
Formation Control
of Crazyflies

Bryce Mack, Chris Noe, and Trevor Rice

Advisors: Dr. Ahn, Dr. Wang

November 30, 2017 1

Table of Contents
1. Introduction

2. Problem Statement

3. Research Tasks
I. Modeling and Control Design

II. Localization Using ROS

III. Localization Using Kinect and LOCO

IV. System Integration and Formation Control

4. Work Division

5. Schedule

6. Summary

7. Q & A

2

Introduction
● UAVs have attracted significant attention over the past five years

● We are exploring distributed control for multiple UAVs in formation

● Sensing/communication among individual UAVs and how to design simple yet

efficient local control strategies for each UAV

● Design practically implementable distributed control algorithms for UAVs and

implement using an agile nano quadcopter, the Crazyflie

3

Motivation

● Lots of UAVs to choose from

● Chose the Crazyflie
○ Agility, durability and programmability

○ Indoor use, quick charge

4

Problem Statement
● Using a Crazyflie 2.0 by Bitcraze (open source hardware/software)

○ 5-10 minute flight time

● All hardware development has been done by Bitcraze

● Software will be developed using the ROS environment

5

Design Tasks
I. Modeling and Control Design

II. Control Implementation Using ROS

III. Localization Using Kinect and LOCO

IV. System Integration and Formation Control Implementation

6

Functional Requirements
● Programming and control through the Crazyradio PA

○ USB Radio Dongle

● Control code will be based in C/C++
○ Compiled in ROS on Ubuntu 14.04 Trusty

● Localization by Kinect and/or Loco Positioning System

● Control algorithm will be run on the on-board chips

● See High Level System Diagram on the next slide

7

High Level System Diagram

8

Specifications
● Weighs 27 g

● Size (WxDxH): 92x92x29mm (motor-to-motor and including motor mount 4 Figure

1: Crazyflie 2.0 feet)

● 20 dBm radio amplifier tested to more than 1 km range LOS with Crazyradio PA

● STM32F405 main application MCU (Cortex-M4, 168MHz, 192kb SRAM, 1Mb

flash)

● nRF51822 radio and power management MCU (Cortex-M0, 32Mhz, 16kb SRAM,

128kb flash)

● IMU: 3-axis gyro, accelerometer, and magnetometer

● Max recommended payload weight: 15 g

9

Parts List

Bitcraze Components

● 6 x Crazyflie 2.0

● 3 x CrazyRadio PA

● 1 x Z-Ranger Deck

LOCO Positioning System

● 6 x LOCO Anchors

● 6 x Anchor Power Supply

● 6 x 3D Printed Anchor Brackets

● 1 x LOCO Crazyflie Deck

Xbox Components

● 3 x Xbox 360 Kinect

● 3 x Xbox 360 Stand

● 3 x Xbox 360 Kinect Power Supply

● 1 x Xbox ONE Kinect

Laptop Running Ubuntu 14.04 Trusty

Total Cost: $2265

10

RESEARCH TASK 1:
MODELING AND
CONTROL DESIGN

11

Quadrotor Coordinate System
● The inertial frame

designates Z to be

any direction

coming out of the

earth

● The body frame of

the quadrotor

designates Z to be

into the earth.

12

Quadrotor Body Frame

13

Model Equation

14

● Adaptive Control of Quadrotor UAVs: A Design Trade Study With Flight Evaluations
○ By Zachary Dydek

● Using small angle approximations Eqn. 1 becomes Eqn. 2

Simulink Modeling
● Installed MATLAB Robotics, Vision and Control Toolbox developed by Peter Corke

● Explored the Quadrotor model that they created

15

PD Controllers
● 4 PD Controllers: Height, Velocity, Yaw and Attitude

16

Height PD Controller
● Old model used a feed-forward thrust constant

17

Height PID Controller
● New model replaces feed-forward term with an integral controller

18

Adjusting Height and
Velocity Controls

19

Adjusting Height and
Velocity Controls

20

Simulation Results
● Tuning the controllers allowed us to reduce the overshoot to 6% for X and Y

● We decided for Z to have 0% overshoot
○ Critically damping the system

● We don’t want the crazyflie ever crashing into a ceiling was our reasoning

● Z is able to settle within 6.5 seconds

21

Trajectory Control
● Circle

○ sine and cosine inputs to simulate a circle
➢ 3sin(t/8)
➢ 3cos(t/8)

● Figure 8
○ 2 sin inputs that create a figure 8

➢ 3sin(t/10)
➢ 3sin(t/20)

● Square
○ 4 step inputs

○ Each activating after ‘x’ seconds

22

Circle Trajectory

23

https://docs.google.com/file/d/17OvrIs4bW00hTRdNZV_WVMY909nv66AV/preview

Figure 8 Trajectory

24

https://docs.google.com/file/d/1LrkfgltqlHiiBN3om_rsjAfCfjUutV_3/preview

Square Trajectory

25

https://docs.google.com/file/d/1_WB1ZuFlkh13dDMD_dJbVe9dY7KEiBid/preview

RESEARCH TASK II:
LOCALIZATION
USING ROS

26

ROS
● First thing to do was to research the ROS environment

○ Read through textbook provided by Dr. Wang

● Basics
○ Packages: Contain the information needed to compile the executables

○ Nodes: Small modules of processes that are designed to do a few tasks of the larger

more complex program

○ Master: Nodes are able to communicate with other nodes on the same computer

and on a different networked computer using the Master. Master provides naming

and registration services for the nodes. Master is required to be running for the

ROS environment to operate.

27

Open-Source ROS
● Honig Paper

○ Has developed a custom driver for the Crazyflie 2.0 using ROS

○ However, the driver was designed to use an expensive VICON system for

localization

○ We used his driver code to be able to fly the Crazyflie using a PS3 remote

● Complications
○ One of the benefits is also a downside

■ The ROS system can be made extremely modular
■ This modularity can also become overly complex and hard to follow

● This is the case with the Honig driver

○ The toughest part of the project in terms of ROS will be figuring out how to develop

programs, or edit current programs, that will control the Crazyflie

28

PS3 Control

● Flying with the PS3 remote and Crazyradio PA
○ Used the files from the Honig paper GitHub

○ The demo creates numerous nodes to

control different aspects of the Crazyflie

○ The demo opens up RViz to show the status

of the Inertial Measurement Unit (IMU) on

the Crazyflie

○ There is a possibility of adding more

crazyflies to the demo, but that hasn’t been

tested yet.

29

Live PS3 Control

30

https://docs.google.com/file/d/1clckUNOxeIn1KZ7RZGzq_gUFzW6jb1mE/preview

Live PS3 Control

31

https://docs.google.com/file/d/12YF-3UPzz7RKF_menZzReBszHdTnvOZs/preview

RESEARCH TASK III:
LOCALIZATION
USING KINECT AND
LOCO

32

Kinect
● The Crazyflies have onboard gyroscopes and accelerometers, but incapable of

determining their location in 3D space

● We will be using Xbox 360 Kinects to solve the localization issue

33

Kinect Background
● The Kinect itself has 3 I/O devices: cameras, audio, and motors

● We will only use the camera functions, not audio output or motor input
○ The camera has 2 outputs to ROS

■ RGB camera
■ IR Blaster and monochrome CMOS sensor

● The Kinect operates with 640 x 480-pixel resolution and runs at 30 FPS

34

Kinect -ing to ROS
● Communication between ROS and the Kinect consists of camera images and

position data.

● Kinect will use a color threshold program to locate the Crazyflie in 3D space

● Depth sensor - an infrared projector and a monochrome CMOS (complementary

metal-oxide semiconductor) sensor work together to "see" the room in 3-D

regardless of the lighting conditions.

35

Kinect -ing to ROS
● Need ROS to recognize Kinect 360 in order to extract information from the module

● ROS textbook examples used Kinect V2.0
○ Department’s Kinect modules are Kinect 360

○ Has a lower framerate and resolution
■ We will have to determine if it is still a viable way to track the drones
■ We will also have to use older libraries and programs to connect the Kinect to ROS.

36

Kinect Libraries
● After testing the most recent libraries, it was found that they (libfreenect2) do not

communicate with the Kinect 360.

● The older library, libfreenect, will connect to the Kinect 360.

● This, along with fakenect, crazyflie_ws, and ROS we will be able to analyze the data

sent through the Kinect and use the data to control our Crazyflie.

37

Kinect Localization
● The control algorithm will feed the estimated position coordinates to ROS, which

will implement our simulation PD control algorithm. This will create a 3D

environment where ROS will estimate where the Crazyflie(s) exist and through

different input methods, will fly to where they are told.

○ The position estimation can be expanded to multiple Crazyflies, using different

colored markers or a numbering system with the same colored markers.

38

Kinect Workspace
● Dedicated space in Robotics Lab for Crazyflie operation

● Kinect(s) will be on a stand(s)
○ Minimum distance: 0.5 m

○ Maximum distance: 4.5 m

○ Height: 0-3 m

● Flight area will be defined by the line of sight of the

Kinect(s)

● The position estimation can be expanded to multiple

Crazyflies, using different colored markers or a

numbering system with the same colored markers.

39

Kinect Control Demo

40

https://docs.google.com/file/d/1Wx8c6zEAS7weK3F237RR7OFtuLbuJ74q/preview

LOCO Positioning System

41

LOCO Positioning System (cont.)

● In essence, a small indoor GPS-like setup

● Anchors around the room (at least 4-6) act as position markers to set up the 3D

space

● Nodes are what get tracked through the 3D space
○ One of these nodes goes on the Crazyflie

● This setup might be able to replace the need for camera feedback as the system is

accurate to 10 cm
○ Won’t work for tight maneuvers

● Limitation: May only work for one crazyflie at this time. We may have to develop

the capability to track more than one crazyflie.

42

43

LOCO Setup
● Workspace will be setup with the

anchors in triangle patterns at

the top and bottom of the space

● This setup will give us the best

accuracy when it comes to 3D

localization.

44

3D-Printed Anchor Bracket

45

LOCO System Diagram

46

LOCO vs Kinect

47

LOCO
LOCO Pros

● Can be used in visually “noisy

environments”
○ Open space is not required

● Accurate to 10 cm

● More points of reference to

increase general accuracy

48

LOCO Cons

● Susceptible to radio interference in

the populated 2.4 GHz range

● Currently setup for only one

Crazyflie

● Expensive if we want to introduce

more Crazyflies

Kinect
Kinect Pros

● More cost effective than the LOCO

position sensors

● Very minimal physical system

requirements

● Random error accuracy: 5mm-4cm

(0.5m to 5m)
○ Depth accuracy: 2mm-7cm

(1m-5m)

Kinect Cons

● Difficult to implement
○ Little documentation on

libraries and packages needed

to connect Kinect to ROS

● Multiple programs and systems are

needed to run Kinect through ROS

● System has to be built by us

● Unknown if data can be interpreted

through ROS

49

How We Will Proceed
● Start with using the LOCO system

○ Easier to setup

● Progress with Kinect
○ More difficult to integrate with ROS

● Kinect can detect multiple Crazyflies

Goals

● Use LOCO to control the “lead” Crazyflie

● Use Kinect to detect the other Crazyflie positions

● ROS will interpret localization data and send Crazyflies new desired positions

50

Research Task IV:
System Integration
and Formation
Control
Implementation

51

System Integration
● LOCO and Kinect detect position of Crazyflies

● ROS environment accepts inputs from Crazyflie and LOCO/Kinect

● Crazyflies will execute our control algorithm

● ROS will execute distributed control algorithm

● Base station is merely there to provide localization data
○ Crazyflies take data and move to their updated position

52

Formation Control
● Control will be based on cooperative control theory

● Will begin with modeling in Simulink
○ We can simulate multiple Crazyflies using current model

● Equation below will be run in ROS
○ Base station will provide desired positions for each Crazyflie

53

Work Division

54

Bryce Mack
● Simulink Modeling

○ Create new model that will simulate multiple Crazyflies
➢ Create a subsystem of current model
➢ Implement theory from Cooperative Control class

● Simulations
○ Continue to create videos for simulations
○ Record trajectory control

➢ Settling time
➢ Overshoot
➢ etc.

● Website
○ Presentable
○ Deliverables included on website
○ Easy to navigate

55

Chris Noe
● ROS Research

○ Reading through provided papers and textbook
○ Searching Bitcraze and other online forums to better understand ROS

● LOCO Positioning Research
○ Research the basics of the LOCO system
○ Create a high-level diagram
○ Print the anchor brackets for our use
○ Setup and test the LOCO system with one drone
○ Possibly expand to use multiple drones

● ROS Implementation
○ Create a system diagram
○ Work to compile and implement the control code when finished
○ Test the control system thoroughly

56

Trevor Rice
● Kinect Implementation

○ Management and setup of programs needed to connect the Kinect to ROS
■ Researching older libraries and programs used on more recent versions of the

Kinect
○ Setup and calibration of Kinect system(s)
○ Color threshold algorithm research
○ Physical setup of Kinect system and 3D space for control

57

Schedule

November:

● 28: Final Proposal and Presentation

due

December:

● 5: LOCO system setup

● 7: Website with deliverables due

January:

● 31:
○ Single Crazyflie Control

Operational

○ Multiple Quadrotor Model &

Simulations

February:

● 16:
○ Kinect control operational

○ LOCO system operational

March:

● 29: Final Report draft due

April:
● 10: Student Expo

● 26: Presentation ready

May:

● 1: All deliverables due

58

Deliverables

● Project Proposal

● Proposal Presentation

● Project Website (with pdfs for Presentation and Proposal)

● Project Midpoint Progress Update

● Student Expo Presentation

● Final Report

● Final Presentation

59

Project Goals
● We have simulations with smooth flight for a quadrotor

○ Duplicate simulation results with Crazyflies

● Apply formation control to multiple Crazyflies
○ Through modeling and simulations

○ Duplicate with Crazyflies

● System integration with LOCO/Kinect and ROS

60

Questions?

61

