluetooth Communication

Because the Myo armband does not come with first-party compatibility for Linux-based

operating systems, we had to seek out open source software packages. The one that we

found that worked best is called PyoConnect_v2.0, developed by dzhu and Fernando

Cosentino [9][10]. This software package was designed to function in Linux just like the

original software functions in Windows. The only part of this code that we used was the

armband communication protocol. In this package is a file called “myo_raw.py” that

executes the Bluetooth communication between the USB dongle and the armband. It is

this file that we edited to function as our main code for gesture detection.

EMG-Based Human Machine Interface Page | 13

Video Feed

After exploring numerous different packages for the Raspberry Pi Camera module, we

found one that perfectly aligned with our needs. Not only did it do everything we

needed, it was much easier to install and configure than anything else that we had tried.

The software is called the RPi-Cam-Web-Interface [11]. It allowed us to adjust the picture

resolution, aspect ratio, framerate, overlayed text, and countless other items.

This software captures the video from the attached camera and streams the video feed

to the Pi’s IP address, so that the URL looks like: 169.254.13.230/html/index.php. It works

for local area networks as well as when connected to the internet. Because it is browser

based, all that was needed to switch between video feeds was to have both open in their

own tab, and to send the “ctrl+Tab” command to the Raspberry Pi.

Programming Language

The programming language for this project was essentially chosen for us. The vast

majority of documentation on programming the Raspberry Pi and the Myo Armband

used Python, so this was the natural choice for this project. For us, python was a brand

new language, with a steep learning curve. Once we got a grasp on the jargon and

syntax, it became very easy to write our own code from scratch and not have to rely on

finding reference code online.

The primary benefit of using Python (2.7.14) is that anything is possible with the

language. The drawback of this though, is that the code can be very slow to execute,

especially when combined with the slow clock speed and limited processing power of

the Raspberry Pi 3B. Nonetheless, we were able to execute our entire gesture detection

and control loop in less than five milliseconds. If the execution time got much longer

than that, we found that the Bluetooth communication would hang up and the code

would stall.

EMG-Based Human Machine Interface Page | 14

4. Technical Specifications

 Myo Gesture Control Armband

• Physical

o Weight: 93g

o Flexibility: Fits arms ranging between 7.5” and 13”

o Thickness: 0.45”

• Sensors

o Surface EMG electrode pairs (8 pairs)

o 9-Axis IMU

▪ 3-Axis gyroscope

▪ 3-Axis accelerometer

▪ 3-Axis magnetometer

o Made of medical grade stainless steel

• Computer / Communication

o ARM Cortex M4 processor

o Wireless Bluetooth 4.0 LE communication

o Battery

▪ Built-in Lithium Ion battery

▪ Micro USB charge

▪ 1 full day of usage

o EMG Data

▪ Sampling rate: 200 Hz

▪ Unitless – muscle activation is represented as an 8-bit signed value

▪ Time stamp is in milliseconds since epoch (01/01/1970)

o Compatible Operating Systems (for the SDK)

▪ Windows 7, 8, and 10

▪ OSx 10.8 and up

▪ Android 4.3 and up

o Haptic feedback with short, medium and long vibration options

EMG-Based Human Machine Interface Page | 15

 Raspberry Pi 3B

• Processor

o Broadcom BCM2387

o 1.2 GHz Quad-Core ARM Cortex-A53

o 802.11 b/g/n Wireless LAN

o Bluetooth 4.1 (Classic and LE)

• GPU

o Dual Core VideoCore IV Multimedia Co-Processor

o OpenVG and 1080p30 H.264 high-profile decoder

• Memory

o 1 GB LPDDR2

• Operating System

o Boots from Micro SD card

o Runs Linux OS or Windows 10 IoT

• Dimensions

o 85 mm x 56 mm x 17 mm

• Power

o Micro USB socket 5v1, 2.5A

• Peripherals

o Ethernet

▪ 10/100 BaseT socket

o Video Out

▪ HDMI (rev 1.3 & 1.4)

▪ Composite RCA (PAL and NTSC)

o GPIO

▪ 40-Pin 2.54 mm expansion header 2x20 strip

▪ 27-Pin GPIO

▪ +3.3V, +5V and GND supply lines

o Camera

▪ 15-Pin MIPI Camera Serial Interface (CSI-2)

EMG-Based Human Machine Interface Page | 16

o Display

▪ Display Serial Interface 15-way flat flex cable connector with two data

lanes and a clock lane

 Raspberry Pi Camera Module v2

• Camera

o Sony IMX219 8-megapixel sensor

• Video

o 1080p30

o 720p60

o VGA90

• Photo

o 8 MP

• Compatibility

o Raspberry Pi 1, 2, 3 (all models)

o Numerous open-source software libraries

EMG-Based Human Machine Interface Page | 17

5. Results

 Raw Data Collection and Preliminary Results
While collecting preliminary data, our goal was to test the raw armband data to verify

that we can see differences in the data when different motions are made. The armband

was always placed onto the thickest part of the right forearm, with sensor 4 on top, and

sensors 1 and 8 on the bottom. Two different motions were captured: palm in, wrist

action out (wave out) and palm in, wrist action in (wave in).

The first thing we noticed, which can be seen in both Figure 4 and Figure 5, was that

there is a distinct difference in the EMG data when the arm muscles are activated. To

prove this, we took samples in 10-second intervals and performed the actions in sets of

1, 3 and 5 actions. We observed clear differences between when the user’s arm was at

rest and when the user was making a gesture.

The second important detail we noted was a noticeable difference between the EMG

sensor data when we performed different actions. Figure 4 shows the EMG data when

the wrist is moved outward and we can see that the most muscle activation is on sensors

3, 4, and 5. Some action is observed in 2 and 6, while a relatively low amount of action is

seen in sensors 1, 7 and 8. Figure 5 shows the EMG data for when the wrist is moved

inward. In this case, we see that the most activation occurs on sensors 1, 7, and 8. There

is also some activation on sensors 2, 3 and 6, while almost no activation was observed on

sensors 4 and 5.

From this point, we shifted our focus to filter and analyze the data and then implement

pattern recognition algorithms. To validate the pattern recognition algorithms, we

collected and tested data from multiple users, performing multiple actions/gestures.

EMG-Based Human Machine Interface Page | 18

Figure 4: Raw EMG Data with Palm Facing In, Wrist Action Out

EMG-Based Human Machine Interface Page | 19

Figure 5: Raw EMG Data with Palm Facing In, Wrist Action In

EMG-Based Human Machine Interface Page | 20

 Filtering

The first stage in preprocessing the data was applying a Kaiser filter. Multiple filter

options were considered and built using MATLAB’s filter design tool. The two best filters

turned out to be a 50th order Hamming filter and a 248th order Kaiser filter, both pictured

in Figure 6. After some experimenting, we decided that the Kaiser filter was our best

option and that is what we went with.

Although the filtered data was better than just the raw signal, the data still needed to be

processed further to make any sense of it. After the filter was applied, a 100-sample

moving average was calculated to remove any residual noise and smooth out the data.

This gave us the ability to clearly identify when the user was gesturing and which gesture

was being performed.

Figure 6: EMG sensor data (for all 8 sensors) when passed through each filter option

As shown in Figure 7, after each stage of preprocessing the data, the distinction between

which sensors are active becomes clearer.

EMG-Based Human Machine Interface Page | 21

Figure 7: Three stages of preprocessing raw EMG data, for three different gestures

 Gesture Detection Algorithm

During the process of setting up the Raspberry Pi boards, the motors and the cameras,

we developed a somewhat simplistic, yet reliable method for gesture detection.

The first step in this process is get the averages of multiple groups of sensors. By

grouping the sensors, we lower the chances of the algorithm being affected by

inaccuracies or fluctuations in just one of the sensors. The sensor groups are shown in

Table 2.

Table 2: Sensor groupings

Group Sensor Combination

1 1, 2, 3

2 2, 3, 4

3 3, 4, 5

4 4, 5, 6

5 5, 6, 7

6 6, 7, 8

7 7, 8, 1

8 8, 1, 2

EMG-Based Human Machine Interface Page | 22

The next step was to get some useful data from the groups. In both calibration and real-

time data processing, the individual sensor values in each group are summed and

divided by 3 to get a group average. The three groups with the highest averages are

then selected to represent a gesture.

Calibration data is collected and the three highest group averages, for each gesture, are

stored as a variable. When a user gestures with their arm, the confidence algorithm

(described below) compares the groups of the real-time data to the groups of each

calibrated gesture. Then, based on the relationship of matching groups, each calibrated

gesture is assigned a confidence level. A threshold was implemented for the highest

confidence level, which needed to be met to confirm that a perceived gesture was

intentionally performed by the user. If the minimum threshold (10) is satisfied by at least

one of the gesture comparisons, the algorithm has confirmation that the gesture with

the highest confidence value is indeed the gesture that was made by the user.

To compare the real-time gesture data to the calibration data, each “match” of the top

three groups are assigned a weight. For example, if the highest group average in one of

the gestures calibration data matches the highest group of the real-time data, then the

confidence in that action rises by 10. Then, if the second highest groups match, the

confidence level for that action is increased, again, by 6. Finally, if the third groups also

match, an additional 4 points are added to that gesture’s total. In this case, the total

points for that gesture would be 20 (10 + 6 + 4), which is the highest level of confidence

possible. Lower confidence points are awarded for partial matches, which would be when

the groups match but in a different order. See Table 3 for the confidence points

assignments. See Table 4 for an example of how the totaling of points works.

Table 3: Confidence values given for different pairings of top sensor groupings

EMG-Based Human Machine Interface Page | 23

Table 4: Example of confidence points awarded

Real Time Max Groups 5 6 2
Total Points

20

PIWI Calibration 1 5 2 0+4+4=8

PIWO Calibration 5 6 2 10+6+4=20

FIST Calibration 1 4 8 0+0+0=0

In the example shown in Table 4, the confidence algorithm would have returned PIWO as

the gesture detected because it had the highest confidence level (20), and the

confidence level exceeded the threshold for gesture confirmation (9). The first, second

and third highest values all matched, in the correct order, to the PIWO calibration data.

The values assigned for the confidence points were obtained experimentally through trial

and error. We started out by using a plot (see Figure 8) to make a visual comparison

between the highest group averages. As you can see, we started with the data on the

plot but that format made it difficult to recognize patterns in the data. We then decided

to remove the data and only keep the group average lines (see Figure 9), which

significantly helped in identifying patterns in the top three group averages.

We then started to assign values by simply using values of one, two and three but

quickly realized that was not going to work. We then realized that the correct order of

the max averaged groups should increase the confidence, since it is another quality of

the relationship between the real-time and calibrated data. We also lowered the point

awarded for the matches that were out of order but did not want to completely

disregard this relationship because the max group order does vary from time to time. We

set it up so that if the max sensor groups matched, it was enough points to confirm a

gesture. If not, then if the second and third highest matched, that would also tally

enough confidence points that the gesture would also be confirmed. The final points we

settled on were shown in Table 4.

EMG-Based Human Machine Interface Page | 24

Figure 8: Sensor group sum data with the group average lines

Figure 9: Line plots representing the group averages of different motions

EMG-Based Human Machine Interface Page | 25

6. Future Work

We highly suggest that research into using EMG data from the Myo armband be

continued. For future projects, if our pattern recognition algorithms are not suitable, we

would suggest implementing a neural network for gesture detection.

In this project, our efforts were not concentrated on implementing a neural network. We

did, however, begin a small amount of research into the using a neural network. MATLAB

has a built in neural network toolbox that we utilized. According to the MATLAB

documentation on the newpnn function, a probabilistic neural network (PNN) is “a kind

of radial basis network suitable for classification problems [12].”

To start out with, we used raw data and used the sensor values and their sum (for each

sample) as the training input and used a numerical representation of the gesture (1

through 5) for the target vector. We trained the neural network with one set of data and

used data from a second person to validate the accuracy.

Using just the nine original inputs (eight raw sensor values and their sum) the PNN could

only achieve an accuracy of 77.8%, which is shown in Figure 10. Since this accuracy

would not be sufficient for use, we then used the preprocessed data (filtered and with

the moving average), the average of the eight samples and their sum as the inputs. With

more inputs to the training network, we were able to get a much higher accuracy of

86.0%. The confusion chart shown in Figure 11 represents the accuracy using these

inputs.

It became clear that with more inputs, or at least more meaningful inputs, to the PNN,

the accuracy would continue to increase. We did not, however, intend on the use of the

PNN for this project due to the limitations of our system. Our research into the PNN was

meant as a starting point, should this project be continued in the future. If a neural

network is considered for a future project, more powerful microprocessors or digital

signal processors (DSP) would be needed to replace the Raspberry Pi computers we used

to process the data.

EMG-Based Human Machine Interface Page | 26

Figure 10: Confusion matrix using the raw EMG data as the PNN inputs

Figure 11: Confusion matrix using the preprocessed EMG data as the PNN inputs

EMG-Based Human Machine Interface Page | 27

7. Summary

Historically, the ability to control a system with hand gestures has been limited. Gesture

control often required bulky equipment or relied on image processing to track user

motion within the viewing range of a camera. This project addressed this limitation by

developing a lightweight system that is controlled only by hand gestures detected via

electromyography. Hand gestures are detected by analyzing the EMG signals produced

by muscle activity in a user’s arm. The EMG signals from the arm are captured by the

Myo Gesture Control Armband. We developed an algorithm to process the EMG data to

quickly and accurately recognize three unique hand gestures. It is these hand gestures

that are used to control the camera system.

In addition to getting this system running, we explored advanced methods of pattern

recognition, including neural networks and support vector machines. We achieved fairly

high accuracy using a pattern recognition neural network, and are confident that given

more time and effort, this method can be a viable form of gesture detection.

From the start of this project, our goal was to collect and analyze raw EMG data with the

intention of putting it to use in a control system. Our goal has been accomplished by

implementing an algorithm to detect gestures and control a camera system. Additionally,

we have laid the groundwork for future projects in the EMG based HMI field by starting

the research into more accurate methods of gesture detection.

EMG-Based Human Machine Interface Page | 28

8. References

[1] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, “Techniques of EMG signal analysis:

detection, processing, classification and applications,” Biological Procedures Online, vol.

8, no. 1, pp. 163–163, Oct. 2006.

[2] “Electromyography,” Medline Plus, 06-Nov-2017. [Online]. Available:

https://medlineplus.gov/ency/article/003929.htm. [Accessed: 10-Nov-2017].

[3] J. H. Feinberg, “EMG Testing: A Patients Guide,” Hospital for Special Surgery, 21-Oct-

2009. [Online]. Available: https://www.hss.edu/conditions_emg-testing-a-patient-

guide.asp. [Accessed: 05-Nov-2017].

[4] S. Sudarsan and E. C. Sekaran, “Design and Development of EMG Controlled Prosthetics

Limb,” Procedia Engineering, vol. 38, pp. 3547–3551, Sep. 2012.

[5] D. Nishikawa, Wenwei Yu, H. Yokoi and Y. Kakazu, "EMG prosthetic hand controller using

real-time learning method," Systems, Man, and Cybernetics, 1999. IEEE SMC '99

Conference Proceedings. 1999 IEEE International Conference on, Tokyo, 1999, pp. 153-

158 vol.1.

[6] L. Fraiwan, M. Awwad, M. Mahdawi, and S. Jamous, “Real time virtual prosthetic hand

controlled using EMG signals,” in Biomedical Engineering (MECBME), 2011 1st Middle

East Conference on, 2011, pp. 225-227.

[7] C. Donalek, “Supervised and Unsupervised Learning,” Caltech Astronomy, Apr-2011.

[Online]. Available: http://www.astro.caltech.edu/~george/aybi199/Donalek_Classif.pdf .

[Accessed: 01-Nov-2017].

[8] “Unsupervised Learning,” MATLAB & Simulink. [Online]. Available:

https://www.mathworks.com/discovery/unsupervised-learning.html. [Accessed: 2018].

[9] D. Zhu, “myo-raw,” Dec-2014. [Online]. Available: https://github.com/dzhu/myo-raw.

[Accessed: May-2018].

[10] F. Cosentino, “PyoConnect_v2.0,” [Online]. Available:

http://www.fernandocosentino.net/pyoconnect/ [Accessed: May-2018]

[11] “RPi-Cam-Web-Interface,” elinux.org. March 18, 2018. [Online]. Available:

https://elinux.org/RPi-Cam-Web-Interface. [Accessed: May-2018].

[12] Mathworks. (2017). Neural Network Toolbox: User's Guide (r2017a). [Online]. Available:

https://www.mathworks.com/help/nnet/ref/newpnn.html?searchHighlight=newpnn&s_ti

d=doc_srchtitle

EMG-Based Human Machine Interface Page | 29

Code Appendix

Please disregard any formatting abnormalities you see in the below code. The original code with clean formatting can be found on our github repository: https://github.com/abpatel2/2017-2018_EMG_senior_project.

 main.py
''' 1
AUTHOR: Aditya Patel and Jim Ramsay 2
DATE CREATED: 2018-03-01 3
LAST MODIFIED: 2018-04-12 4
PLATFORM: Raspberry Pi 3B, Raspbian Stretch Released 2017-11-29 5
PROJECT: EMG Human Machine Interface 6
ORGANIZATION: Bradley University, School of Electrical and Computer Engineering 7
FILENAME: main.py 8
DESCRIPTION: 9
 Main script that: 10
 - initializes/executes bluetooth protocol (not written by Aditya/Jim -- see note below) 11
 - starts reading emg data. 12
 - detects gestures 13
 - commands two slave raspberry pi's to rotate servo motors 14
 - switches between displaying video feed from each of the slaves 15
 16
 Gestures (right hand only, have not tested on left hand): 17
 rest -- do nothing, arm relaxed 18
 fist -- tight fist 19
 piwo -- palm in, wrist out (wave outward) 20
 piwi -- palm in, wrist in (wave inward) 21
 22
 Master: 23
 emgPi_3 -- pi@169.254.12.52 password is "ee00" 24
 25
 Slaves: 26
 ssh commands recognize the defined names for the slaves using ssh_keys. Using the defined 27
 names and saved keys bypasses password requirements. 28
 29
 emgPi_1 -- pi@169.254.184.5 password is "ee00" 30
 emgPi_2 -- pi@169.254.13.230 password is "ee00" 31
 32
NOTE: 33
 Original by dzhu 34
 https://github.com/dzhu/myo-raw 35
 36
 Edited by Fernando Cosentino 37
 http://www.fernandocosentino.net/pyoconnect 38
 39
 Edited further by Aditya Patel and Jim Ramsay 40
 There are a lot of global variables used to function like constants. This is likely not good practice 41
 but had to be done to meet deadlines. 42
 43
 The majority of the code that we wrote is at the bottom of the script, after all of the Bluetooth and armband related code. 44
''' 45
 46
from __future__ import print_function 47
import enum 48
import re 49
import struct 50
import sys 51
import threading 52
import time 53
import string 54

https://github.com/abpatel2/2017-2018_EMG_senior_project

EMG-Based Human Machine Interface Page | 30

import serial 55
from serial.tools.list_ports import comports 56
from common import * 57
 58
''' Additional Imports ''' 59
import os 60
import numpy as np 61
import csv 62
import datetime 63
from ringBuffer import ringBuffer 64
import displayControl as display 65
from calibrate import Calibrate 66
from guppy import hpy 67
 68
''' 69
 GLOBAL VARIABLES 70
 note: a lot of these are meant to function like a "DEFINE" in C. They are never written to. 71
''' 72
 73
''' ARRAYS ''' 74
global emg_data 75
emg_data = [] 76
 77
global duty 78
duty = [50, 50] # initial duty cycle for each motor 79
 80
''' INTEGERS ''' 81
global GETTINGCALDATA; global CALIBRATING; global SLEEP; global WAITING; global DISPLAYCONTROL; global MOTORCONTROL 82
GETTINGCALDATA = 0 83
CALIBRATING = 1 84
SLEEP = 2 85
WAITING = 3 86
DISPLAYCONTROL = 4 87
MOTORCONTROL = 5 88
 89
global REST; global FIST; global PIWI; global PIWO 90
REST = 0 91
FIST = 1 92
PIWI = 2 93
PIWO = 3 94
 95
global calMode 96
calMode = REST 97
 98
global EMGPI_1; global EMGPI_2 99
EMGPI_1 = 0 100
EMGPI_2 = 1 101
 102
 103
global fistCalData; global piwiCalData; global piwoCalData; 104
fistCalData = [] 105
piwiCalData = [] 106
piwoCalData = [] 107
 108
global curPi 109
curPi = 0 110
 111
t0 = time.time() 112
global t_endWaiting 113
 114
gestureString = ["fist", "piwi", "piwo", ""] 115

EMG-Based Human Machine Interface Page | 31

modeString = ["", "", "SLEEP", "WAITING","DISPLAY CONTROL","MOTOR CONTROL"] 116
 117
def multichr(ords): 118
 if sys.version_info[0] >= 3: 119
 return bytes(ords) 120
 else: 121
 return ''.join(map(chr, ords)) 122
 123
def multiord(b): 124
 if sys.version_info[0] >= 3: 125
 return list(b) 126
 else: 127
 return map(ord, b) 128
 129
class Arm(enum.Enum): 130
 UNKNOWN = 0 131
 RIGHT = 1 132
 LEFT = 2 133
 134
class XDirection(enum.Enum): 135
 UNKNOWN = 0 136
 X_TOWARD_WRIST = 1 137
 X_TOWARD_ELBOW = 2 138
 139
class Pose(enum.Enum): 140
 RESTT = 0 141
 FIST = 1 142
 WAVE_IN = 2 143
 WAVE_OUT = 3 144
 FINGERS_SPREAD = 4 145
 THUMB_TO_PINKY = 5 146
 UNKNOWN = 255 147
 148
class Packet(object): 149
 def __init__(self, ords): 150
 self.typ = ords[0] 151
 self.cls = ords[2] 152
 self.cmd = ords[3] 153
 self.payload = multichr(ords[4:]) 154
 155
 def __repr__(self): 156
 return 'Packet(%02X, %02X, %02X, [%s])' % \ 157
 (self.typ, self.cls, self.cmd, 158
 ' '.join('%02X' % b for b in multiord(self.payload))) 159
 160
class BT(object): 161
 '''Implements the non-Myo-specific details of the Bluetooth protocol.''' 162
 def __init__(self, tty): 163
 self.ser = serial.Serial(port=tty, baudrate=9600, dsrdtr=1) 164
 self.buf = [] 165
 self.lock = threading.Lock() 166
 self.handlers = [] 167
 168
 ## internal data-handling methods 169
 def recv_packet(self, timeout=None): 170
 t0 = time.time() 171
 self.ser.timeout = None 172
 while timeout is None or time.time() < t0 + timeout: 173
 if timeout is not None: self.ser.timeout = t0 + timeout - time.time() 174
 c = self.ser.read() 175
 if not c: return None 176

EMG-Based Human Machine Interface Page | 32

 177
 ret = self.proc_byte(ord(c)) 178
 if ret: 179
 if ret.typ == 0x80: 180
 self.handle_event(ret) 181
 return ret 182
 183
 def recv_packets(self, timeout=.5): 184
 res = [] 185
 t0 = time.time() 186
 while time.time() < t0 + timeout: 187
 p = self.recv_packet(t0 + timeout - time.time()) 188
 if not p: return res 189
 res.append(p) 190
 return res 191
 192
 def proc_byte(self, c): 193
 if not self.buf: 194
 if c in [0x00, 0x80, 0x08, 0x88]: 195
 self.buf.append(c) 196
 return None 197
 elif len(self.buf) == 1: 198
 self.buf.append(c) 199
 self.packet_len = 4 + (self.buf[0] & 0x07) + self.buf[1] 200
 return None 201
 else: 202
 self.buf.append(c) 203
 204
 if self.packet_len and len(self.buf) == self.packet_len: 205
 p = Packet(self.buf) 206
 self.buf = [] 207
 return p 208
 return None 209
 210
 def handle_event(self, p): 211
 for h in self.handlers: 212
 h(p) 213
 214
 def add_handler(self, h): 215
 self.handlers.append(h) 216
 217
 def remove_handler(self, h): 218
 try: self.handlers.remove(h) 219
 except ValueError: pass 220
 221
 def wait_event(self, cls, cmd): 222
 res = [None] 223
 def h(p): 224
 if p.cls == cls and p.cmd == cmd: 225
 res[0] = p 226
 self.add_handler(h) 227
 while res[0] is None: 228
 self.recv_packet() 229
 self.remove_handler(h) 230
 return res[0] 231
 232
 ## specific BLE commands 233
 def connect(self, addr): 234
 return self.send_command(6, 3, pack('6sBHHHH', multichr(addr), 0, 6, 6, 64, 0)) 235
 236
 def get_connections(self): 237

EMG-Based Human Machine Interface Page | 33

 return self.send_command(0, 6) 238
 239
 def discover(self): 240
 return self.send_command(6, 2, b'\x01') 241
 242
 def end_scan(self): 243
 return self.send_command(6, 4) 244
 245
 def disconnect(self, h): 246
 return self.send_command(3, 0, pack('B', h)) 247
 248
 def read_attr(self, con, attr): 249
 self.send_command(4, 4, pack('BH', con, attr)) 250
 return self.wait_event(4, 5) 251
 252
 def write_attr(self, con, attr, val): 253
 self.send_command(4, 5, pack('BHB', con, attr, len(val)) + val) 254
 return self.wait_event(4, 1) 255
 256
 def send_command(self, cls, cmd, payload=b'', wait_resp=True): 257
 s = pack('4B', 0, len(payload), cls, cmd) + payload 258
 self.ser.write(s) 259
 260
 while True: 261
 p = self.recv_packet() 262
 263
 ## no timeout, so p won't be None 264
 if p.typ == 0: return p 265
 266
 ## not a response: must be an event 267
 self.handle_event(p) 268
 269
class MyoRaw(object): 270
 '''Implements the Myo-specific communication protocol.''' 271
 272
 def __init__(self, tty=None): 273
 if tty is None: 274
 tty = self.detect_tty() 275
 if tty is None: 276
 raise ValueError('Myo dongle not found!') 277
 278
 self.bt = BT(tty) 279
 self.conn = None 280
 self.emg_handlers = [] 281
 self.imu_handlers = [] 282
 self.arm_handlers = [] 283
 self.pose_handlers = [] 284
 285
 def detect_tty(self): 286
 for p in comports(): 287
 if re.search(r'PID=2458:0*1', p[2]): 288
 print('using device:', p[0]) 289
 return p[0] 290
 291
 return None 292
 293
 def run(self, timeout=None): 294
 self.bt.recv_packet(timeout) 295
 296
 def connect(self): 297
 ## stop everything from before 298

EMG-Based Human Machine Interface Page | 34

 self.bt.end_scan() 299
 self.bt.disconnect(0) 300
 self.bt.disconnect(1) 301
 self.bt.disconnect(2) 302
 303
 304
 ## start scanning 305
 print('scanning for bluetooth devices...') 306
 self.bt.discover() 307
 while True: 308
 p = self.bt.recv_packet() 309
 print('scan response:', p) 310
 311
 if p.payload.endswith(b'\x06\x42\x48\x12\x4A\x7F\x2C\x48\x47\xB9\xDE\x04\xA9\x01\x00\x06\xD5'): 312
 addr = list(multiord(p.payload[2:8])) 313
 break 314
 self.bt.end_scan() 315
 316
 ## connect and wait for status event 317
 conn_pkt = self.bt.connect(addr) 318
 self.conn = multiord(conn_pkt.payload)[-1] 319
 self.bt.wait_event(3, 0) 320
 321
 ## get firmware version 322
 fw = self.read_attr(0x17) 323
 _, _, _, _, v0, v1, v2, v3 = unpack('BHBBHHHH', fw.payload) 324
 print('firmware version: %d.%d.%d.%d' % (v0, v1, v2, v3)) 325
 326
 self.old = (v0 == 0) 327
 328
 if self.old: # if the firmware is 0.x.xxxx.x 329
 ## don't know what these do; Myo Connect sends them, though we get data 330
 ## fine without them 331
 self.write_attr(0x19, b'\x01\x02\x00\x00') 332
 self.write_attr(0x2f, b'\x01\x00') 333
 self.write_attr(0x2c, b'\x01\x00') 334
 self.write_attr(0x32, b'\x01\x00') 335
 self.write_attr(0x35, b'\x01\x00') 336
 337
 ## enable EMG data 338
 self.write_attr(0x28, b'\x01\x00') 339
 ## enable IMU data 340
 self.write_attr(0x1d, b'\x01\x00') 341
 342
 ## Sampling rate of the underlying EMG sensor, capped to 1000. If it's 343
 ## less than 1000, emg_hz is correct. If it is greater, the actual 344
 ## framerate starts dropping inversely. Also, if this is much less than 345
 ## 1000, EMG data becomes slower to respond to changes. In conclusion, 346
 ## 1000 is probably a good value. 347
 C = 1000 348
 emg_hz = 50 349
 ## strength of low-pass filtering of EMG data 350
 emg_smooth = 100 351
 352
 imu_hz = 50 353
 354
 ## send sensor parameters, or we don't get any data 355
 self.write_attr(0x19, pack('BBBBHBBBBB', 2, 9, 2, 1, C, emg_smooth, C // emg_hz, imu_hz, 0, 0)) 356
 357
 else: #normal operation 358
 name = self.read_attr(0x03) 359

EMG-Based Human Machine Interface Page | 35

 print('device name: %s' % name.payload) 360
 361
 ## enable IMU data 362
 self.write_attr(0x1d, b'\x01\x00') 363
 ## enable vibrations 364
 self.write_attr(0x24, b'\x02\x00') 365
 # Failed attempt to disable vibrations: 366
 # self.write_attr(0x24, b'\x00\x00') 367
 368
 # self.write_attr(0x19, b'\x01\x03\x00\x01\x01') 369
 self.start_raw() 370
 371
 ## add data handlers 372
 def handle_data(p): 373
 if (p.cls, p.cmd) != (4, 5): return 374
 c, attr, typ = unpack('BHB', p.payload[:4]) # unpack unsigned char, unsigned short, unsigned char 375
 pay = p.payload[5:] 376
 if attr == 0x27: 377
 vals = unpack('8HB', pay) # unpack 8 unsigned shorts, and one unsigned char https://docs.python.org/2/library/struct.html 378
 ## not entirely sure what the last byte is, but it's a bitmask that 379
 ## seems to indicate which sensors think they're being moved around or 380
 ## something 381
 emg = vals[:8] 382
 moving = vals[8] 383
 self.on_emg(emg, moving) 384
 elif attr == 0x1c: 385
 vals = unpack('10h', pay) 386
 quat = vals[:4] 387
 acc = vals[4:7] 388
 gyro = vals[7:10] 389
 self.on_imu(quat, acc, gyro) 390
 elif attr == 0x23: 391
 typ, val, xdir, _,_,_ = unpack('6B', pay) 392
 393
 if typ == 1: # on arm 394
 self.on_arm(Arm(val), XDirection(xdir)) 395
 print("on arm") 396
 elif typ == 2: # removed from arm 397
 self.on_arm(Arm.UNKNOWN, XDirection.UNKNOWN) 398
 print("NOT on arm") 399
 elif typ == 3: # pose 400
 self.on_pose(Pose(val)) 401
 else: 402
 print('data with unknown attr: %02X %s' % (attr, p)) 403
 404
 self.bt.add_handler(handle_data) 405
 406
 def write_attr(self, attr, val): 407
 if self.conn is not None: 408
 self.bt.write_attr(self.conn, attr, val) 409
 410
 def read_attr(self, attr): 411
 if self.conn is not None: 412
 return self.bt.read_attr(self.conn, attr) 413
 return None 414
 415
 def disconnect(self): 416
 if self.conn is not None: 417
 self.bt.disconnect(self.conn) 418
 419
 def start_raw(self): 420

EMG-Based Human Machine Interface Page | 36

 '''Sending this sequence for v1.0 firmware seems to enable both raw data and 421
 pose notifications. 422
 ''' 423
 424
 self.write_attr(0x28, b'\x01\x00') 425
 #self.write_attr(0x19, b'\x01\x03\x01\x01\x00') 426
 self.write_attr(0x19, b'\x01\x03\x01\x01\x01') 427
 428
 def mc_start_collection(self): 429
 '''Myo Connect sends this sequence (or a reordering) when starting data 430
 collection for v1.0 firmware; this enables raw data but disables arm and 431
 pose notifications. 432
 ''' 433
 434
 self.write_attr(0x28, b'\x01\x00') 435
 self.write_attr(0x1d, b'\x01\x00') 436
 self.write_attr(0x24, b'\x02\x00') 437
 self.write_attr(0x19, b'\x01\x03\x01\x01\x01') 438
 self.write_attr(0x28, b'\x01\x00') 439
 self.write_attr(0x1d, b'\x01\x00') 440
 self.write_attr(0x19, b'\x09\x01\x01\x00\x00') 441
 self.write_attr(0x1d, b'\x01\x00') 442
 self.write_attr(0x19, b'\x01\x03\x00\x01\x00') 443
 self.write_attr(0x28, b'\x01\x00') 444
 self.write_attr(0x1d, b'\x01\x00') 445
 self.write_attr(0x19, b'\x01\x03\x01\x01\x00') 446
 447
 def mc_end_collection(self): 448
 '''Myo Connect sends this sequence (or a reordering) when ending data collection 449
 for v1.0 firmware; this reenables arm and pose notifications, but 450
 doesn't disable raw data. 451
 ''' 452
 453
 self.write_attr(0x28, b'\x01\x00') 454
 self.write_attr(0x1d, b'\x01\x00') 455
 self.write_attr(0x24, b'\x02\x00') 456
 self.write_attr(0x19, b'\x01\x03\x01\x01\x01') 457
 self.write_attr(0x19, b'\x09\x01\x00\x00\x00') 458
 self.write_attr(0x1d, b'\x01\x00') 459
 self.write_attr(0x24, b'\x02\x00') 460
 self.write_attr(0x19, b'\x01\x03\x00\x01\x01') 461
 self.write_attr(0x28, b'\x01\x00') 462
 self.write_attr(0x1d, b'\x01\x00') 463
 self.write_attr(0x24, b'\x02\x00') 464
 self.write_attr(0x19, b'\x01\x03\x01\x01\x01') 465
 466
 def vibrate(self, length): 467
 if length in xrange(1, 4): 468
 ## first byte tells it to vibrate; purpose of second byte is unknown 469
 self.write_attr(0x19, pack('3B', 3, 1, length)) 470
 471
 472
 def add_emg_handler(self, h): 473
 self.emg_handlers.append(h) 474
 475
 def add_imu_handler(self, h): 476
 self.imu_handlers.append(h) 477
 478
 def add_pose_handler(self, h): 479
 self.pose_handlers.append(h) 480
 481

EMG-Based Human Machine Interface Page | 37

 def add_arm_handler(self, h): 482
 self.arm_handlers.append(h) 483
 484
 485
 def on_emg(self, emg, moving): 486
 for h in self.emg_handlers: 487
 h(emg, moving) 488
 489
 def on_imu(self, quat, acc, gyro): 490
 for h in self.imu_handlers: 491
 h(quat, acc, gyro) 492
 493
 def on_pose(self, p): 494
 for h in self.pose_handlers: 495
 h(p) 496
 497
 def on_arm(self, arm, xdir): 498
 for h in self.arm_handlers: 499
 h(arm, xdir) 500
 501
 502
def controlLogic(mode, gesture, confidence): 503
 global SLEEP; global WAITING; global DISPLAYCONTROL; global MOTORCONTROL; 504
 global REST; global FIST; global PIWI; global PIWO 505
 global duty; global curPi; global t_endWaiting; global t_30_SLEEP 506
 507
 if (mode == SLEEP): 508
 509
 if (gesture == FIST): 510
 mode = WAITING 511
 t_endWaiting = time.time() + 1 # Reset the sleep timer once you leave SLEEP 512
 print("SWITCHING MODE: WAITING\t\t\t\tConfidence Level: ", confidence) 513
 t_30_SLEEP = time.time() + 30 514
 515
 if (mode == WAITING): 516
 if (time.time() >= t_30_SLEEP): 517
 518
 mode = SLEEP 519
 print("SWITCHING MODE: SLEEP") 520
 521
 else: 522
 523
 # print("MODE = WAITING") 524
 if (time.time() > t_endWaiting): 525
 if (gesture == FIST): 526
 527
 mode = SLEEP 528
 print("SWITCHING MODE: SLEEP\t\t\t\tConfidence Level: ",confidence) 529
 530
 elif (gesture == PIWI): 531
 532
 mode = DISPLAYCONTROL 533
 print("SWITCHING MODE: DISPLAYCONTROL\t\t\t\tConfidence Level: ",confidence) 534
 t_endWaiting = time.time() + 1 535
 t_30_SLEEP = time.time() + 30 536
 537
 elif (gesture == PIWO): 538
 539
 mode = MOTORCONTROL 540
 print("SWITCHING MODE: MOTORCONTROL\t\t\tConfidence Level: ",confidence) 541
 t_endWaiting = time.time() + 1 542

EMG-Based Human Machine Interface Page | 38

 t_30_SLEEP = time.time() + 30 543
 544
 if (mode == DISPLAYCONTROL): 545
 546
 if (time.time() >= t_30_SLEEP): 547
 548
 mode = SLEEP 549
 print("SWITCHING MODE: SLEEP") 550
 551
 else: 552
 553
 if (time.time() > t_endWaiting): 554
 if (gesture == FIST): 555
 556
 mode = WAITING 557
 print("SWITCHING MODE: WAITING\t\t\t\tConfidence Level: ",confidence) 558
 t_endWaiting = time.time() + 1 559
 t_30_SLEEP = time.time() + 30 560
 561
 elif ((curPi == 0) and (gesture == PIWI)): 562
 563
 curPi = display.switchDisplay() 564
 print("Switching to Camera 2") 565
 t_endWaiting = time.time() + 1 566
 t_30_SLEEP = time.time() + 30 567
 568
 elif ((curPi == 1) and (gesture == PIWO)): 569
 570
 curPi = display.switchDisplay() 571
 print("Switching to Camera 1") 572
 t_endWaiting = time.time() + 1 573
 t_30_SLEEP = time.time() + 30 574
 575
 if (mode == MOTORCONTROL): 576
 577
 if (time.time() >= t_30_SLEEP): 578
 579
 mode = SLEEP 580
 print("SWITCHING MODE: SLEEP") 581
 582
 else: 583
 584
 if (time.time() > t_endWaiting): 585
 ''' Select which slave to control ''' 586
 if (curPi == 0): 587
 588
 curPi_name = "emgPi_1" 589
 currentMotor = 0 590
 591
 elif (curPi == 1): 592
 593
 curPi_name = "emgPi_2" 594
 currentMotor = 1 595
 596
 ''' Check Gesture ''' 597
 if (gesture == PIWI): # Pan Clockwise 598
 599
 if (duty[curPi] <= 70): 600
 601
 duty[curPi] += 10 602
 603

EMG-Based Human Machine Interface Page | 39

 ssh_string = "ssh " + curPi_name + " 'python /home/pi/scripts/moveMotor.py " + str(duty[curPi]) + " 0 0' &" 604
 os.system(ssh_string) 605
 606
 elif ((duty[curPi] > 70) and (duty[curPi] < 80)): 607
 duty[curPi] = 80 608
 ssh_string = "ssh " + curPi_name + " 'python /home/pi/scripts/moveMotor.py " + str(duty[curPi]) + " 0 0' &" 609
 os.system(ssh_string) 610
 print("Motor is at limit.") 611
 612
 t_endWaiting = time.time() + 1 613
 t_30_SLEEP = time.time() + 30 614
 615
 616
 elif (gesture == PIWO): # Pan Counter Clockwise 617
 618
 if (duty[curPi] >= 30): 619
 620
 duty[curPi] -= 10 621
 ssh_string = "ssh " + curPi_name + " 'python /home/pi/scripts/moveMotor.py " + str(duty[curPi]) + " 1 0' &" 622
 os.system(ssh_string) 623
 624
 elif ((duty[curPi] < 30) and (duty[curPi] > 20)): 625
 626
 duty[curPi] = 20 627
 ssh_string = "ssh " + curPi_name + " 'python /home/pi/scripts/moveMotor.py " + str(duty[curPi]) + " 1 0' &" 628
 os.system(ssh_string) 629
 print("Motor is at limit.") 630
 631
 else: 632
 print("Motor is out of range. Cannot rotate CCW") 633
 634
 t_endWaiting = time.time() + 1 635
 t_30_SLEEP = time.time() + 30 636
 637
 elif (gesture == FIST): 638
 639
 mode = WAITING 640
 print("SWITCHING MODE: WAITING\t\t\t\tConfidence Level: ", confidence) 641
 t_endWaiting = time.time() + 1 642
 643
 return mode 644
 645
 646
def getConfidence(realTimeData, calData): 647
 648
 matchCounter = 0 649
 650
 ''' 651
 calibrated: 823 652
 actual: 832 653
 result: 10 + 2 + 3 = 15 654
 655
 calibrated: 781 656
 actual: 832 657
 result: 7 658
 659
 calibrated: 231 660
 actual: 832 661
 result: 1 + 6 + = 7 662
 ''' 663
 664

EMG-Based Human Machine Interface Page | 40

 if (realTimeData[0] == calData[0]): 665
 matchCounter += 10 666
 if (realTimeData[0] == calData[1]): 667
 matchCounter += 7 668
 if (realTimeData[0] == calData[2]): 669
 matchCounter += 3 670
 671
 if (realTimeData[1] == calData[0]): 672
 matchCounter += 4 673
 if (realTimeData[1] == calData[1]): 674
 matchCounter += 6 675
 if (realTimeData[1] == calData[2]): 676
 matchCounter += 2 677
 678
 if (realTimeData[2] == calData[0]): 679
 matchCounter += 2 680
 if (realTimeData[2] == calData[1]): 681
 matchCounter += 3 682
 if (realTimeData[2] == calData[2]): 683
 matchCounter += 4 684
 685
 return matchCounter 686
 687
 688
''' 689
 If the gesture is the same as the last one, increment the counter. If the gesture is different from the last gesture, 690
 update the variable, lastGesture, and reset the counter. This allows us to wait for n counts of the same gesture before 691
 considering a gesture valid. 692
''' 693
def confirmGesture(gesture): 694
 global CONFIRM_COUNTER 695
 696
 if (confirmGesture.lastGesture != gesture): 697
 confirmGesture.flag = False 698
 699
 if (confirmGesture.counter < CONFIRM_COUNTER): 700
 confirmGesture.counter += 1 701
 confirmGesture.flag = False 702
 else: 703
 confirmGesture.lastGesture = gesture 704
 confirmGesture.counter = 0 705
 confirmGesture.flag = True 706
 707
 708
 return confirmGesture.flag 709
 710
confirmGesture.flag = False # static variable initialization for the above function 711
confirmGesture.counter = 0 712
confirmGesture.lastGesture = REST 713
 714
if __name__ == '__main__': 715
 716
 m = MyoRaw(sys.argv[1] if len(sys.argv) >= 2 else None) # this has to come first, and proc_emg() second (see below) 717
 718
 def proc_emg(emg, moving, times = []): # data is sent in packets of two samples at a time. I *think* we only save half of 719
these 720
 global calMode; global emg_data 721
 global fistCalData; global piwiCalData; global piwoCalData; 722
 723
 emg = list(emg) # convert tuple to list 724
 emg_data = emg 725

EMG-Based Human Machine Interface Page | 41

 726
 if (mode == GETTINGCALDATA): # write calibration data to a global array 727
 728
 if (calMode == FIST): 729
 fistCalData.append(emg_data) 730
 if (calMode == PIWI): 731
 piwiCalData.append(emg_data) 732
 if (calMode == PIWO): 733
 piwoCalData.append(emg_data) 734
 735
 ''' 736
 INITIALIZATION 737
 this code is only executed once 738
 ''' 739
 m.add_emg_handler(proc_emg) 740
 m.connect() 741
 global GETTINGCALDATA; global CALIBRATING; global SLEEP; global WAITING; global DISPLAYCONTROL; global MOTORCONTROL; 742
 global REST; global FIST; global PIWI; global PIWO; global calMode; global curPi; global CONFIRM_COUNTER; 743
 744
 os.system("python displayControl.py &") # initializes the display on every run 745
 746
 confidenceArray = [] 747
 748
 curPi = 0 749
 gesture = REST 750
 isResting = 0 751
 752
 BUFFER_SIZE = 100 # size of circular buffer 753
 emg_buffer = ringBuffer(BUFFER_SIZE) 754
 counter = 0 # counter 755
 756
 CONFIDENCE_LEVEL = 10 # allows for tuning. Max = 20. Min = 0. See getConfidence() 757
 CONFIRM_COUNTER = 150 # number of samples of same gesture required to confirm a gesture 758
 SENSITIVITY = 75 # upper and lower threshold = minValueFromCal +/- SENSITIVITY 759
 760
 NUM_CALS = 4 # this is always 1 greater than the number of calibrations 761
 762
 CALIBRATION_SIZE = 500 763
 n = CALIBRATION_SIZE 764
 CSVFILE = "./adityaCal.csv" # file to write/read calibration data from 765
 minValueFromCal = 9999 # initially an arbitrarily large value 766
 iWantToCal = 0 # set to '1' when switching users or when recalibration is needed 767
 calibrateFlag = 1 768
 769
 if (iWantToCal == 1): 770
 mode = GETTINGCALDATA 771
 else: 772
 mode = SLEEP # skip GETTINGCALDATA and CALIBRATING states 773
 774
 os.system("ssh emgPi_1 'python /home/pi/scripts/initMotor.py 50' &") # The ampersand is essential here. If this does not run in the background ... 775
 os.system("ssh emgPi_2 'python /home/pi/scripts/initMotor.py 50' &") # the bluetooth protocol fails and the system is frozen. 776
 777
 print("MOTORS INITIALIZED") 778
 os.system("clear") 779
 780
 while True: # run the program indefinitely, or until user interruption 781
 m.run() 782
 783
 emg_buffer.append(emg_data) 784
 785
 if (counter >= BUFFER_SIZE * 2): # there was an undiagnosed issue with 7 null data points causing havoc. 786

EMG-Based Human Machine Interface Page | 42

 # this ensures that those are gone before proceeding 787
 788
 average = emg_buffer.getAvg() # average value of each sensor in the buffer. [1 x 8] 789
 790
 bufferAvg = np.mean(np.array(average)) # average value of the whole buffer. type: float, [1 x 1] 791
 792
 maxGrouping = emg_buffer.getMaxGrouping() 793
 794
 if (mode >= SLEEP): # where the main gesture detection and control happens 795
 796
 if (calibrateFlag == 1): # load saved cal data 797
 with open(CSVFILE, 'rb') as csvfile: # Example: [7, 6, 1]; [4, 2, 5]; [0, 2, 7]; [157.6, 157.6, 157.6] 798
 CalReader = csv.reader(csvfile, delimiter=',') 799
 i = 0 800
 for row in CalReader: 801
 savedCalData = np.genfromtxt(CSVFILE, delimiter=',') 802
 803
 print("Calibration Data: \n", savedCalData) 804
 print("MODE = SLEEP") 805
 calibrateFlag = 0 806
 fistGrouping = savedCalData[0] 807
 piwiGrouping = savedCalData[1] 808
 piwoGrouping = savedCalData[2] 809
 minValueFromCal = savedCalData[3,1] 810
 811
 fistConfidence = getConfidence(maxGrouping, fistGrouping) 812
 piwiConfidence = getConfidence(maxGrouping, piwiGrouping) 813
 piwoConfidence = getConfidence(maxGrouping, piwoGrouping) 814
 815
 confidenceArray = [fistConfidence, piwiConfidence, piwoConfidence] 816
 817
 maxMatch = np.argmax(confidenceArray) # index of the gesture that returned the most confidence 818
 maxConfidence = confidenceArray[maxMatch] # confidence level of the most confident gesture 819
 820
 if ((bufferAvg >= (minValueFromCal + SENSITIVITY))): 821
 if (maxMatch == 0) and (fistConfidence >= CONFIDENCE_LEVEL) : 822
 823
 if (confirmGesture(FIST)): # if we saw FIST for n times 824
 gesture = FIST 825
 print("\tFIST CONFIRMED\t\t\t\tConfidence Level: ", fistConfidence) 826
 827
 isResting = 0 828
 829
 elif (maxMatch == 1) and (piwiConfidence >= CONFIDENCE_LEVEL): 830
 831
 if (confirmGesture(PIWI)): # if we saw PIWI for n times 832
 gesture = PIWI 833
 print("\tPIWI CONFIRMED\t\t\t\tConfidence Level: ", piwiConfidence) 834
 835
 isResting = 0 836
 837
 elif (maxMatch == 2) and (piwoConfidence >= CONFIDENCE_LEVEL): 838
 839
 if (confirmGesture(PIWO)): # if we saw PIWO for n times 840
 gesture = PIWO 841
 print("\tPIWO CONFIRMED\t\t\t\tConfidence Level: ", piwoConfidence) 842
 843
 isResting = 0 844
 else: 845
 if (confirmGesture(REST)): # if we saw REST for n times 846
 gesture = REST 847

EMG-Based Human Machine Interface Page | 43

 print("\n\n\tMOTION DETECTED BUT NO GESTURE MATCH: REST ASSUMED") 848
 print("\n\tMinimum Accepted Confidence: ", CONFIDENCE_LEVEL) 849
 print("\tFIST Confidence: ",fistConfidence, "\tPIWI Confidence: ",piwiConfidence, "\tPIWO Confidence: ",piwoConfidence) 850
 print("\tStill in mode: ", modeString[mode]) 851
 print("\n\n") 852
 853
 elif ((bufferAvg < (minValueFromCal - SENSITIVITY))): #isResting or 854
 855
 #print("REST CONFIRMED") 856
 gesture = REST 857
 isResting = 1 858
 859
 #else: 860
 861
 # print("UNKNOWN") 862
 # print("Sensitivity: ", SENSITIVITY) 863
 # print("minValueFromCal: ", minValueFromCal) 864
 # print("Buffer average: ", bufferAvg) 865
 866
 mode = controlLogic(mode, gesture, maxConfidence) # get new mode 867
 868
 ''' 869
 CALIBRATION 870
 note: this can probably be put into a function later. Maybe not all of it, but enough that it becomes a little easier to follow 871
 ''' 872
 if ((mode == GETTINGCALDATA) and (calMode < NUM_CALS)): 873
 874
 if (n >= CALIBRATION_SIZE): 875
 876
 n = 0 # reset calibration timer 877
 print("Cal Mode = " + gestureString[calMode]) 878
 print("Hold a " + gestureString[calMode] + " until told otherwise") 879
 calMode += 1 880
 # time.sleep(2) # WARNING: THIS BREAKS THE CODE! # sleep to give user time to switch to next gesture 881
 882
 n += 1 883
 if (bufferAvg < minValueFromCal): # this gets the minimum 8-sensor average from the time that calibration was run 884
 minValueFromCal = bufferAvg # it sets the threshold that separates gestures from resting. 885
 886
 else: 887
 888
 if (calibrateFlag == 1): 889
 mode = CALIBRATING 890
 891
 gesture = REST 892
 mode = controlLogic(mode, gesture, 0) 893
 894
 895
 if (mode == CALIBRATING) : 896
 897
 print("mode = CALIBRATING") 898
 fistCal = Calibrate() 899
 fistGrouping = fistCal.getMaxGrouping(fistCalData) 900
 901
 piwiCal = Calibrate() 902
 piwiGrouping = piwiCal.getMaxGrouping(piwiCalData) 903
 904
 piwoCal = Calibrate() 905
 piwoGrouping = piwoCal.getMaxGrouping(piwoCalData) 906
 907
 minValueFromCalArray = [minValueFromCal,minValueFromCal,minValueFromCal] 908

EMG-Based Human Machine Interface Page | 44

 909
 with open(CSVFILE, 'w') as csvfile: 910
 writer = csv.writer(csvfile) 911
 writer.writerow(fistGrouping) 912
 writer.writerow(piwiGrouping) 913
 writer.writerow(piwoGrouping) 914
 writer.writerow(minValueFromCalArray) 915
 916
 calibrateFlag = 0 917
 mode = SLEEP 918
 919
 print("Fist Group: ", fistGrouping) 920
 # print(fistCalData) 921
 print("Piwi Group: ", piwiGrouping) 922
 # print(piwiCalData) 923
 print("Piwo Group: ", piwoGrouping) 924
 925
 926
 else: # Runs until data is guaranteed to be good 927
 928
 counter += 1 929
 # print(counter, "Data contains null values\n") 930
 931

 932

 calibrate.py
''' 933
AUTHOR: Aditya Patel 934
DATE CREATED: 2018-04-08 935
LAST MODIFIED: 2018-04-09 936
PLATFORM: Raspberry Pi 3B, Raspbian Stretch Released 2017-11-29 937
PROJECT: EMG Human Machine Interface 938
ORGANIZATION: Bradley University, School of Electrical and Computer Engineering 939
FILENAME: calibrate.py 940
DESCRIPTION: 941
 Calibration class. Create a unique Calibrate() object in the parent function for each gesture. 942
 Primary use of this class is to get the top three sensor groupings in the calibration data, 943
 i.e., the three trios of consecutive sensors with the highest average EMG value. 944
 945
 Ex: 946
 If the calibration data is: 947
 [99 100 32 03 14 16 42 95] 948
 949
 index: 0 1 2 3 4 5 6 7 950
 951
 The top three sensor groups would be, in order, 952
 [701, 670, 012] 953
 954
 Giving the return: 955
 [7, 6, 0] 956
''' 957
 958
import numpy as np 959
 960
class Calibrate(): 961
 962
 def __init___(self): 963

EMG-Based Human Machine Interface Page | 45

 964
 self.size() 965
 self.data = [] 966
 self.sums = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 967
 self.avg = [] 968
 # self.avg = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) # this has to be a numpy array to use the 'divide' function below 969
 self.groupingAvg = [] 970
 971
 ''' 972
 Sets the class variable, data, equal to the calibration data. 973
 ''' 974
 def setData(self, calData): 975
 976
 self.data = calData 977
 978
 ''' 979
 Computes an average down each column of data. 980
 writes to self.avg, 1 x 8 array containing average value of each sensor 981
 ''' 982
 def getAvg(self): 983
 984
 self.sums = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] # reset sums to prevent it from accumulating forever. This is NOT elegant or efficient 985
 self.avg = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) 986
 for r in range(0,len(self.data)): 987
 for c in range(0,8): 988
 self.sums[c] = self.sums[c] + self.data[r][c] 989
 990
 np.divide(self.sums, float(len(self.data)), out = self.avg) # compute the average by dividing the sums by the size of the data array 991
 #return self.avg 992
 993
 ''' 994
 Function to compute the average value of each of the eight groupings of three sensors. 995
 @return none, only writes to class variable, groupingAvg 996
 [123 234 345 456 567 678 781 812] 997
 where each of these is the average of the sensors 998
 ''' 999
 def getGroupingAvg(self): 1000
 1001
 self.groupingAvg = [0, 0, 0, 0, 0, 0, 0, 0] 1002
 1003
 for startIndex in range(0, 8): 1004
 sum = 0 1005
 1006
 for i in range(startIndex, startIndex + 3): 1007
 1008
 if (i > 7): 1009
 i %= 8 # if i exceeds the range of the data, do the modulus operator. This allows for groupings 781 and 812 to work. 1010
 sum += self.avg[i] 1011
 i += 1 1012
 1013
 self.groupingAvg[startIndex] = sum / 3.0 1014
 1015
 1016
 ''' 1017
 Function to compute the three highest sensor groups. 1018
 @return maxGrouping, [1 x 3] integer list of the index of the top three sensor groups in the calibration data 1019
 @example maxGrouping = myCalibrationObject.getMaxGrouping(gestureCalibrationData) --> maxGrouping: [6, 5, 0] 1020

EMG-Based Human Machine Interface Page | 46

 ''' 1021
 def getMaxGrouping(self,calData): 1022
 1023
 maxGrouping = [0, 0, 0] 1024
 self.setData(calData) 1025
 self.getAvg() 1026
 self.getGroupingAvg() 1027
 1028
 array = np.array(self.groupingAvg) # REFERENCE: https://stackoverflow.com/questions/5284646/rank-items-in-an-array-using-python-numpy 1029
 temp = array.argsort() 1030
 ranks = np.empty_like(temp) 1031
 ranks[temp] = np.arange(len(array)) 1032
 1033
 maxGrouping[0] = int(np.where(ranks == 7)[0]) 1034
 maxGrouping[1] = int(np.where(ranks == 6)[0]) 1035
 maxGrouping[2] = int(np.where(ranks == 5)[0]) 1036
 1037
 return maxGrouping 1038
 1039
''' 1040
 Used for Testing/Debugging Purposes 1041
''' 1042
if __name__ == '__main__': 1043
 1044
 t1 = [] 1045
 #t2 = [0, 1, 2, 3, 4, 5, 6, 7] 1046
 t2 = [100.0, 100.0, 7.0, 7.0, 0.0, 0.0, 0.0, 100.0] 1047
 1048
 t1.append(t2) 1049
 t1.append(t2) 1050
 t1.append(t2) 1051
 cal = Calibrate() 1052
 maxGrouping = cal.getMaxGrouping(t1) 1053
 1054
 1055
 print(maxGrouping) 1056

 ringBuffer.py
''' 1057
AUTHOR: Aditya Patel and Jim Ramsay 1058
DATE CREATED: 04/01/2018 1059
LAST MODIFIED: 2018-04-09 1060
PLATFORM: Raspberry Pi 3B, Raspbian Stretch Released 2017-11-29 1061
PROJECT: EMG Human Machine Interface 1062
ORGANIZATION: Bradley University, School of Electrical and Computer Engineering 1063
FILENAME: ringBuffer.py 1064
DESCRIPTION: 1065
 Class that implements a ring/circular buffer to hold the emg data. It stores data until full, then 1066
 overwrites the oldest element every time. It also has a method to take an average of the last n 1067
 data points. 1068
 1069
KNOWN FLAW: 1070

EMG-Based Human Machine Interface Page | 47

 Instead of only ignoring the oldest element when computing the average, I flush the entire buffer. 1071
 Then the full n-length sum is taken. This is grossly inefficient, but was not found to be a bottleneck 1072
 in implementation. Thus, it was ignored. 1073
 1074
EDIT HISTORY: 1075
 20180409 -- Added functions to compute groupingAvg and maxGrouping. The groupings are as follows: 1076
 1077
 [123 234 345 456 567 678 781 812] 1078
 1079
 In main, this allowed us to calculate the three groupings with the highest average sensor value. 1080
''' 1081
import numpy as np 1082
 1083
class ringBuffer: 1084
 def __init__(self,size_max): # Constructor 1085
 self.max = size_max 1086
 self.data = [] 1087
 self.sums = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 1088
 self.avg = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) # this has to be a numpy array to use the 'divide' function below 1089
 self.full = False 1090
 self.groupingAvg = [] 1091
 class __Full: # sub-class that implements a full buffer 1092
 1093
 def append(self, x): 1094
 self.data[self.cur] = x # append an element, overwriting the oldest one 1095
 self.cur = (self.cur + 1) % self.max # cycle 'cur' from 0 to self.max 1096
 1097
 def getAvg(self): 1098
 self.sums = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] # reset sums to prevent it from accumulating forever. This is NOT elegant or 1099
efficient 1100
 for r in range(0,self.max): 1101
 for c in range(0,8): 1102
 self.sums[c] = self.sums[c] + self.data[r][c] 1103
 1104
 np.divide(self.sums, float(self.max), out = self.avg) # compute the average by dividing the sums by the size of the data array 1105
 return self.avg 1106
 1107
 def get(self): # return list of elements from oldest to newest 1108
 return self.data[self.cur:] + self.data[:self.cur] 1109
 1110
 ''' 1111
 Function to compute the average value of each of the eight groupings of three sensors. 1112
 @return none, only writes to class variable, groupingAvg 1113
 [123 234 345 456 567 678 781 812] 1114
 where each of these is the average of the sensors 1115
 ''' 1116
 def getGroupingAvg(self): 1117
 1118
 self.groupingAvg = [0, 0, 0, 0, 0, 0, 0, 0] 1119
 1120
 for startIndex in range(0, 8): 1121
 sum = 0 1122
 1123
 for i in range(startIndex, startIndex + 3): 1124
 1125
 if (i > 7): 1126

EMG-Based Human Machine Interface Page | 48

 i %= 8 # if i exceeds the range of the data, do the 1127
modulus operator. This allows for groupings 781 and 812 to work. 1128
 sum += self.avg[i] 1129
 i += 1 1130
 1131
 self.groupingAvg[startIndex] = sum / 3.0 1132
 1133
 ''' 1134
 Function to compute the three highest sensor groups. 1135
 @return maxGrouping, [1 x 3] integer list of the index of the top three sensor groups in the ring buffer 1136
 @example maxGrouping = myRingBuffer.getMaxGrouping() --> maxGrouping: [6, 5, 0] 1137
 ''' 1138
 def getMaxGrouping(self): 1139
 1140
 maxGrouping = [0, 0, 0] 1141
 1142
 self.getAvg() 1143
 self.getGroupingAvg() 1144
 1145
 array = np.array(self.groupingAvg) # REFERENCE: https://stackoverflow.com/questions/5284646/rank-1146
items-in-an-array-using-python-numpy 1147
 temp = array.argsort() 1148
 ranks = np.empty_like(temp) 1149
 ranks[temp] = np.arange(len(array)) 1150
 1151
 maxGrouping[0] = int(np.where(ranks == 7)[0]) 1152
 maxGrouping[1] = int(np.where(ranks == 6)[0]) 1153
 maxGrouping[2] = int(np.where(ranks == 5)[0]) 1154
 1155
 return maxGrouping 1156
 1157
 1158
 def append(self,x): # append an element to the end of the buffer until it 1159
is full 1160
 self.data.append(x) 1161
 1162
 if len(self.data) == self.max: 1163
 self.cur = 0 1164
 self.full = True 1165
 self.__class__ = self.__Full # Permanently change class from not full to full 1166
 1167
 def get(self): # return list of elements from oldest to newest 1168
 return self.data 1169
 1170
 1171
''' 1172
 Used for Testing/Debugging Purposes 1173
''' 1174
if __name__=='__main__': 1175
 x = ringBuffer(3) 1176
 print "average: ", x.avg 1177
 print "sums: ", x.sums 1178
 emg1 = [1,1,1,1,1,1,1,1] 1179
 emg2 = [2,2,2,2,2,2,2,2] 1180
 emg3 = [3,3,3,3,3,3,3,3] 1181
 x.append(emg1); x.append(emg2); x.append(emg3); 1182
 x.append(emg3); x.append(emg3);x.append(emg3); 1183

EMG-Based Human Machine Interface Page | 49

 average = x.getAvg() 1184
 1185
 print "Average: ", average 1186
 1187

 common.py 1188

import struct 1189
 1190
def pack(fmt, *args): 1191
 return struct.pack('<' + fmt, *args) 1192
 1193
def unpack(fmt, *args): 1194
 return struct.unpack('<' + fmt, *args) 1195
 1196
def text(scr, font, txt, pos, clr=(255,255,255)): 1197
 scr.blit(font.render(txt, True, clr), pos) 1198

 1199

 displayControl.py
''' 1200
AUTHOR: Aditya Patel and Jim Ramsay 1201
DATE CREATED: 2018-03-31 1202
LAST MODIFIED: 1203
PLATFORM: Raspberry Pi 3B, Raspbian Stretch Released 2017-11-29 1204
PROJECT: EMG Human Machine Interface 1205
ORGANIZATION: Bradley University, School of Electrical and Computer Engineering 1206
FILENAME: videoControl.py 1207
DESCRIPTION: 1208
 Script to control the display of the two different camera feeds. 1209
NOTE: 1210
 There is no logic needed in the switchDisplay() function, as this is a binary system. The main function will contain the logic. 1211
 1212
REFERENCES: 1213
 [1] https://stackoverflow.com/questions/279561/what-is-the-python-equivalent-of-static-variables-inside-a-function 1214
 1215
''' 1216
 1217
import os # used to execute shell commands 1218
from time import sleep 1219
 1220
def init(): 1221
 1222
 os.environ['DISPLAY'] = ":0" # allows us to launch GUI applications and control the mouse. Limited to the scope of the call of 1223
this function. 1224
 os.system("killall firefox-esr") 1225
 os.system("nohup firefox http://169.254.184.5/html/ &") # 'nohup' -- ignore HANGUP signals generated by firefox (there are a ton) 1226
 sleep(15) 1227
 os.system("nohup firefox http://169.254.13.230/html/ &") 1228
 sleep(2) 1229
 os.system("xdotool key ctrl+Tab") # Cycle tab to the "Restore session" tab that always comes up 1230
 os.system("xdotool key ctrl+w") # Close the tab 1231
 sleep(3) 1232
 os.system("xdotool key F11") # launch browswer in full screen 1233
 sleep(3) 1234
 os.system("xdotool mousemove 600 200 &") # enlarge camera 1 1235

EMG-Based Human Machine Interface Page | 50

 sleep(0.1) 1236
 os.system("xdotool click 1") 1237
 sleep(0.1) 1238
 os.system("xdotool key ctrl+Tab") 1239
 sleep(3) 1240
 os.system("xdotool click 1") # enlarge camera 2 1241
 os.system("xdotool key ctrl+Tab") 1242
 os.system("xdotool mousemove 0 500") # Move mouse out of the way 1243
 print("DISPLAY CONFIGURED") 1244
 1245
def switchDisplay(): 1246
 1247
 switchDisplay.display ^= 1 # toggle variable between 0 and 1 1248
 os.system("xdotool key ctrl+Tab") 1249
 1250
 return(switchDisplay.display) 1251
 1252
switchDisplay.display = 0 # initialize static variables 1253
 1254
Initialize 1255
if __name__=='__main__': 1256
 init() 1257
 1258
 # sleep(1) 1259
 # switchDisplay() 1260
 # print("Attempting to change display") 1261
 # sleep(5) 1262
 # print("Attempting to change display") 1263
 # switchDisplay() 1264

 moveMotor.py
''' 1265
AUTHOR: Aditya Patel and Jim Ramsay 1266
DATE CREATED: 2018-04-05 1267
LAST MODIFIED: 2018-04-07 1268
PLATFORM: Raspberry Pi 3B, Raspbian Stretch Released 2017-11-29 1269
PROJECT: EMG Human Machine Interface 1270
ORGANIZATION: Bradley University, School of Electrical and Computer Engineering 1271
FILENAME: moveMotor.py 1272
DESCRIPTION: 1273
 Script to move the connected servo motor to a specific duty cycle. 1274
 1275
NOTE: 1276
 1277
 CW --> INCREASE PWM 1278
 CCW --> DECREASE PWM 1279
 1280
 20% --> +90 deg 1281
 80% --> -90 deg 1282
 1283
USAGE: 1284
 1285
 ssh emgPi_1 'python /home/pi/scripts/moveMotor.py PWMdir isLastTime' 1286

EMG-Based Human Machine Interface Page | 51

 1287
 Command Line Arguments: 1288
 1289
 PWMdir integer 0 --> CW 1 --> CCW others --> not recognized, do nothing 1290
 isLastTime boolean True --> execute IO cleanup False --> do not cleanup, run normally 1291
 1292
''' 1293
 1294
import RPi.GPIO as IO 1295
import sys 1296
import time 1297
 1298
global initialDuty 1299
initialDuty = 50 1300
 1301
class Motor: 1302
 1303
 global initialDuty 1304
 def __init__(self, PWMdirection, startPWM): 1305
 1306
 IO.setwarnings(False) 1307
 IO.setmode(IO.BOARD) 1308
 1309
 IO.setup(12, IO.OUT) # set GPIO pins to Output mode 1310
 self.p = IO.PWM(12,350) # set pin 12 to 350Hz pwm output 1311
 self.PWMdir = PWMdirection 1312
 self.duty = startPWM 1313
 self.p.start(startPWM) 1314
 1315
 def ccw(self): 1316
 if (self.duty >= 20) and (self.duty <= 70) : 1317
 self.duty += 10 1318
 # print("ccw") 1319
 # print(self.duty) 1320
 self.p.ChangeDutyCycle(self.duty) 1321
 time.sleep(0.01) 1322
 1323
 def cw(self): 1324
 if (self.duty >= 30) and (self.duty >= 80) : 1325
 self.duty -= 10.0 1326
 # print("cw") 1327
 # print(self.duty) 1328
 self.p.ChangeDutyCycle(self.duty) 1329
 time.sleep(0.01) 1330
 1331
 def cleanup(self): 1332
 self.p.stop() 1333
 IO.cleanup() 1334
 1335
if __name__ == '__main__': 1336
 1337
 # moduleName = sys.argv[0] 1338
 startPWM = float(sys.argv[1]) 1339
 PWMdir = int(sys.argv[2]) 1340
 isLastTime = int(sys.argv[3]) 1341
 1342
 # print("PWM Direction: ", type(PWMdir)) 1343

EMG-Based Human Machine Interface Page | 52

 1344
 mtr = Motor(PWMdir, startPWM) 1345
 time.sleep(1) 1346
 # if (PWMdir == 0): 1347
 # mtr.cw() 1348
 # time.sleep(1) 1349
 # elif (PWMdir == 1): 1350
 # mtr.ccw() 1351
 # time.sleep(1) 1352
 # if (isLastTime): 1353
 # mtr.cleanup() 1354
 1355
 1356
 # t_end = time.time() + 10 1357
 1358
 # if (isLastTime == 1): 1359
 # mtr.cleanup() 1360
 1361
 # while (time.time() < t_end): 1362
 # if (PWMdir == 0): 1363
 # mtr.cw() 1364
 # elif (PWMdir == 1): 1365
 # mtr.ccw() 1366
 1367
 1368

 1369

