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Abstract 

Surface Electromyography (EMG) is a non-invasive technique which records the electrical activity 

of muscles using electrodes placed directly on the skin. The use of EMG signals has been gaining 

prevalence in prosthetic control and gesture-control applications. This project aims to develop 

an EMG-based human machine interface system. A Myo Armband with eight electrode pairs is 

worn by a user to acquire and wirelessly transmit EMG data to a central controller. A pattern 

recognition algorithm is implemented on a central controller to recognize three different hand 

gesture commands. As a demonstration, we built a camera system equipped with servo motors. 

The recognized commands can remotely pan each camera and select one of multiple video 

feeds to display. Our study demonstrates that the EMG-based pattern recognition could be a 

viable human machine interface option for a broad range of applications in industrial, medical, 

and consumer markets.  
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1. Introduction 

Electromyography (EMG) is a technique for monitoring electrical signals associated with 

movement of muscles. EMG signals can be obtained via an intramuscular needle, or by an 

electrode placed directly on the skin. Intramuscular EMG (iEMG) is more accurate than surface 

EMG (sEMG) but sEMG allows electrical signals to be measured without the need for intrusive or 

bulky measurement tools. Acquiring sEMG signals only requires electrodes to be placed directly 

above the target muscle. When placed on the forearm, sEMG electrodes detect muscle activity 

associated with the movement of a user’s hand. Since this project is focused on the analysis of 

sEMG signals, when the term “EMG signal(s)” is used throughout this report, the reader should 

assume these signals were collected by using the sEMG method.   

 

EMG signals can range from 0V to 10V, peak-to-peak. The difficult part of collecting and 

analyzing the raw EMG data is the wide range of frequencies it can produce. EMG signals can be 

anywhere between 10Hz to 500Hz, depending on the person and how active their muscles are. 

As shown in Figure 1, even when the same person holds the same gesture for a period of time, 

the amplitude and frequency of the EMG signal can still vary quite a bit.   

 

Figure 1 – Raw EMG data (normalized) from 8 sensors on one user, making one gesture 
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 EMG Applications 

Medical Diagnosis and Rehabilitation 

Detection of EMG signals is becoming commonplace in the biomedical field. It is being 

used in medical research for diagnosis and rehabilitation [1].  In the most common case, 

an EMG test can be conducted to test for a variety of muscle and nerve related 

conditions and injuries [2]. Conditions that EMG testing helps diagnose include carpal 

tunnel syndrome, a pinched nerve, neuropathies, muscle diseases, muscular dystrophy, 

and Lou Gehrig’s disease [3]. 

 

Prosthetic Control 

In research, EMG signals are used to help recovering amputees control prosthetic limbs. 

Even if an amputee is missing a limb, their mind can still try to move the limb that is not 

there. In doing so, electrical impulses are sent to that region of the body as if the limb 

was still there.  For example, an individual missing their forearm can have a prosthetic 

arm controlled by the EMG signals detected in their shoulder/upper arm [4].  

 

There are great strides being made in EMG based prosthetics. For example, researchers 

at Japan’s Hokkaido University developed an EMG prosthetic hand controller that uses 

real-time learning to detect up to ten forearm motions with 91.5% accuracy [5]. 

Additionally, research done at Abu Dhabi University aimed to develop a virtual reality 

simulation of an arm using EMG signals. They achieved an 84% success rate in simulating 

the correct movements made by amputees [6] 

 Pattern Recognition Algorithms 

Pattern recognition is a subset of machine learning that can be broken into two main 

categories: supervised and unsupervised. In supervised learning, the algorithm is 

“trained” by giving the algorithm data that is already classified. This allows the program 

to have a baseline understanding of the pattern so that it knows what to look for in the 

future. In unsupervised learning, the algorithm is not given any classification information, 

and must draw inferences from data on its own [7]. “The most common unsupervised 

learning method is cluster analysis, which is used for exploratory data analysis to find 

hidden patterns or grouping in data. The clusters are modeled using a measure of 

similarity which is defined upon metrics such as Euclidean or probabilistic distance” [8].  

 

A critical part of machine learning is an artificial neural network (ANN). ANN’s are 

designed to mimic the human brain, where neurons and axons are represented by nodes 

and wires. Neural networks can be designed in countless different configurations. One 

form of neural network that is of interest to this project is a pattern recognition neural 
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network (PNN). These algorithms are used to classify input data. The network is trained 

by associating training input data with known classifications. After the network is trained, 

new input data is entered and the output of the neural network is a classification for the 

input, based on the training stage results. The inputs for the network play a key role in 

the accuracy of the network. The network will get increasingly more accurate with more 

inputs, so long as there is a correlation to the classification. Some common inputs types 

are raw data, filtered data, averaged data, RMS data and other forms of data 

manipulation that help to relate each series of inputs to one classification. 
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2. Project Goals 

The current market for gesture-based control of systems rely solely on the use of cameras to 

detect user movements. These systems require heavy processing and restrict the user to gesture 

only in the field of view of the cameras. To address these issues, this project created an EMG-

based controlled system with the following goals.  

 Acquire EMG data from a user 

The EMG data must be collected wirelessly so as to not restrict the user. The wireless 

communication needs to be reliable and quick to connect. Additionally, the data must be 

sampled at a rate high enough for real-time operation.  

 Detect different user hand gestures in real time 

This system uses three different hand gestures to control it: a fist, wave inward, and wave 

outward. It has only been tested on the right hand, though it should be possible to use 

any hand. The system needs a calibration mode to allow for anybody to use it. The 

calibration should be quick and allow for fast and accurate gesture recognition. Users 

must receive feedback about the state of the system through the console.  

 Implement gesture detection to control a system 

The system is comprised of two cameras, each attached to its own servo motor. The 

hand gestures allow the user to adjust the position of the motors, as well as the camera 

feed that is displayed on an external monitor. The motors rotate 180°, 90° in each 

direction from the initial position. The cameras operate at 30 frames per second and 

720p resolution. 
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3. System Design 

In this project, gestures are captured by a Myo Gesture Control Armband made by Thalmic Labs 

Inc. The armband houses eight electrodes for capturing EMG signals as well as an inertial 

measurement unit (IMU). Since this project is focused on creating a system interface with the 

use of EMG signals, the IMU data is ignored while collecting data from the armband. The 

gestures are used to control a camera system.  

 Functions and Gestures 

Table 1: Functions and their associated gestures 

Function Gesture 

Toggle armband sleep / standby Fist 

System Control Activate Palm in, wave out 

Camera Control Activate Palm in, wave in 

Switch to Camera 1 Palm in, wave out 

Switch to Camera 2 Palm in, wave in 

Pan left Palm in, wave in 

Pan right Palm in, wave out 

  

 The full flow of logic for our system is shown below.  

 

 
Figure 2: System flowchart 
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 System Diagram 

 

Figure 3: System Diagram 

There are three Raspberry Pi 3B computers used in this project, one master and two 

slaves. The Myo armband sends EMG data via Bluetooth to the master Raspberry Pi. The 

master receives, processes and then communicates desired actions to one of the two 

slave Pi’s. When the slave Pi gets a command, it executes a function to move the 

attached servo motor in a specific direction. The camera feeds stream on a webpage and, 

if the gesture calls for it, the master will switch the display to show the desired video 

stream. All master/slave communication is done on a local area network.  

 Myo Gesture Control Armband 

The HMI device used for this project is an EMG armband, designed by Thalmic Labs. It is 

comprised of eight EMG sensors as well as a nine-axis IMU. Once connected to the 

armband via Bluetooth, the data is transmitted in real-time. The data is transmitted from 

the armband at 200 Hz and is in the form of an 8-bit unsigned integer. The raw EMG 

data is not the actual voltage that is sensed by the electrodes. Rather, it is a 

representation of muscle activation. The exact activation-to-voltage relationship is not 

made public by the developer of the armband.  

 Raspberry Pi 

Master 

The master Pi board is the heart of the EMG Security Monitoring System. It receives the 

armband signal via a Bluetooth USB dongle. This signal is then processed by algorithms 

that identify gestures made by the user. The master Pi also sends commands to the 

slaves when a gesture is made to move the motors. The master is responsible for 

keeping track of and making adjustments to the duty cycle of the control signal sent to 
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the motors. The master also selects one of two different camera feeds to display on an 

external monitor.  

 

Slave(s) 

There are two Raspberry Pi 3B computers that act as slaves to the master Pi board. Each 

slave is equipped with an attached camera and servo motor. They process the video 

signals from their respective cameras and stream the video to a webpage. The Pi 

cameras connect directly to the Raspberry Pi 3b and have the ability to stream live video 

in 1080P. These Pi boards also run the scripts (when directed by the master Pi board) to 

generate a change in the servo motor’s PWM duty cycle. This, in turn, controls the angle 

at which the camera is pointed.  

 Servo Motors  

The system includes two servo motors (one per camera) that are used to pan the camera 

views from side to side. The motors are attached to a case which houses the Raspberry Pi 

and camera. The motors are powered by +5V, from the Pi GPIO pins. The Pi’s also are 

equipped with a GPIO pin (12) that is designed to support PWM signal outputs—this is 

the pin used to transmit the PWM signal to the motor in this system. The camera angles 

are adjusted by increasing/decreasing the respective motors PWM duty cycle. The 

desired adjustment (per recognized gesture) is approximately 30 degrees. The master Pi 

board keeps track of the duty cycle and has built-in limitations of ± 90°. 

 Monitor 

The monitor setup is initialized when the system is turned on. In this system, the display 

switches between camera feeds based on the gestures recognized by the master 

Raspberry Pi board. The display is in full screen and is changed by a Python script that 

toggles between browser tabs that each video feed is streaming to. 

 Software  

Bluetooth Communication 

Because the Myo armband does not come with first-party compatibility for Linux-based 

operating systems, we had to seek out open source software packages. The one that we 

found that worked best is called PyoConnect_v2.0, developed by dzhu and Fernando 

Cosentino [9][10]. This software package was designed to function in Linux just like the 

original software functions in Windows. The only part of this code that we used was the 

armband communication protocol. In this package is a file called “myo_raw.py” that 

executes the Bluetooth communication between the USB dongle and the armband. It is 

this file that we edited to function as our main code for gesture detection.  
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Video Feed 

After exploring numerous different packages for the Raspberry Pi Camera module, we 

found one that perfectly aligned with our needs. Not only did it do everything we 

needed, it was much easier to install and configure than anything else that we had tried. 

The software is called the RPi-Cam-Web-Interface [11]. It allowed us to adjust the picture 

resolution, aspect ratio, framerate, overlayed text, and countless other items.  

This software captures the video from the attached camera and streams the video feed 

to the Pi’s IP address, so that the URL looks like: 169.254.13.230/html/index.php.  It works 

for local area networks as well as when connected to the internet. Because it is browser 

based, all that was needed to switch between video feeds was to have both open in their 

own tab, and to send the “ctrl+Tab” command to the Raspberry Pi.  

  

Programming Language 

The programming language for this project was essentially chosen for us. The vast 

majority of documentation on programming the Raspberry Pi and the Myo Armband 

used Python, so this was the natural choice for this project. For us, python was a brand 

new language, with a steep learning curve. Once we got a grasp on the jargon and 

syntax, it became very easy to write our own code from scratch and not have to rely on 

finding reference code online.  

The primary benefit of using Python (2.7.14) is that anything is possible with the 

language. The drawback of this though, is that the code can be very slow to execute, 

especially when combined with the slow clock speed and limited processing power of 

the Raspberry Pi 3B. Nonetheless, we were able to execute our entire gesture detection 

and control loop in less than five milliseconds. If the execution time got much longer 

than that, we found that the Bluetooth communication would hang up and the code 

would stall.  
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4. Technical Specifications 

 Myo Gesture Control Armband 

• Physical 

o Weight: 93g 

o Flexibility: Fits arms ranging between 7.5” and 13” 

o Thickness: 0.45”  

• Sensors 

o Surface EMG electrode pairs (8 pairs) 

o 9-Axis IMU  

▪ 3-Axis gyroscope 

▪ 3-Axis accelerometer 

▪ 3-Axis magnetometer 

o Made of medical grade stainless steel 

• Computer / Communication 

o ARM Cortex M4 processor 

o Wireless Bluetooth 4.0 LE communication 

o Battery 

▪ Built-in Lithium Ion battery 

▪ Micro USB charge 

▪ 1 full day of usage 

o EMG Data 

▪ Sampling rate: 200 Hz 

▪ Unitless – muscle activation is represented as an 8-bit signed value 

▪ Time stamp is in milliseconds since epoch (01/01/1970) 

o Compatible Operating Systems (for the SDK) 

▪ Windows 7, 8, and 10 

▪ OSx 10.8 and up 

▪ Android 4.3 and up 

o Haptic feedback with short, medium and long vibration options 
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 Raspberry Pi 3B 

• Processor 

o Broadcom BCM2387  

o 1.2 GHz Quad-Core ARM Cortex-A53 

o 802.11 b/g/n Wireless LAN  

o Bluetooth 4.1 (Classic and LE) 

• GPU 

o Dual Core VideoCore IV Multimedia Co-Processor 

o OpenVG and 1080p30 H.264 high-profile decoder 

• Memory 

o 1 GB LPDDR2 

• Operating System 

o Boots from Micro SD card  

o Runs Linux OS or Windows 10 IoT 

• Dimensions 

o 85 mm x 56 mm x 17 mm 

• Power 

o Micro USB socket 5v1, 2.5A 

• Peripherals 

o Ethernet 

▪ 10/100 BaseT socket 

o Video Out 

▪ HDMI (rev 1.3 & 1.4) 

▪ Composite RCA (PAL and NTSC) 

o GPIO 

▪ 40-Pin 2.54 mm expansion header 2x20 strip 

▪ 27-Pin GPIO  

▪ +3.3V, +5V and GND supply lines 

o Camera 

▪ 15-Pin MIPI Camera Serial Interface (CSI-2) 
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o Display 

▪ Display Serial Interface 15-way flat flex cable connector with two data 

lanes and a clock lane 

 Raspberry Pi Camera Module v2 

• Camera 

o Sony IMX219 8-megapixel sensor 

• Video 

o 1080p30 

o 720p60 

o VGA90 

• Photo 

o 8 MP  

• Compatibility 

o Raspberry Pi 1, 2, 3 (all models) 

o Numerous open-source software libraries  
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5. Results 

 Raw Data Collection and Preliminary Results 
While collecting preliminary data, our goal was to test the raw armband data to verify 

that we can see differences in the data when different motions are made. The armband 

was always placed onto the thickest part of the right forearm, with sensor 4 on top, and 

sensors 1 and 8 on the bottom. Two different motions were captured: palm in, wrist 

action out (wave out) and palm in, wrist action in (wave in).  

 

The first thing we noticed, which can be seen in both Figure 4 and Figure 5, was that 

there is a distinct difference in the EMG data when the arm muscles are activated. To 

prove this, we took samples in 10-second intervals and performed the actions in sets of 

1, 3 and 5 actions. We observed clear differences between when the user’s arm was at 

rest and when the user was making a gesture. 

 

The second important detail we noted was a noticeable difference between the EMG 

sensor data when we performed different actions. Figure 4 shows the EMG data when 

the wrist is moved outward and we can see that the most muscle activation is on sensors 

3, 4, and 5. Some action is observed in 2 and 6, while a relatively low amount of action is 

seen in sensors 1, 7 and 8. Figure 5 shows the EMG data for when the wrist is moved 

inward. In this case, we see that the most activation occurs on sensors 1, 7, and 8. There 

is also some activation on sensors 2, 3 and 6, while almost no activation was observed on 

sensors 4 and 5.  

 

From this point, we shifted our focus to filter and analyze the data and then implement 

pattern recognition algorithms. To validate the pattern recognition algorithms, we 

collected and tested data from multiple users, performing multiple actions/gestures.
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Figure 4: Raw EMG Data with Palm Facing In, Wrist Action Out  
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Figure 5: Raw EMG Data with Palm Facing In, Wrist Action In 
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 Filtering 

The first stage in preprocessing the data was applying a Kaiser filter. Multiple filter 

options were considered and built using MATLAB’s filter design tool. The two best filters 

turned out to be a 50th order Hamming filter and a 248th order Kaiser filter, both pictured 

in Figure 6. After some experimenting, we decided that the Kaiser filter was our best 

option and that is what we went with. 

 

Although the filtered data was better than just the raw signal, the data still needed to be 

processed further to make any sense of it. After the filter was applied, a 100-sample 

moving average was calculated to remove any residual noise and smooth out the data. 

This gave us the ability to clearly identify when the user was gesturing and which gesture 

was being performed.   

 
Figure 6:  EMG sensor data (for all 8 sensors) when passed through each filter option 

 

As shown in Figure 7, after each stage of preprocessing the data, the distinction between 

which sensors are active becomes clearer. 
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Figure 7: Three stages of preprocessing raw EMG data, for three different gestures 

 

 Gesture Detection Algorithm 

During the process of setting up the Raspberry Pi boards, the motors and the cameras, 

we developed a somewhat simplistic, yet reliable method for gesture detection. 

 

The first step in this process is get the averages of multiple groups of sensors. By 

grouping the sensors, we lower the chances of the algorithm being affected by 

inaccuracies or fluctuations in just one of the sensors. The sensor groups are shown in 

Table 2. 

 

Table 2: Sensor groupings 

Group Sensor Combination 

1 1, 2, 3 

2 2, 3, 4 

3 3, 4, 5 

4 4, 5, 6 

5 5, 6, 7 

6 6, 7, 8 

7 7, 8, 1 

8 8, 1, 2 
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The next step was to get some useful data from the groups. In both calibration and real-

time data processing, the individual sensor values in each group are summed and 

divided by 3 to get a group average. The three groups with the highest averages are 

then selected to represent a gesture.  

 

Calibration data is collected and the three highest group averages, for each gesture, are 

stored as a variable. When a user gestures with their arm, the confidence algorithm 

(described below) compares the groups of the real-time data to the groups of each 

calibrated gesture. Then, based on the relationship of matching groups, each calibrated 

gesture is assigned a confidence level. A threshold was implemented for the highest 

confidence level, which needed to be met to confirm that a perceived gesture was 

intentionally performed by the user. If the minimum threshold (10) is satisfied by at least 

one of the gesture comparisons, the algorithm has confirmation that the gesture with 

the highest confidence value is indeed the gesture that was made by the user.  

 

To compare the real-time gesture data to the calibration data, each “match” of the top 

three groups are assigned a weight. For example, if the highest group average in one of 

the gestures calibration data matches the highest group of the real-time data, then the 

confidence in that action rises by 10. Then, if the second highest groups match, the 

confidence level for that action is increased, again, by 6. Finally, if the third groups also 

match, an additional 4 points are added to that gesture’s total. In this case, the total 

points for that gesture would be 20 (10 + 6 + 4), which is the highest level of confidence 

possible. Lower confidence points are awarded for partial matches, which would be when 

the groups match but in a different order. See Table 3 for the confidence points 

assignments. See Table 4 for an example of how the totaling of points works. 

 

Table 3: Confidence values given for different pairings of top sensor groupings 
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Table 4: Example of confidence points awarded 

Real Time Max Groups 5 6 2 
Total Points 

20 

PIWI Calibration  1 5 2 0+4+4=8 

PIWO Calibration 5 6 2 10+6+4=20 

FIST Calibration 1 4 8 0+0+0=0 

 

In the example shown in Table 4, the confidence algorithm would have returned PIWO as 

the gesture detected because it had the highest confidence level (20), and the 

confidence level exceeded the threshold for gesture confirmation (9). The first, second 

and third highest values all matched, in the correct order, to the PIWO calibration data.  

 

The values assigned for the confidence points were obtained experimentally through trial 

and error. We started out by using a plot (see Figure 8) to make a visual comparison 

between the highest group averages. As you can see, we started with the data on the 

plot but that format made it difficult to recognize patterns in the data. We then decided 

to remove the data and only keep the group average lines (see Figure 9), which 

significantly helped in identifying patterns in the top three group averages.  

We then started to assign values by simply using values of one, two and three but 

quickly realized that was not going to work. We then realized that the correct order of 

the max averaged groups should increase the confidence, since it is another quality of 

the relationship between the real-time and calibrated data. We also lowered the point 

awarded for the matches that were out of order but did not want to completely 

disregard this relationship because the max group order does vary from time to time. We 

set it up so that if the max sensor groups matched, it was enough points to confirm a 

gesture. If not, then if the second and third highest matched, that would also tally 

enough confidence points that the gesture would also be confirmed. The final points we 

settled on were shown in Table 4.  
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Figure 8: Sensor group sum data with the group average lines 

 

 
Figure 9: Line plots representing the group averages of different motions 
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6. Future Work 

We highly suggest that research into using EMG data from the Myo armband be 

continued. For future projects, if our pattern recognition algorithms are not suitable, we 

would suggest implementing a neural network for gesture detection. 

 

In this project, our efforts were not concentrated on implementing a neural network. We 

did, however, begin a small amount of research into the using a neural network. MATLAB 

has a built in neural network toolbox that we utilized. According to the MATLAB 

documentation on the newpnn function, a probabilistic neural network (PNN) is “a kind 

of radial basis network suitable for classification problems [12].”  

 

To start out with, we used raw data and used the sensor values and their sum (for each 

sample) as the training input and used a numerical representation of the gesture (1 

through 5) for the target vector. We trained the neural network with one set of data and 

used data from a second person to validate the accuracy.  

 

Using just the nine original inputs (eight raw sensor values and their sum) the PNN could 

only achieve an accuracy of 77.8%, which is shown in Figure 10. Since this accuracy 

would not be sufficient for use, we then used the preprocessed data (filtered and with 

the moving average), the average of the eight samples and their sum as the inputs. With 

more inputs to the training network, we were able to get a much higher accuracy of 

86.0%. The confusion chart shown in Figure 11 represents the accuracy using these 

inputs.  

 

It became clear that with more inputs, or at least more meaningful inputs, to the PNN, 

the accuracy would continue to increase. We did not, however, intend on the use of the 

PNN for this project due to the limitations of our system. Our research into the PNN was 

meant as a starting point, should this project be continued in the future. If a neural 

network is considered for a future project, more powerful microprocessors or digital 

signal processors (DSP) would be needed to replace the Raspberry Pi computers we used 

to process the data. 
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Figure 10: Confusion matrix using the raw EMG data as the PNN inputs 

 
Figure 11: Confusion matrix using the preprocessed EMG data as the PNN inputs 
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7. Summary 

Historically, the ability to control a system with hand gestures has been limited. Gesture 

control often required bulky equipment or relied on image processing to track user 

motion within the viewing range of a camera. This project addressed this limitation by 

developing a lightweight system that is controlled only by hand gestures detected via 

electromyography. Hand gestures are detected by analyzing the EMG signals produced 

by muscle activity in a user’s arm. The EMG signals from the arm are captured by the 

Myo Gesture Control Armband. We developed an algorithm to process the EMG data to 

quickly and accurately recognize three unique hand gestures. It is these hand gestures 

that are used to control the camera system.  

 

In addition to getting this system running, we explored advanced methods of pattern 

recognition, including neural networks and support vector machines. We achieved fairly 

high accuracy using a pattern recognition neural network, and are confident that given 

more time and effort, this method can be a viable form of gesture detection.  

 

From the start of this project, our goal was to collect and analyze raw EMG data with the 

intention of putting it to use in a control system. Our goal has been accomplished by 

implementing an algorithm to detect gestures and control a camera system. Additionally, 

we have laid the groundwork for future projects in the EMG based HMI field by starting 

the research into more accurate methods of gesture detection.   

  



 

EMG-Based Human Machine Interface  Page | 28 

 

8. References 

 

[1] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, “Techniques of EMG signal analysis: 

detection, processing, classification and applications,” Biological Procedures Online, vol. 

8, no. 1, pp. 163–163, Oct. 2006.  

[2] “Electromyography,” Medline Plus, 06-Nov-2017. [Online]. Available: 

https://medlineplus.gov/ency/article/003929.htm. [Accessed: 10-Nov-2017]. 

[3] J. H. Feinberg, “EMG Testing: A Patients Guide,” Hospital for Special Surgery, 21-Oct-

2009. [Online]. Available: https://www.hss.edu/conditions_emg-testing-a-patient-

guide.asp. [Accessed: 05-Nov-2017].  

[4] S. Sudarsan and E. C. Sekaran, “Design and Development of EMG Controlled Prosthetics 

Limb,” Procedia Engineering, vol. 38, pp. 3547–3551, Sep. 2012.  

[5] D. Nishikawa, Wenwei Yu, H. Yokoi and Y. Kakazu, "EMG prosthetic hand controller using 

real-time learning method," Systems, Man, and Cybernetics, 1999. IEEE SMC '99 

Conference Proceedings. 1999 IEEE International Conference on, Tokyo, 1999, pp. 153-

158 vol.1.  

[6] L. Fraiwan, M. Awwad, M. Mahdawi, and S. Jamous, “Real time virtual prosthetic hand 

controlled using EMG signals,” in Biomedical Engineering (MECBME), 2011 1st Middle 

East Conference on, 2011, pp. 225-227.  

[7] C. Donalek, “Supervised and Unsupervised Learning,” Caltech Astronomy, Apr-2011. 

[Online]. Available: http://www.astro.caltech.edu/~george/aybi199/Donalek_Classif.pdf . 

[Accessed: 01-Nov-2017]. 

[8] “Unsupervised Learning,” MATLAB & Simulink. [Online]. Available: 

https://www.mathworks.com/discovery/unsupervised-learning.html. [Accessed: 2018].   

[9] D. Zhu, “myo-raw,” Dec-2014. [Online]. Available: https://github.com/dzhu/myo-raw. 

[Accessed: May-2018]. 

[10] F. Cosentino, “PyoConnect_v2.0,” [Online]. Available: 

http://www.fernandocosentino.net/pyoconnect/ [Accessed: May-2018] 

[11] “RPi-Cam-Web-Interface,” elinux.org. March 18, 2018. [Online]. Available: 

https://elinux.org/RPi-Cam-Web-Interface. [Accessed: May-2018]. 

[12] Mathworks. (2017). Neural Network Toolbox: User's Guide (r2017a). [Online]. Available: 

https://www.mathworks.com/help/nnet/ref/newpnn.html?searchHighlight=newpnn&s_ti

d=doc_srchtitle 

  



 

EMG-Based Human Machine Interface                 Page | 29 

Code Appendix  

Please disregard any formatting abnormalities you see in the below code. The original code with clean formatting can be found on our github repository: https://github.com/abpatel2/2017-2018_EMG_senior_project. 

 main.py 
''' 1 
AUTHOR: Aditya Patel and Jim Ramsay 2 
DATE CREATED: 2018-03-01 3 
LAST MODIFIED: 2018-04-12 4 
PLATFORM: Raspberry Pi 3B, Raspbian Stretch Released 2017-11-29 5 
PROJECT: EMG Human Machine Interface 6 
ORGANIZATION: Bradley University, School of Electrical and Computer Engineering 7 
FILENAME: main.py 8 
DESCRIPTION: 9 
 Main script that: 10 
  - initializes/executes bluetooth protocol (not written by Aditya/Jim -- see note below) 11 
  - starts reading emg data.  12 
  - detects gestures 13 
  - commands two slave raspberry pi's to rotate servo motors 14 
  - switches between displaying video feed from each of the slaves 15 
   16 
 Gestures (right hand only, have not tested on left hand): 17 
  rest -- do nothing, arm relaxed 18 
  fist -- tight fist 19 
  piwo -- palm in, wrist out (wave outward) 20 
  piwi -- palm in, wrist in (wave inward) 21 
  22 
 Master:  23 
  emgPi_3 -- pi@169.254.12.52 password is "ee00" 24 
  25 
 Slaves: 26 
  ssh commands recognize the defined names for the slaves using ssh_keys. Using the defined 27 
  names and saved keys bypasses password requirements.  28 
   29 
  emgPi_1 -- pi@169.254.184.5  password is "ee00" 30 
  emgPi_2 -- pi@169.254.13.230 password is "ee00" 31 
    32 
NOTE:  33 
 Original by dzhu 34 
  https://github.com/dzhu/myo-raw 35 
 36 
 Edited by Fernando Cosentino 37 
  http://www.fernandocosentino.net/pyoconnect 38 
   39 
 Edited further by Aditya Patel and Jim Ramsay 40 
  There are a lot of global variables used to function like constants. This is likely not good practice 41 
  but had to be done to meet deadlines.  42 
 43 
  The majority of the code that we wrote is at the bottom of the script, after all of the Bluetooth and armband related code.  44 
''' 45 
 46 
from __future__ import print_function 47 
import enum 48 
import re 49 
import struct 50 
import sys 51 
import threading 52 
import time 53 
import string 54 

https://github.com/abpatel2/2017-2018_EMG_senior_project
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import serial 55 
from serial.tools.list_ports import comports 56 
from common import * 57 
 58 
''' Additional Imports ''' 59 
import os 60 
import numpy as np 61 
import csv 62 
import datetime 63 
from ringBuffer import ringBuffer 64 
import displayControl as display 65 
from calibrate import Calibrate 66 
from guppy import hpy 67 
 68 
'''  69 
 GLOBAL VARIABLES  70 
 note: a lot of these are meant to function like a "DEFINE" in C. They are never written to. 71 
''' 72 
 73 
''' ARRAYS ''' 74 
global emg_data  75 
emg_data = [] 76 
 77 
global duty 78 
duty = [50, 50]                   # initial duty cycle for each motor 79 
 80 
''' INTEGERS ''' 81 
global GETTINGCALDATA; global CALIBRATING; global SLEEP; global WAITING; global DISPLAYCONTROL; global MOTORCONTROL 82 
GETTINGCALDATA = 0 83 
CALIBRATING = 1 84 
SLEEP = 2 85 
WAITING = 3 86 
DISPLAYCONTROL = 4 87 
MOTORCONTROL = 5 88 
 89 
global REST; global FIST; global PIWI; global PIWO 90 
REST = 0 91 
FIST = 1 92 
PIWI = 2 93 
PIWO = 3 94 
 95 
global calMode 96 
calMode = REST 97 
 98 
global EMGPI_1; global EMGPI_2 99 
EMGPI_1 = 0 100 
EMGPI_2 = 1 101 
 102 
 103 
global fistCalData; global piwiCalData; global piwoCalData; 104 
fistCalData = [] 105 
piwiCalData = [] 106 
piwoCalData = [] 107 
 108 
global curPi 109 
curPi = 0 110 
 111 
t0 = time.time() 112 
global t_endWaiting 113 
 114 
gestureString = ["fist", "piwi", "piwo", ""] 115 
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modeString = ["", "", "SLEEP", "WAITING","DISPLAY CONTROL","MOTOR CONTROL"] 116 
 117 
def multichr(ords): 118 
 if sys.version_info[0] >= 3: 119 
  return bytes(ords) 120 
 else: 121 
  return ''.join(map(chr, ords)) 122 
 123 
def multiord(b): 124 
 if sys.version_info[0] >= 3: 125 
  return list(b) 126 
 else: 127 
  return map(ord, b) 128 
 129 
class Arm(enum.Enum): 130 
 UNKNOWN = 0 131 
 RIGHT = 1 132 
 LEFT = 2 133 
 134 
class XDirection(enum.Enum): 135 
 UNKNOWN = 0 136 
 X_TOWARD_WRIST = 1 137 
 X_TOWARD_ELBOW = 2 138 
 139 
class Pose(enum.Enum): 140 
 RESTT = 0 141 
 FIST = 1 142 
 WAVE_IN = 2 143 
 WAVE_OUT = 3 144 
 FINGERS_SPREAD = 4 145 
 THUMB_TO_PINKY = 5 146 
 UNKNOWN = 255 147 
 148 
class Packet(object): 149 
 def __init__(self, ords): 150 
  self.typ = ords[0] 151 
  self.cls = ords[2] 152 
  self.cmd = ords[3] 153 
  self.payload = multichr(ords[4:]) 154 
 155 
 def __repr__(self): 156 
  return 'Packet(%02X, %02X, %02X, [%s])' % \ 157 
   (self.typ, self.cls, self.cmd, 158 
    ' '.join('%02X' % b for b in multiord(self.payload))) 159 
 160 
class BT(object): 161 
 '''Implements the non-Myo-specific details of the Bluetooth protocol.''' 162 
 def __init__(self, tty): 163 
  self.ser = serial.Serial(port=tty, baudrate=9600, dsrdtr=1) 164 
  self.buf = [] 165 
  self.lock = threading.Lock() 166 
  self.handlers = [] 167 
 168 
 ## internal data-handling methods 169 
 def recv_packet(self, timeout=None): 170 
  t0 = time.time() 171 
  self.ser.timeout = None 172 
  while timeout is None or time.time() < t0 + timeout: 173 
   if timeout is not None: self.ser.timeout = t0 + timeout - time.time() 174 
   c = self.ser.read() 175 
   if not c: return None 176 
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 177 
   ret = self.proc_byte(ord(c)) 178 
   if ret: 179 
    if ret.typ == 0x80: 180 
     self.handle_event(ret) 181 
    return ret 182 
 183 
 def recv_packets(self, timeout=.5): 184 
  res = [] 185 
  t0 = time.time() 186 
  while time.time() < t0 + timeout: 187 
   p = self.recv_packet(t0 + timeout - time.time()) 188 
   if not p: return res 189 
   res.append(p) 190 
  return res 191 
 192 
 def proc_byte(self, c): 193 
  if not self.buf: 194 
   if c in [0x00, 0x80, 0x08, 0x88]: 195 
    self.buf.append(c) 196 
   return None 197 
  elif len(self.buf) == 1: 198 
   self.buf.append(c) 199 
   self.packet_len = 4 + (self.buf[0] & 0x07) + self.buf[1] 200 
   return None 201 
  else: 202 
   self.buf.append(c) 203 
 204 
  if self.packet_len and len(self.buf) == self.packet_len: 205 
   p = Packet(self.buf) 206 
   self.buf = [] 207 
   return p 208 
  return None 209 
 210 
 def handle_event(self, p): 211 
  for h in self.handlers: 212 
   h(p) 213 
 214 
 def add_handler(self, h): 215 
  self.handlers.append(h) 216 
 217 
 def remove_handler(self, h): 218 
  try: self.handlers.remove(h) 219 
  except ValueError: pass 220 
 221 
 def wait_event(self, cls, cmd): 222 
  res = [None] 223 
  def h(p): 224 
   if p.cls == cls and p.cmd == cmd: 225 
    res[0] = p 226 
  self.add_handler(h) 227 
  while res[0] is None: 228 
   self.recv_packet() 229 
  self.remove_handler(h) 230 
  return res[0] 231 
 232 
 ## specific BLE commands 233 
 def connect(self, addr): 234 
  return self.send_command(6, 3, pack('6sBHHHH', multichr(addr), 0, 6, 6, 64, 0)) 235 
 236 
 def get_connections(self): 237 
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  return self.send_command(0, 6) 238 
 239 
 def discover(self): 240 
  return self.send_command(6, 2, b'\x01') 241 
 242 
 def end_scan(self): 243 
  return self.send_command(6, 4) 244 
 245 
 def disconnect(self, h): 246 
  return self.send_command(3, 0, pack('B', h)) 247 
 248 
 def read_attr(self, con, attr): 249 
  self.send_command(4, 4, pack('BH', con, attr)) 250 
  return self.wait_event(4, 5) 251 
 252 
 def write_attr(self, con, attr, val): 253 
  self.send_command(4, 5, pack('BHB', con, attr, len(val)) + val) 254 
  return self.wait_event(4, 1) 255 
 256 
 def send_command(self, cls, cmd, payload=b'', wait_resp=True): 257 
  s = pack('4B', 0, len(payload), cls, cmd) + payload 258 
  self.ser.write(s) 259 
 260 
  while True: 261 
   p = self.recv_packet() 262 
 263 
   ## no timeout, so p won't be None 264 
   if p.typ == 0: return p 265 
 266 
   ## not a response: must be an event 267 
   self.handle_event(p) 268 
 269 
class MyoRaw(object): 270 
 '''Implements the Myo-specific communication protocol.''' 271 
 272 
 def __init__(self, tty=None): 273 
  if tty is None: 274 
   tty = self.detect_tty() 275 
  if tty is None: 276 
   raise ValueError('Myo dongle not found!') 277 
 278 
  self.bt = BT(tty) 279 
  self.conn = None 280 
  self.emg_handlers = [] 281 
  self.imu_handlers = [] 282 
  self.arm_handlers = [] 283 
  self.pose_handlers = [] 284 
 285 
 def detect_tty(self): 286 
  for p in comports(): 287 
   if re.search(r'PID=2458:0*1', p[2]): 288 
    print('using device:', p[0]) 289 
    return p[0] 290 
 291 
  return None 292 
 293 
 def run(self, timeout=None): 294 
  self.bt.recv_packet(timeout) 295 
 296 
 def connect(self): 297 
  ## stop everything from before 298 
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  self.bt.end_scan() 299 
  self.bt.disconnect(0) 300 
  self.bt.disconnect(1) 301 
  self.bt.disconnect(2) 302 
 303 
 304 
  ## start scanning 305 
  print('scanning for bluetooth devices...') 306 
  self.bt.discover() 307 
  while True: 308 
   p = self.bt.recv_packet() 309 
   print('scan response:', p) 310 
 311 
   if p.payload.endswith(b'\x06\x42\x48\x12\x4A\x7F\x2C\x48\x47\xB9\xDE\x04\xA9\x01\x00\x06\xD5'): 312 
    addr = list(multiord(p.payload[2:8])) 313 
    break 314 
  self.bt.end_scan() 315 
 316 
  ## connect and wait for status event 317 
  conn_pkt = self.bt.connect(addr) 318 
  self.conn = multiord(conn_pkt.payload)[-1] 319 
  self.bt.wait_event(3, 0) 320 
 321 
  ## get firmware version 322 
  fw = self.read_attr(0x17) 323 
  _, _, _, _, v0, v1, v2, v3 = unpack('BHBBHHHH', fw.payload) 324 
  print('firmware version: %d.%d.%d.%d' % (v0, v1, v2, v3)) 325 
 326 
  self.old = (v0 == 0) 327 
 328 
  if self.old: # if the firmware is 0.x.xxxx.x 329 
   ## don't know what these do; Myo Connect sends them, though we get data 330 
   ## fine without them 331 
   self.write_attr(0x19, b'\x01\x02\x00\x00') 332 
   self.write_attr(0x2f, b'\x01\x00') 333 
   self.write_attr(0x2c, b'\x01\x00') 334 
   self.write_attr(0x32, b'\x01\x00') 335 
   self.write_attr(0x35, b'\x01\x00') 336 
 337 
   ## enable EMG data 338 
   self.write_attr(0x28, b'\x01\x00') 339 
   ## enable IMU data 340 
   self.write_attr(0x1d, b'\x01\x00') 341 
 342 
   ## Sampling rate of the underlying EMG sensor, capped to 1000. If it's 343 
   ## less than 1000, emg_hz is correct. If it is greater, the actual 344 
   ## framerate starts dropping inversely. Also, if this is much less than 345 
   ## 1000, EMG data becomes slower to respond to changes. In conclusion, 346 
   ## 1000 is probably a good value. 347 
   C = 1000 348 
   emg_hz = 50 349 
   ## strength of low-pass filtering of EMG data 350 
   emg_smooth = 100 351 
 352 
   imu_hz = 50 353 
 354 
   ## send sensor parameters, or we don't get any data 355 
   self.write_attr(0x19, pack('BBBBHBBBBB', 2, 9, 2, 1, C, emg_smooth, C // emg_hz, imu_hz, 0, 0)) 356 
 357 
  else: #normal operation 358 
   name = self.read_attr(0x03) 359 
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   print('device name: %s' % name.payload) 360 
 361 
   ## enable IMU data 362 
   self.write_attr(0x1d, b'\x01\x00') 363 
   ## enable vibrations 364 
   self.write_attr(0x24, b'\x02\x00') 365 
   # Failed attempt to disable vibrations: 366 
   # self.write_attr(0x24, b'\x00\x00') 367 
 368 
   # self.write_attr(0x19, b'\x01\x03\x00\x01\x01') 369 
   self.start_raw() 370 
 371 
  ## add data handlers 372 
  def handle_data(p): 373 
   if (p.cls, p.cmd) != (4, 5): return 374 
   c, attr, typ = unpack('BHB', p.payload[:4]) # unpack unsigned char, unsigned short, unsigned char 375 
   pay = p.payload[5:] 376 
   if attr == 0x27: 377 
    vals = unpack('8HB', pay)  # unpack 8 unsigned shorts, and one unsigned char https://docs.python.org/2/library/struct.html 378 
           ## not entirely sure what the last byte is, but it's a bitmask that 379 
           ## seems to indicate which sensors think they're being moved around or 380 
           ## something 381 
    emg = vals[:8] 382 
    moving = vals[8] 383 
    self.on_emg(emg, moving) 384 
   elif attr == 0x1c: 385 
    vals = unpack('10h', pay) 386 
    quat = vals[:4] 387 
    acc = vals[4:7] 388 
    gyro = vals[7:10] 389 
    self.on_imu(quat, acc, gyro) 390 
   elif attr == 0x23: 391 
    typ, val, xdir, _,_,_ = unpack('6B', pay) 392 
 393 
    if typ == 1: # on arm 394 
     self.on_arm(Arm(val), XDirection(xdir)) 395 
     print("on arm") 396 
    elif typ == 2: # removed from arm 397 
     self.on_arm(Arm.UNKNOWN, XDirection.UNKNOWN) 398 
     print("NOT on arm") 399 
    elif typ == 3: # pose 400 
     self.on_pose(Pose(val)) 401 
   else: 402 
    print('data with unknown attr: %02X %s' % (attr, p)) 403 
 404 
  self.bt.add_handler(handle_data) 405 
 406 
 def write_attr(self, attr, val): 407 
  if self.conn is not None: 408 
   self.bt.write_attr(self.conn, attr, val) 409 
 410 
 def read_attr(self, attr): 411 
  if self.conn is not None: 412 
   return self.bt.read_attr(self.conn, attr) 413 
  return None 414 
 415 
 def disconnect(self): 416 
  if self.conn is not None: 417 
   self.bt.disconnect(self.conn) 418 
 419 
 def start_raw(self): 420 
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  '''Sending this sequence for v1.0 firmware seems to enable both raw data and 421 
  pose notifications. 422 
  ''' 423 
 424 
  self.write_attr(0x28, b'\x01\x00') 425 
  #self.write_attr(0x19, b'\x01\x03\x01\x01\x00') 426 
  self.write_attr(0x19, b'\x01\x03\x01\x01\x01') 427 
 428 
 def mc_start_collection(self): 429 
  '''Myo Connect sends this sequence (or a reordering) when starting data 430 
  collection for v1.0 firmware; this enables raw data but disables arm and 431 
  pose notifications. 432 
  ''' 433 
 434 
  self.write_attr(0x28, b'\x01\x00') 435 
  self.write_attr(0x1d, b'\x01\x00') 436 
  self.write_attr(0x24, b'\x02\x00') 437 
  self.write_attr(0x19, b'\x01\x03\x01\x01\x01') 438 
  self.write_attr(0x28, b'\x01\x00') 439 
  self.write_attr(0x1d, b'\x01\x00') 440 
  self.write_attr(0x19, b'\x09\x01\x01\x00\x00') 441 
  self.write_attr(0x1d, b'\x01\x00') 442 
  self.write_attr(0x19, b'\x01\x03\x00\x01\x00') 443 
  self.write_attr(0x28, b'\x01\x00') 444 
  self.write_attr(0x1d, b'\x01\x00') 445 
  self.write_attr(0x19, b'\x01\x03\x01\x01\x00') 446 
 447 
 def mc_end_collection(self): 448 
  '''Myo Connect sends this sequence (or a reordering) when ending data collection 449 
  for v1.0 firmware; this reenables arm and pose notifications, but 450 
  doesn't disable raw data. 451 
  ''' 452 
 453 
  self.write_attr(0x28, b'\x01\x00') 454 
  self.write_attr(0x1d, b'\x01\x00') 455 
  self.write_attr(0x24, b'\x02\x00') 456 
  self.write_attr(0x19, b'\x01\x03\x01\x01\x01') 457 
  self.write_attr(0x19, b'\x09\x01\x00\x00\x00') 458 
  self.write_attr(0x1d, b'\x01\x00') 459 
  self.write_attr(0x24, b'\x02\x00') 460 
  self.write_attr(0x19, b'\x01\x03\x00\x01\x01') 461 
  self.write_attr(0x28, b'\x01\x00') 462 
  self.write_attr(0x1d, b'\x01\x00') 463 
  self.write_attr(0x24, b'\x02\x00') 464 
  self.write_attr(0x19, b'\x01\x03\x01\x01\x01') 465 
 466 
 def vibrate(self, length): 467 
  if length in xrange(1, 4): 468 
   ## first byte tells it to vibrate; purpose of second byte is unknown 469 
   self.write_attr(0x19, pack('3B', 3, 1, length)) 470 
 471 
 472 
 def add_emg_handler(self, h): 473 
  self.emg_handlers.append(h) 474 
 475 
 def add_imu_handler(self, h): 476 
  self.imu_handlers.append(h) 477 
 478 
 def add_pose_handler(self, h): 479 
  self.pose_handlers.append(h) 480 
 481 
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 def add_arm_handler(self, h): 482 
  self.arm_handlers.append(h) 483 
 484 
 485 
 def on_emg(self, emg, moving): 486 
  for h in self.emg_handlers: 487 
   h(emg, moving) 488 
 489 
 def on_imu(self, quat, acc, gyro): 490 
  for h in self.imu_handlers: 491 
   h(quat, acc, gyro) 492 
 493 
 def on_pose(self, p): 494 
  for h in self.pose_handlers: 495 
   h(p) 496 
 497 
 def on_arm(self, arm, xdir): 498 
  for h in self.arm_handlers: 499 
   h(arm, xdir) 500 
 501 
  502 
def controlLogic(mode, gesture, confidence): 503 
 global SLEEP; global WAITING; global DISPLAYCONTROL; global MOTORCONTROL; 504 
 global REST; global FIST; global PIWI; global PIWO 505 
 global duty; global curPi; global t_endWaiting; global t_30_SLEEP  506 
  507 
 if ( mode == SLEEP ): 508 
  509 
  if ( gesture == FIST ): 510 
   mode = WAITING 511 
   t_endWaiting = time.time() + 1             # Reset the sleep timer once you leave SLEEP 512 
   print("SWITCHING MODE: WAITING\t\t\t\tConfidence Level: ", confidence) 513 
   t_30_SLEEP = time.time() + 30  514 
  515 
 if ( mode == WAITING ): 516 
  if ( time.time() >= t_30_SLEEP ): 517 
   518 
   mode = SLEEP 519 
   print("SWITCHING MODE: SLEEP") 520 
    521 
  else: 522 
   523 
   # print("MODE = WAITING") 524 
   if ( time.time() > t_endWaiting ): 525 
    if ( gesture == FIST ): 526 
     527 
     mode = SLEEP 528 
     print("SWITCHING MODE: SLEEP\t\t\t\tConfidence Level: ",confidence) 529 
      530 
    elif ( gesture == PIWI ): 531 
      532 
     mode = DISPLAYCONTROL 533 
     print("SWITCHING MODE: DISPLAYCONTROL\t\t\t\tConfidence Level: ",confidence) 534 
     t_endWaiting = time.time() + 1  535 
     t_30_SLEEP = time.time() + 30 536 
       537 
    elif ( gesture == PIWO ): 538 
     539 
     mode = MOTORCONTROL  540 
     print("SWITCHING MODE: MOTORCONTROL\t\t\tConfidence Level: ",confidence) 541 
     t_endWaiting = time.time() + 1  542 
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     t_30_SLEEP = time.time() + 30 543 
    544 
 if ( mode == DISPLAYCONTROL ): 545 
   546 
  if ( time.time() >= t_30_SLEEP ): 547 
   548 
   mode = SLEEP 549 
   print("SWITCHING MODE: SLEEP") 550 
    551 
  else: 552 
   553 
   if ( time.time() > t_endWaiting ): 554 
    if ( gesture == FIST ): 555 
     556 
     mode = WAITING 557 
     print("SWITCHING MODE: WAITING\t\t\t\tConfidence Level: ",confidence) 558 
     t_endWaiting = time.time() + 1 559 
     t_30_SLEEP = time.time() + 30 560 
      561 
    elif ( ( curPi == 0 ) and ( gesture == PIWI ) ): 562 
 563 
     curPi = display.switchDisplay() 564 
     print("Switching to Camera 2") 565 
     t_endWaiting = time.time() + 1 566 
     t_30_SLEEP = time.time() + 30 567 
     568 
    elif ( ( curPi == 1 ) and ( gesture == PIWO ) ): 569 
      570 
     curPi = display.switchDisplay() 571 
     print("Switching to Camera 1") 572 
     t_endWaiting = time.time() + 1 573 
     t_30_SLEEP = time.time() + 30 574 
    575 
 if ( mode == MOTORCONTROL ): 576 
   577 
  if ( time.time() >= t_30_SLEEP ): 578 
   579 
   mode = SLEEP 580 
   print("SWITCHING MODE: SLEEP") 581 
    582 
  else: 583 
   584 
   if ( time.time() > t_endWaiting ): 585 
    ''' Select which slave to control ''' 586 
    if ( curPi == 0 ): 587 
      588 
     curPi_name = "emgPi_1" 589 
     currentMotor = 0 590 
      591 
    elif ( curPi == 1 ): 592 
      593 
     curPi_name = "emgPi_2" 594 
     currentMotor = 1 595 
     596 
    ''' Check Gesture ''' 597 
    if ( gesture == PIWI ):               # Pan Clockwise 598 
      599 
     if (duty[curPi] <= 70):  600 
       601 
      duty[curPi] += 10 602 
       603 
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      ssh_string = "ssh " + curPi_name + " 'python /home/pi/scripts/moveMotor.py  " + str(duty[curPi]) + " 0 0' &" 604 
      os.system(ssh_string) 605 
 606 
     elif ( ( duty[curPi] > 70 ) and ( duty[curPi] < 80 ) ): 607 
      duty[curPi] = 80 608 
      ssh_string = "ssh " + curPi_name + " 'python /home/pi/scripts/moveMotor.py  " + str(duty[curPi]) + " 0 0' &" 609 
      os.system(ssh_string) 610 
      print("Motor is at limit.") 611 
      612 
     t_endWaiting = time.time() + 1 613 
     t_30_SLEEP = time.time() + 30 614 
      615 
      616 
    elif ( gesture == PIWO ):              # Pan Counter Clockwise 617 
      618 
     if ( duty[curPi] >= 30 ): 619 
      620 
      duty[curPi] -= 10 621 
      ssh_string = "ssh " + curPi_name + " 'python /home/pi/scripts/moveMotor.py  " + str(duty[curPi]) + " 1 0' &" 622 
      os.system(ssh_string) 623 
      624 
     elif ( ( duty[curPi] < 30 ) and ( duty[curPi] > 20 ) ): 625 
       626 
      duty[curPi] = 20 627 
      ssh_string = "ssh " + curPi_name + " 'python /home/pi/scripts/moveMotor.py  " + str(duty[curPi]) + " 1 0' &" 628 
      os.system(ssh_string) 629 
      print("Motor is at limit.") 630 
       631 
     else: 632 
      print("Motor is out of range. Cannot rotate CCW") 633 
     634 
     t_endWaiting = time.time() + 1 635 
     t_30_SLEEP = time.time() + 30 636 
     637 
    elif ( gesture == FIST ): 638 
      639 
     mode = WAITING 640 
     print("SWITCHING MODE: WAITING\t\t\t\tConfidence Level: ", confidence) 641 
     t_endWaiting = time.time() + 1 642 
   643 
 return mode 644 
  645 
 646 
def getConfidence(realTimeData, calData): 647 
  648 
 matchCounter = 0 649 
  650 
 ''' 651 
  calibrated: 823 652 
  actual:  832 653 
  result:  10 + 2 + 3 = 15 654 
   655 
  calibrated: 781 656 
  actual:  832 657 
  result:  7 658 
   659 
  calibrated: 231 660 
  actual:  832 661 
  result:  1 + 6 + = 7 662 
 ''' 663 
  664 
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 if (realTimeData[0] == calData[0]): 665 
  matchCounter += 10 666 
 if (realTimeData[0] == calData[1]): 667 
  matchCounter += 7 668 
 if (realTimeData[0] == calData[2]): 669 
  matchCounter += 3 670 
  671 
 if (realTimeData[1] == calData[0]): 672 
  matchCounter += 4 673 
 if (realTimeData[1] == calData[1]): 674 
  matchCounter += 6 675 
 if (realTimeData[1] == calData[2]): 676 
  matchCounter += 2 677 
   678 
 if (realTimeData[2] == calData[0]): 679 
  matchCounter += 2 680 
 if (realTimeData[2] == calData[1]): 681 
  matchCounter += 3 682 
 if (realTimeData[2] == calData[2]): 683 
  matchCounter += 4 684 
   685 
 return matchCounter 686 
 687 
  688 
''' 689 
 If the gesture is the same as the last one, increment the counter. If the gesture is different from the last gesture,  690 
 update the variable, lastGesture, and reset the counter. This allows us to wait for n counts of the same gesture before  691 
 considering a gesture valid.  692 
''' 693 
def confirmGesture(gesture): 694 
 global CONFIRM_COUNTER 695 
  696 
 if ( confirmGesture.lastGesture != gesture ): 697 
  confirmGesture.flag = False 698 
   699 
 if ( confirmGesture.counter < CONFIRM_COUNTER ): 700 
  confirmGesture.counter += 1 701 
  confirmGesture.flag = False 702 
 else: 703 
  confirmGesture.lastGesture = gesture 704 
  confirmGesture.counter = 0 705 
  confirmGesture.flag = True 706 
     707 
    708 
 return confirmGesture.flag 709 
 710 
confirmGesture.flag = False                # static variable initialization for the above function 711 
confirmGesture.counter = 0 712 
confirmGesture.lastGesture = REST 713 
 714 
if __name__ == '__main__': 715 
 716 
 m = MyoRaw(sys.argv[1] if len(sys.argv) >= 2 else None)        # this has to come first, and proc_emg() second (see below) 717 
  718 
 def proc_emg(emg, moving, times = []):            # data is sent in packets of two samples at a time. I *think* we only save half of 719 
these 720 
  global calMode; global emg_data 721 
  global fistCalData; global piwiCalData; global piwoCalData; 722 
   723 
  emg = list(emg)                 # convert tuple to list 724 
  emg_data = emg 725 
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   726 
  if ( mode == GETTINGCALDATA ):             # write calibration data to a global array 727 
    728 
   if (calMode == FIST): 729 
    fistCalData.append(emg_data) 730 
   if (calMode == PIWI): 731 
    piwiCalData.append(emg_data) 732 
   if (calMode == PIWO): 733 
    piwoCalData.append(emg_data) 734 
  735 
 '''  736 
  INITIALIZATION  737 
  this code is only executed once 738 
 ''' 739 
 m.add_emg_handler(proc_emg) 740 
 m.connect() 741 
 global GETTINGCALDATA; global CALIBRATING; global SLEEP; global WAITING; global DISPLAYCONTROL; global MOTORCONTROL;  742 
 global REST; global FIST; global PIWI; global PIWO; global calMode; global curPi; global CONFIRM_COUNTER; 743 
 744 
 os.system("python displayControl.py &")            # initializes the display on every run 745 
  746 
 confidenceArray = [] 747 
  748 
 curPi = 0 749 
 gesture = REST               750 
 isResting = 0 751 
 752 
 BUFFER_SIZE = 100                 # size of circular buffer  753 
 emg_buffer = ringBuffer(BUFFER_SIZE) 754 
 counter = 0                   # counter  755 
  756 
 CONFIDENCE_LEVEL = 10                # allows for tuning. Max = 20. Min = 0. See getConfidence()  757 
 CONFIRM_COUNTER = 150                # number of samples of same gesture required to confirm a gesture 758 
 SENSITIVITY = 75                 # upper and lower threshold = minValueFromCal +/- SENSITIVITY 759 
  760 
 NUM_CALS = 4                  # this is always 1 greater than the number of calibrations 761 
  762 
 CALIBRATION_SIZE = 500 763 
 n = CALIBRATION_SIZE 764 
 CSVFILE = "./adityaCal.csv"               # file to write/read calibration data from  765 
 minValueFromCal = 9999                # initially an arbitrarily large value 766 
 iWantToCal = 0                  # set to '1' when switching users or when recalibration is needed 767 
 calibrateFlag = 1 768 
  769 
 if ( iWantToCal == 1 ): 770 
  mode = GETTINGCALDATA 771 
 else: 772 
  mode = SLEEP                 # skip GETTINGCALDATA and CALIBRATING states 773 
   774 
 os.system("ssh emgPi_1 'python /home/pi/scripts/initMotor.py 50' &")    # The ampersand is essential here. If this does not run in the background ...  775 
 os.system("ssh emgPi_2 'python /home/pi/scripts/initMotor.py 50' &")    # the bluetooth protocol fails and the system is frozen.  776 
  777 
 print("MOTORS INITIALIZED") 778 
 os.system("clear") 779 
  780 
 while True:                   # run the program indefinitely, or until user interruption 781 
  m.run() 782 
  783 
  emg_buffer.append(emg_data) 784 
    785 
  if (counter >= BUFFER_SIZE * 2):            # there was an undiagnosed issue with 7 null data points causing havoc.  786 
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                      # this ensures that those are gone before proceeding 787 
    788 
   average = emg_buffer.getAvg()            # average value of each sensor in the buffer. [ 1 x 8 ] 789 
    790 
   bufferAvg = np.mean(np.array(average))          # average value of the whole buffer. type: float, [1 x 1] 791 
    792 
   maxGrouping = emg_buffer.getMaxGrouping() 793 
    794 
   if ( mode >= SLEEP ):              # where the main gesture detection and control happens 795 
    796 
    if ( calibrateFlag == 1 ):            # load saved cal data  797 
     with open(CSVFILE, 'rb') as csvfile:        # Example: [ 7, 6, 1]; [ 4, 2, 5]; [ 0, 2, 7]; [ 157.6, 157.6, 157.6] 798 
      CalReader = csv.reader(csvfile, delimiter=',') 799 
      i = 0 800 
      for row in CalReader: 801 
       savedCalData = np.genfromtxt(CSVFILE, delimiter=',') 802 
      803 
     print("Calibration Data: \n", savedCalData)   804 
     print("MODE = SLEEP") 805 
     calibrateFlag = 0 806 
     fistGrouping = savedCalData[0] 807 
     piwiGrouping = savedCalData[1] 808 
     piwoGrouping = savedCalData[2] 809 
     minValueFromCal = savedCalData[3,1] 810 
    811 
    fistConfidence = getConfidence(maxGrouping, fistGrouping) 812 
    piwiConfidence = getConfidence(maxGrouping, piwiGrouping) 813 
    piwoConfidence = getConfidence(maxGrouping, piwoGrouping) 814 
     815 
    confidenceArray = [fistConfidence, piwiConfidence, piwoConfidence] 816 
     817 
    maxMatch = np.argmax(confidenceArray)         # index of the gesture that returned the most confidence 818 
    maxConfidence = confidenceArray[maxMatch]        # confidence level of the most confident gesture 819 
    820 
    if ( ( bufferAvg >= ( minValueFromCal + SENSITIVITY ) ) ):   821 
     if ( maxMatch == 0 ) and ( fistConfidence >= CONFIDENCE_LEVEL) : 822 
       823 
      if ( confirmGesture(FIST) ):         # if we saw FIST for n times 824 
       gesture = FIST 825 
       print("\tFIST CONFIRMED\t\t\t\tConfidence Level: ", fistConfidence) 826 
        827 
       isResting = 0 828 
       829 
     elif ( maxMatch == 1 ) and ( piwiConfidence >= CONFIDENCE_LEVEL ): 830 
            831 
      if ( confirmGesture(PIWI) ):         # if we saw PIWI for n times 832 
       gesture = PIWI 833 
       print("\tPIWI CONFIRMED\t\t\t\tConfidence Level: ", piwiConfidence) 834 
        835 
       isResting = 0 836 
       837 
     elif ( maxMatch == 2 ) and ( piwoConfidence >= CONFIDENCE_LEVEL ): 838 
       839 
      if ( confirmGesture(PIWO) ):         # if we saw PIWO for n times 840 
       gesture = PIWO 841 
       print("\tPIWO CONFIRMED\t\t\t\tConfidence Level: ", piwoConfidence) 842 
 843 
       isResting = 0 844 
     else: 845 
      if ( confirmGesture(REST) ):         # if we saw REST for n times 846 
       gesture = REST 847 
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       print("\n\n\tMOTION DETECTED BUT NO GESTURE MATCH: REST ASSUMED") 848 
       print("\n\tMinimum Accepted Confidence: ", CONFIDENCE_LEVEL) 849 
       print("\tFIST Confidence: ",fistConfidence, "\tPIWI Confidence: ",piwiConfidence, "\tPIWO Confidence: ",piwoConfidence) 850 
       print("\tStill in mode: ", modeString[mode]) 851 
       print("\n\n")       852 
       853 
    elif ( (bufferAvg < (minValueFromCal - SENSITIVITY)) ): #isResting or  854 
     855 
     #print("REST CONFIRMED") 856 
     gesture = REST 857 
     isResting = 1 858 
      859 
    #else: 860 
      861 
     # print("UNKNOWN")  862 
     # print("Sensitivity: ", SENSITIVITY) 863 
     # print("minValueFromCal: ", minValueFromCal) 864 
     # print("Buffer average: ", bufferAvg) 865 
     866 
    mode = controlLogic(mode, gesture, maxConfidence)      # get new mode 867 
 868 
   '''  869 
    CALIBRATION 870 
    note: this can probably be put into a function later. Maybe not all of it, but enough that it becomes a little easier to follow 871 
   '''                872 
   if ( ( mode == GETTINGCALDATA ) and ( calMode < NUM_CALS ) ): 873 
     874 
    if (n >= CALIBRATION_SIZE):             875 
      876 
     n = 0                # reset calibration timer 877 
     print("Cal Mode = " + gestureString[calMode]) 878 
     print("Hold a " + gestureString[calMode] + " until told otherwise") 879 
     calMode += 1 880 
     # time.sleep(2)                    # WARNING: THIS BREAKS THE CODE! # sleep to give user time to switch to next gesture 881 
     882 
    n += 1     883 
    if (bufferAvg < minValueFromCal):          # this gets the minimum 8-sensor average from the time that calibration was run 884 
     minValueFromCal = bufferAvg           # it sets the threshold that separates gestures from resting.  885 
             886 
   else: 887 
     888 
    if ( calibrateFlag == 1 ): 889 
     mode = CALIBRATING 890 
 891 
    gesture = REST 892 
    mode = controlLogic(mode, gesture, 0) 893 
            894 
     895 
   if ( mode == CALIBRATING ) :  896 
     897 
    print("mode = CALIBRATING") 898 
    fistCal = Calibrate() 899 
    fistGrouping = fistCal.getMaxGrouping(fistCalData)      900 
      901 
    piwiCal = Calibrate() 902 
    piwiGrouping = piwiCal.getMaxGrouping(piwiCalData) 903 
     904 
    piwoCal = Calibrate() 905 
    piwoGrouping = piwoCal.getMaxGrouping(piwoCalData) 906 
     907 
    minValueFromCalArray = [minValueFromCal,minValueFromCal,minValueFromCal] 908 
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     909 
    with open(CSVFILE, 'w') as csvfile: 910 
     writer = csv.writer(csvfile) 911 
     writer.writerow(fistGrouping) 912 
     writer.writerow(piwiGrouping) 913 
     writer.writerow(piwoGrouping) 914 
     writer.writerow(minValueFromCalArray) 915 
      916 
    calibrateFlag = 0 917 
    mode = SLEEP 918 
 919 
    print("Fist Group: ", fistGrouping) 920 
    # print(fistCalData) 921 
    print("Piwi Group: ", piwiGrouping) 922 
    # print(piwiCalData) 923 
    print("Piwo Group: ", piwoGrouping) 924 
     925 
    926 
  else:                   # Runs until data is guaranteed to be good 927 
   928 
   counter += 1 929 
   # print(counter, "Data contains null values\n") 930 
    931 

 932 

 calibrate.py 
''' 933 
AUTHOR: Aditya Patel 934 
DATE CREATED: 2018-04-08 935 
LAST MODIFIED: 2018-04-09 936 
PLATFORM: Raspberry Pi 3B, Raspbian Stretch Released 2017-11-29 937 
PROJECT: EMG Human Machine Interface 938 
ORGANIZATION: Bradley University, School of Electrical and Computer Engineering 939 
FILENAME: calibrate.py 940 
DESCRIPTION: 941 
 Calibration class. Create a unique Calibrate() object in the parent function for each gesture.  942 
 Primary use of this class is to get the top three sensor groupings in the calibration data,  943 
 i.e., the three trios of consecutive sensors with the highest average EMG value.  944 
  945 
 Ex: 946 
  If the calibration data is:  947 
   [ 99    100    32    03    14    16    42    95 ] 948 
       949 
  index: 0      1     2     3     4     5     6     7 950 
   951 
  The top three sensor groups would be, in order,  952 
   [ 701, 670, 012 ] 953 
    954 
  Giving the return: 955 
   [ 7, 6, 0] 956 
''' 957 
 958 
import numpy as np 959 
 960 
class Calibrate(): 961 
 962 
 def __init___(self): 963 
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   964 
  self.size() 965 
  self.data = [] 966 
  self.sums = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 967 
  self.avg = [] 968 
  # self.avg = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])     # this has to be a numpy array to use the 'divide' function below 969 
  self.groupingAvg = [] 970 
   971 
 '''  972 
  Sets the class variable, data, equal to the calibration data.  973 
 ''' 974 
 def setData(self, calData): 975 
  976 
  self.data = calData 977 
   978 
 ''' 979 
  Computes an average down each column of data.  980 
  writes to self.avg, 1 x 8 array containing average value of each sensor 981 
 ''' 982 
 def getAvg(self): 983 
  984 
  self.sums = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]     # reset sums to prevent it from accumulating forever. This is NOT elegant or efficient 985 
  self.avg =  np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) 986 
  for r in range(0,len(self.data)):     987 
   for c in range(0,8):     988 
    self.sums[c] = self.sums[c] + self.data[r][c] 989 
 990 
  np.divide(self.sums, float(len(self.data)), out = self.avg)    # compute the average by dividing the sums by the size of the data array 991 
  #return self.avg 992 
  993 
 ''' 994 
  Function to compute the average value of each of the eight groupings of three sensors.  995 
  @return none, only writes to class variable, groupingAvg  996 
    [ 123    234    345    456    567    678    781    812]   997 
    where each of these is the average of the sensors 998 
 '''  999 
 def getGroupingAvg(self): 1000 
   1001 
  self.groupingAvg = [0, 0, 0, 0, 0, 0, 0, 0] 1002 
   1003 
  for startIndex in range(0, 8): 1004 
   sum = 0 1005 
 1006 
   for i in range(startIndex, startIndex + 3): 1007 
     1008 
    if ( i > 7 ): 1009 
     i %= 8     # if i exceeds the range of the data, do the modulus operator. This allows for groupings 781 and 812 to work.  1010 
    sum += self.avg[i] 1011 
    i += 1 1012 
    1013 
   self.groupingAvg[startIndex] = sum / 3.0 1014 
    1015 
  1016 
 ''' 1017 
  Function to compute the three highest sensor groups.  1018 
  @return maxGrouping, [1 x 3] integer list of the index of the top three sensor groups in the calibration data 1019 
  @example maxGrouping = myCalibrationObject.getMaxGrouping(gestureCalibrationData) --> maxGrouping: [ 6, 5, 0] 1020 
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 '''  1021 
 def getMaxGrouping(self,calData): 1022 
  1023 
  maxGrouping = [0, 0, 0] 1024 
  self.setData(calData) 1025 
  self.getAvg() 1026 
  self.getGroupingAvg() 1027 
   1028 
  array = np.array(self.groupingAvg)     # REFERENCE: https://stackoverflow.com/questions/5284646/rank-items-in-an-array-using-python-numpy 1029 
  temp = array.argsort() 1030 
  ranks = np.empty_like(temp) 1031 
  ranks[temp] = np.arange(len(array)) 1032 
   1033 
  maxGrouping[0] = int( np.where(ranks == 7)[0] ) 1034 
  maxGrouping[1] = int( np.where(ranks == 6)[0] ) 1035 
  maxGrouping[2] = int( np.where(ranks == 5)[0] ) 1036 
   1037 
  return maxGrouping 1038 
   1039 
''' 1040 
 Used for Testing/Debugging Purposes  1041 
''' 1042 
if __name__ == '__main__': 1043 
  1044 
 t1 = [] 1045 
 #t2 = [0, 1, 2, 3, 4, 5, 6, 7]   1046 
 t2 = [100.0, 100.0, 7.0, 7.0, 0.0, 0.0, 0.0, 100.0] 1047 
  1048 
 t1.append(t2) 1049 
 t1.append(t2) 1050 
 t1.append(t2) 1051 
 cal = Calibrate() 1052 
 maxGrouping = cal.getMaxGrouping(t1) 1053 
  1054 
  1055 
 print(maxGrouping) 1056 

 

 

 

 ringBuffer.py 
''' 1057 
AUTHOR: Aditya Patel and Jim Ramsay 1058 
DATE CREATED: 04/01/2018 1059 
LAST MODIFIED:  2018-04-09 1060 
PLATFORM: Raspberry Pi 3B, Raspbian Stretch Released 2017-11-29 1061 
PROJECT: EMG Human Machine Interface 1062 
ORGANIZATION: Bradley University, School of Electrical and Computer Engineering 1063 
FILENAME: ringBuffer.py 1064 
DESCRIPTION: 1065 
 Class that implements a ring/circular buffer to hold the emg data. It stores data until full, then 1066 
 overwrites the oldest element every time. It also has a method to take an average of the last n  1067 
 data points.  1068 
 1069 
KNOWN FLAW: 1070 



 

EMG-Based Human Machine Interface                 Page | 47 

 Instead of only ignoring the oldest element when computing the average, I flush the entire buffer.  1071 
 Then the full n-length sum is taken. This is grossly inefficient, but was not found to be a bottleneck 1072 
 in implementation. Thus, it was ignored.  1073 
  1074 
EDIT HISTORY: 1075 
 20180409 -- Added functions to compute groupingAvg and maxGrouping. The groupings are as follows:  1076 
      1077 
     [ 123    234    345    456    567    678    781    812 ] 1078 
      1079 
    In main, this allowed us to calculate the three groupings with the highest average sensor value.  1080 
''' 1081 
import numpy as np 1082 
 1083 
class ringBuffer: 1084 
 def __init__(self,size_max):              # Constructor 1085 
  self.max = size_max 1086 
  self.data = [] 1087 
  self.sums = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]        1088 
  self.avg = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])     # this has to be a numpy array to use the 'divide' function below 1089 
  self.full = False 1090 
  self.groupingAvg = [] 1091 
 class __Full:                  # sub-class that implements a full buffer 1092 
 1093 
  def append(self, x): 1094 
   self.data[self.cur] = x              # append an element, overwriting the oldest one 1095 
   self.cur = (self.cur + 1) % self.max          # cycle 'cur' from 0 to self.max 1096 
 1097 
  def getAvg(self): 1098 
   self.sums = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]      # reset sums to prevent it from accumulating forever. This is NOT elegant or 1099 
efficient 1100 
   for r in range(0,self.max):     1101 
    for c in range(0,8):     1102 
     self.sums[c] = self.sums[c] + self.data[r][c] 1103 
  1104 
   np.divide(self.sums, float(self.max), out = self.avg)      # compute the average by dividing the sums by the size of the data array 1105 
   return self.avg 1106 
 1107 
  def get(self):                 # return list of elements from oldest to newest 1108 
   return self.data[self.cur:] + self.data[:self.cur] 1109 
     1110 
  ''' 1111 
   Function to compute the average value of each of the eight groupings of three sensors.  1112 
   @return none, only writes to class variable, groupingAvg  1113 
     [ 123    234    345    456    567    678    781    812]   1114 
     where each of these is the average of the sensors 1115 
  ''' 1116 
  def getGroupingAvg(self): 1117 
   1118 
   self.groupingAvg = [0, 0, 0, 0, 0, 0, 0, 0] 1119 
   1120 
   for startIndex in range(0, 8): 1121 
    sum = 0 1122 
 1123 
    for i in range(startIndex, startIndex + 3): 1124 
      1125 
     if ( i > 7 ): 1126 
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      i %= 8               # if i exceeds the range of the data, do the 1127 
modulus operator. This allows for groupings 781 and 812 to work.  1128 
     sum += self.avg[i] 1129 
     i += 1 1130 
     1131 
    self.groupingAvg[startIndex] = sum / 3.0 1132 
     1133 
  ''' 1134 
   Function to compute the three highest sensor groups.  1135 
   @return maxGrouping, [1 x 3] integer list of the index of the top three sensor groups in the ring buffer 1136 
   @example maxGrouping = myRingBuffer.getMaxGrouping() --> maxGrouping: [ 6, 5, 0] 1137 
  '''  1138 
  def getMaxGrouping(self): 1139 
  1140 
   maxGrouping = [0, 0, 0] 1141 
    1142 
   self.getAvg() 1143 
   self.getGroupingAvg() 1144 
    1145 
   array = np.array(self.groupingAvg)           # REFERENCE: https://stackoverflow.com/questions/5284646/rank-1146 
items-in-an-array-using-python-numpy 1147 
   temp = array.argsort() 1148 
   ranks = np.empty_like(temp) 1149 
   ranks[temp] = np.arange(len(array)) 1150 
    1151 
   maxGrouping[0] = int( np.where(ranks == 7)[0] ) 1152 
   maxGrouping[1] = int( np.where(ranks == 6)[0] ) 1153 
   maxGrouping[2] = int( np.where(ranks == 5)[0] ) 1154 
    1155 
   return maxGrouping 1156 
    1157 
    1158 
 def append(self,x):                 # append an element to the end of the buffer until it 1159 
is full 1160 
  self.data.append(x) 1161 
 1162 
  if len(self.data) == self.max: 1163 
   self.cur = 0 1164 
   self.full = True 1165 
   self.__class__ = self.__Full            # Permanently change class from not full to full 1166 
 1167 
 def get(self):                  # return list of elements from oldest to newest 1168 
  return self.data 1169 
 1170 
 1171 
''' 1172 
 Used for Testing/Debugging Purposes  1173 
''' 1174 
if __name__=='__main__': 1175 
 x = ringBuffer(3) 1176 
 print "average: ", x.avg 1177 
 print "sums: ", x.sums 1178 
 emg1 = [1,1,1,1,1,1,1,1] 1179 
 emg2 = [2,2,2,2,2,2,2,2] 1180 
 emg3 = [3,3,3,3,3,3,3,3] 1181 
 x.append(emg1); x.append(emg2); x.append(emg3); 1182 
 x.append(emg3); x.append(emg3);x.append(emg3); 1183 
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 average = x.getAvg() 1184 
 1185 
 print "Average: ", average 1186 
 1187 

  common.py 1188 

import struct 1189 
 1190 
def pack(fmt, *args): 1191 
    return struct.pack('<' + fmt, *args) 1192 
 1193 
def unpack(fmt, *args): 1194 
    return struct.unpack('<' + fmt, *args) 1195 
 1196 
def text(scr, font, txt, pos, clr=(255,255,255)): 1197 
    scr.blit(font.render(txt, True, clr), pos) 1198 

 1199 

 displayControl.py 
''' 1200 
AUTHOR: Aditya Patel and Jim Ramsay 1201 
DATE CREATED: 2018-03-31 1202 
LAST MODIFIED: 1203 
PLATFORM: Raspberry Pi 3B, Raspbian Stretch Released 2017-11-29 1204 
PROJECT: EMG Human Machine Interface 1205 
ORGANIZATION: Bradley University, School of Electrical and Computer Engineering 1206 
FILENAME: videoControl.py 1207 
DESCRIPTION:  1208 
 Script to control the display of the two different camera feeds.  1209 
NOTE:  1210 
 There is no logic needed in the switchDisplay() function, as this is a binary system. The main function will contain the logic.  1211 
  1212 
REFERENCES: 1213 
 [1] https://stackoverflow.com/questions/279561/what-is-the-python-equivalent-of-static-variables-inside-a-function 1214 
  1215 
''' 1216 
 1217 
import os              # used to execute shell commands 1218 
from time import sleep 1219 
 1220 
def init(): 1221 
 1222 
 os.environ['DISPLAY'] = ":0"        # allows us to launch GUI applications and control the mouse. Limited to the scope of the call of 1223 
this function.  1224 
 os.system("killall firefox-esr") 1225 
 os.system("nohup firefox http://169.254.184.5/html/ &")  # 'nohup' -- ignore HANGUP signals generated by firefox (there are a ton) 1226 
 sleep(15)              1227 
 os.system("nohup firefox http://169.254.13.230/html/ &") 1228 
 sleep(2)      1229 
 os.system("xdotool key ctrl+Tab")       # Cycle tab to the "Restore session" tab that always comes up 1230 
 os.system("xdotool key ctrl+w")        # Close the tab 1231 
 sleep(3)   1232 
 os.system("xdotool key F11")        # launch browswer in full screen 1233 
 sleep(3)   1234 
 os.system("xdotool mousemove 600 200 &")     # enlarge camera 1 1235 
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 sleep(0.1) 1236 
 os.system("xdotool click 1") 1237 
 sleep(0.1) 1238 
 os.system("xdotool key ctrl+Tab") 1239 
 sleep(3) 1240 
 os.system("xdotool click 1")        # enlarge camera 2 1241 
 os.system("xdotool key ctrl+Tab")  1242 
 os.system("xdotool mousemove 0 500")      # Move mouse out of the way 1243 
 print("DISPLAY CONFIGURED") 1244 
 1245 
def switchDisplay(): 1246 
  1247 
 switchDisplay.display ^= 1         # toggle variable between 0 and 1 1248 
 os.system("xdotool key ctrl+Tab") 1249 
  1250 
 return(switchDisplay.display) 1251 
 1252 
switchDisplay.display = 0          # initialize static variables 1253 
 1254 
# Initialize 1255 
if __name__=='__main__': 1256 
 init() 1257 
  1258 
 # sleep(1) 1259 
 # switchDisplay() 1260 
 # print("Attempting to change display") 1261 
 # sleep(5) 1262 
 # print("Attempting to change display") 1263 
 # switchDisplay() 1264 

 

 

 moveMotor.py 
''' 1265 
AUTHOR: Aditya Patel and Jim Ramsay 1266 
DATE CREATED: 2018-04-05 1267 
LAST MODIFIED: 2018-04-07 1268 
PLATFORM: Raspberry Pi 3B, Raspbian Stretch Released 2017-11-29 1269 
PROJECT: EMG Human Machine Interface 1270 
ORGANIZATION: Bradley University, School of Electrical and Computer Engineering 1271 
FILENAME: moveMotor.py 1272 
DESCRIPTION:  1273 
 Script to move the connected servo motor to a specific duty cycle.  1274 
 1275 
NOTE: 1276 
 1277 
 CW  --> INCREASE PWM 1278 
 CCW --> DECREASE PWM 1279 
  1280 
 20% --> +90 deg 1281 
 80% --> -90 deg 1282 
  1283 
USAGE:   1284 
 1285 
 ssh emgPi_1 'python /home/pi/scripts/moveMotor.py PWMdir isLastTime' 1286 
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  1287 
 Command Line Arguments: 1288 
   1289 
  PWMdir  integer  0 --> CW  1 --> CCW others --> not recognized, do nothing 1290 
  isLastTime boolean True --> execute IO cleanup  False --> do not cleanup, run normally 1291 
  1292 
''' 1293 
 1294 
import RPi.GPIO as IO 1295 
import sys 1296 
import time 1297 
 1298 
global initialDuty 1299 
initialDuty = 50 1300 
 1301 
class Motor: 1302 
  1303 
 global initialDuty 1304 
 def __init__(self, PWMdirection, startPWM): 1305 
 1306 
  IO.setwarnings(False) 1307 
  IO.setmode(IO.BOARD) 1308 
 1309 
  IO.setup(12, IO.OUT)        # set GPIO pins to Output mode 1310 
  self.p = IO.PWM(12,350)        # set pin 12 to 350Hz pwm output 1311 
  self.PWMdir = PWMdirection 1312 
  self.duty = startPWM 1313 
  self.p.start(startPWM)         1314 
 1315 
 def ccw(self): 1316 
  if (self.duty >= 20) and (self.duty <= 70) : 1317 
   self.duty += 10 1318 
   # print("ccw") 1319 
   # print(self.duty) 1320 
   self.p.ChangeDutyCycle(self.duty) 1321 
   time.sleep(0.01) 1322 
 1323 
 def cw(self): 1324 
  if ( self.duty >= 30 ) and ( self.duty >= 80 ) : 1325 
   self.duty -= 10.0 1326 
   # print("cw") 1327 
   # print(self.duty) 1328 
   self.p.ChangeDutyCycle(self.duty) 1329 
   time.sleep(0.01) 1330 
    1331 
 def cleanup(self): 1332 
  self.p.stop() 1333 
  IO.cleanup() 1334 
  1335 
if __name__ == '__main__': 1336 
  1337 
 # moduleName = sys.argv[0] 1338 
 startPWM = float(sys.argv[1]) 1339 
 PWMdir = int(sys.argv[2])          1340 
 isLastTime = int(sys.argv[3]) 1341 
  1342 
 # print("PWM Direction: ", type(PWMdir)) 1343 
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 1344 
 mtr = Motor(PWMdir, startPWM) 1345 
 time.sleep(1) 1346 
 # if (PWMdir == 0): 1347 
  # mtr.cw() 1348 
  # time.sleep(1) 1349 
 # elif (PWMdir == 1): 1350 
  # mtr.ccw() 1351 
  # time.sleep(1) 1352 
 # if (isLastTime): 1353 
  # mtr.cleanup() 1354 
  1355 
  1356 
 # t_end = time.time() + 10 1357 
  1358 
 # if (isLastTime == 1): 1359 
   # mtr.cleanup() 1360 
    1361 
 # while (time.time() < t_end): 1362 
  # if (PWMdir == 0): 1363 
   # mtr.cw() 1364 
  # elif (PWMdir == 1): 1365 
   # mtr.ccw() 1366 
  1367 
  1368 

 1369 


