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Introduction
● UAVs have attracted significant attention over the past five years

● We are exploring distributed control for multiple UAVs in formation

● Sensing/communication among individual UAVs and how to design simple yet 

efficient local control strategies for each UAV

● Design practically implementable distributed control algorithms for UAVs and 

implement using an agile nano quadcopter, the Crazyflie
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Motivation

● Lots of UAVs to choose from

● Chose the Crazyflie 
○ Agility, durability and programmability

○ Indoor use, quick charge
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Problem Statement
● Using a Crazyflie 2.0 by Bitcraze (open source hardware/software)

○ 5-10 minute flight time

● All hardware development has been done by Bitcraze

● Software will be developed using the ROS environment
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Design Tasks
I. Modeling and Control Design

II. Control Implementation Using ROS

III. Localization Using Kinect and LOCO

IV. System Integration and Formation Control Implementation
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Functional Requirements
● Programming and control through the Crazyradio PA

○ USB Radio Dongle

● Control code will be based in C/C++
○ Compiled in ROS on Ubuntu 14.04 Trusty

● Localization by Kinect and/or Loco Positioning System

● Control algorithm will be run on the on-board chips

● See High Level System Diagram on the next slide
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High Level System Diagram
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Specifications
● Weighs 27 g

● Size (WxDxH): 92x92x29mm (motor-to-motor and including motor mount 4 Figure 

1: Crazyflie 2.0 feet)

● 20 dBm radio amplifier tested to more than 1 km range LOS with Crazyradio PA 

● STM32F405 main application MCU (Cortex-M4, 168MHz, 192kb SRAM, 1Mb 

flash) 

● nRF51822 radio and power management MCU (Cortex-M0, 32Mhz, 16kb SRAM, 

128kb flash) 

● IMU: 3-axis gyro, accelerometer, and magnetometer 

● Max recommended payload weight: 15 g
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Parts List

Bitcraze Components

● 6 x Crazyflie 2.0

● 3 x CrazyRadio PA

● 1 x Z-Ranger Deck

LOCO Positioning System

● 6 x LOCO Anchors

● 6 x Anchor Power Supply

● 6 x 3D Printed Anchor Brackets

● 1 x LOCO Crazyflie Deck

Xbox Components

● 3 x Xbox 360 Kinect

● 3 x Xbox 360 Stand

● 3 x Xbox 360 Kinect Power Supply

● 1 x Xbox ONE Kinect

Laptop Running Ubuntu 14.04 Trusty

Total Cost: $2265
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RESEARCH TASK 1:
MODELING AND 
CONTROL DESIGN
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Quadrotor Coordinate System
● The inertial frame 

designates Z to be 

any direction 

coming out of the 

earth

● The body frame of 

the quadrotor 

designates Z to be 

into the earth.
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Quadrotor Body Frame
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Model Equation
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● Adaptive Control of Quadrotor UAVs: A Design Trade Study With Flight Evaluations  
○ By Zachary Dydek 

● Using small angle approximations  Eqn. 1 becomes Eqn. 2



Simulink Modeling
● Installed MATLAB Robotics, Vision and Control Toolbox developed by Peter Corke

● Explored the Quadrotor model that they created 
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PD Controllers
● 4 PD Controllers: Height, Velocity, Yaw and Attitude 
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Height PD Controller
● Old model used a feed-forward thrust constant
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Height PID Controller
● New model replaces feed-forward term with an integral controller
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Adjusting Height and 
Velocity Controls
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Adjusting Height and 
Velocity Controls
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Simulation Results
● Tuning the controllers allowed us to reduce the overshoot to 6% for X and Y

● We decided for Z to have 0% overshoot
○ Critically damping the system

● We don’t want the crazyflie ever crashing into a ceiling was our reasoning

● Z is able to settle within 6.5 seconds

21



Trajectory Control
● Circle

○ sine and cosine inputs to simulate a circle
➢ 3sin(t/8) 
➢ 3cos(t/8)

● Figure 8
○ 2 sin inputs that create a figure 8

➢ 3sin(t/10)
➢ 3sin(t/20)

● Square
○ 4 step inputs 

○ Each activating after ‘x’ seconds
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Circle Trajectory
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https://docs.google.com/file/d/17OvrIs4bW00hTRdNZV_WVMY909nv66AV/preview


Figure 8 Trajectory
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https://docs.google.com/file/d/1LrkfgltqlHiiBN3om_rsjAfCfjUutV_3/preview


Square Trajectory
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https://docs.google.com/file/d/1_WB1ZuFlkh13dDMD_dJbVe9dY7KEiBid/preview


RESEARCH TASK II: 
LOCALIZATION 
USING ROS
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ROS
● First thing to do was to research the ROS environment

○ Read through textbook provided by Dr. Wang

● Basics
○ Packages: Contain the information needed to compile the executables

○ Nodes: Small modules of processes that are designed to do a few tasks of the larger 

more complex program

○ Master: Nodes are able to communicate with other nodes on the same computer 

and on a different networked computer using the Master. Master provides naming 

and registration services for the nodes. Master is required to be running for the 

ROS environment to operate.
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Open-Source ROS
● Honig Paper

○ Has developed a custom driver for the Crazyflie 2.0 using ROS

○ However, the driver was designed to use an expensive VICON system for 

localization

○ We used his driver code to be able to fly the Crazyflie using a PS3 remote

● Complications
○ One of the benefits is also a downside

■ The ROS system can be made extremely modular
■ This modularity can also become overly complex and hard to follow

● This is the case with the Honig driver

○ The toughest part of the project in terms of ROS will be figuring out how to develop 

programs, or edit current programs, that will control the Crazyflie
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PS3 Control

● Flying with the PS3 remote and Crazyradio PA
○ Used the files from the Honig paper GitHub 

○ The demo creates numerous nodes to 

control different aspects of the Crazyflie

○ The demo opens up RViz to show the status 

of the Inertial Measurement Unit (IMU) on 

the Crazyflie

○ There is a possibility of adding more 

crazyflies to the demo, but that hasn’t been 

tested yet.
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Live PS3 Control
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https://docs.google.com/file/d/1clckUNOxeIn1KZ7RZGzq_gUFzW6jb1mE/preview


Live PS3 Control
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https://docs.google.com/file/d/12YF-3UPzz7RKF_menZzReBszHdTnvOZs/preview


RESEARCH TASK III: 
LOCALIZATION 
USING KINECT AND 
LOCO
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Kinect
● The Crazyflies have onboard gyroscopes and accelerometers, but incapable of 

determining their location in 3D space

● We will be using Xbox 360 Kinects to solve the localization issue
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Kinect Background
● The Kinect itself has 3 I/O devices: cameras, audio, and motors

● We will only use the camera functions, not audio output or motor input
○ The camera has 2 outputs to ROS

■ RGB camera
■ IR Blaster and monochrome CMOS sensor

● The Kinect operates with 640 x 480-pixel resolution and runs at 30 FPS 
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Kinect -ing to ROS
● Communication between ROS and the Kinect consists of camera images and 

position data.

● Kinect will use a color threshold program to locate the Crazyflie in 3D space

● Depth sensor - an infrared projector and a monochrome CMOS (complementary 

metal-oxide semiconductor) sensor work together to "see" the room in 3-D 

regardless of the lighting conditions.
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Kinect -ing to ROS
● Need ROS to recognize Kinect 360 in order to extract information from the module

● ROS textbook examples used Kinect V2.0
○ Department’s Kinect modules are Kinect 360

○ Has a lower framerate and resolution
■ We will have to determine if it is still a viable way to track the drones
■ We will also have to use older libraries and programs to connect the Kinect to ROS. 
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Kinect Libraries
● After testing the most recent libraries, it was found that they (libfreenect2) do not 

communicate with the Kinect 360.

● The older library, libfreenect, will connect to the Kinect 360.

● This, along with fakenect, crazyflie_ws, and ROS we will be able to analyze the data 

sent through the Kinect and use the data to control our Crazyflie. 
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Kinect Localization
● The control algorithm will feed the estimated position coordinates to ROS, which 

will implement our simulation PD control algorithm. This will create a 3D 

environment where ROS will estimate where the Crazyflie(s) exist and through 

different input methods, will fly to where they are told. 

○ The position estimation can be expanded to multiple Crazyflies, using different 

colored markers or a numbering system with the same colored markers. 
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Kinect Workspace
● Dedicated space in Robotics Lab for Crazyflie operation

● Kinect(s) will be on a stand(s)
○ Minimum distance: 0.5 m

○ Maximum distance: 4.5 m

○ Height: 0-3 m

● Flight area will be defined by the line of sight of the 

Kinect(s)

● The position estimation can be expanded to multiple 

Crazyflies, using different colored markers or a 

numbering system with the same colored markers. 
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Kinect Control Demo

40

https://docs.google.com/file/d/1Wx8c6zEAS7weK3F237RR7OFtuLbuJ74q/preview


LOCO Positioning System
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LOCO Positioning System (cont.)

● In essence, a small indoor GPS-like setup

● Anchors around the room (at least 4-6) act as position markers to set up the 3D 

space

● Nodes are what get tracked through the 3D space
○ One of these nodes goes on the Crazyflie

● This setup might be able to replace the need for camera feedback as the system is 

accurate to 10 cm
○ Won’t work for tight maneuvers

● Limitation: May only work for one crazyflie at this time. We may have to develop 

the capability to track more than one crazyflie.
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LOCO Setup
● Workspace will be setup with the 

anchors in triangle patterns at 

the top and bottom of the space

● This setup will give us the best 

accuracy when it comes to 3D 

localization.
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3D-Printed Anchor Bracket
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LOCO System Diagram
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LOCO vs Kinect
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LOCO
LOCO Pros

● Can be used in visually “noisy 

environments”
○ Open space is not required

● Accurate to 10 cm

● More points of reference to 

increase general accuracy

48

LOCO Cons

● Susceptible to radio interference in 

the populated 2.4 GHz range

● Currently setup for only one 

Crazyflie

● Expensive if we want to introduce 

more Crazyflies



Kinect
Kinect Pros

● More cost effective than the LOCO 

position sensors

● Very minimal physical system 

requirements

● Random error accuracy:  5mm-4cm 

(0.5m to 5m)
○ Depth accuracy: 2mm-7cm 

(1m-5m)

Kinect Cons

● Difficult to implement
○ Little documentation on 

libraries and packages needed 

to connect Kinect to ROS

● Multiple programs and systems are 

needed to run Kinect through ROS

● System has to be built by us

● Unknown if data can be interpreted 

through ROS
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How We Will Proceed
● Start with using the LOCO system

○ Easier to setup

● Progress with Kinect 
○ More difficult to integrate with ROS

● Kinect can detect multiple Crazyflies

Goals

● Use LOCO to control the “lead” Crazyflie

● Use Kinect to detect the other Crazyflie positions

● ROS will interpret localization data and send Crazyflies new desired positions
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Research Task IV: 
System Integration 
and Formation 
Control 
Implementation
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System Integration
● LOCO and Kinect detect position of Crazyflies

● ROS environment accepts inputs from Crazyflie and LOCO/Kinect

● Crazyflies will execute our control algorithm

● ROS will execute distributed control algorithm

● Base station is merely there to provide localization data
○ Crazyflies take data and move to their updated position
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Formation Control
● Control will be based on cooperative control theory 

● Will begin with modeling in Simulink
○ We can simulate multiple Crazyflies using current model

● Equation below will be run in ROS
○ Base station will provide desired positions for each Crazyflie
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Work Division
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Bryce Mack
● Simulink Modeling

○ Create new model that will simulate multiple Crazyflies
➢ Create a subsystem of current model
➢ Implement theory from Cooperative Control class

● Simulations
○ Continue to create videos for simulations
○ Record trajectory control

➢ Settling time
➢ Overshoot
➢ etc.

● Website
○ Presentable
○ Deliverables included on website
○ Easy to navigate
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Chris Noe
● ROS Research

○ Reading through provided papers and textbook
○ Searching Bitcraze and other online forums to better understand ROS

● LOCO Positioning Research
○ Research the basics of the LOCO system
○ Create a high-level diagram
○ Print the anchor brackets for our use
○ Setup and test the LOCO system with one drone
○ Possibly expand to use multiple drones

● ROS Implementation
○ Create a system diagram 
○ Work to compile and implement the control code when finished
○ Test the control system thoroughly
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Trevor Rice
● Kinect Implementation

○ Management and setup of programs needed to connect the Kinect to ROS
■ Researching older libraries and programs used on more recent versions of the 

Kinect
○ Setup and calibration of Kinect system(s)
○ Color threshold algorithm research
○ Physical setup of Kinect system and 3D space for control
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Schedule

November:

● 28: Final Proposal and Presentation 

due

December:

● 5: LOCO system setup

● 7: Website with deliverables due

January:

● 31: 
○ Single Crazyflie Control 

Operational

○ Multiple Quadrotor Model &  

Simulations

February:

● 16: 
○ Kinect control operational

○ LOCO system operational

March:

● 29: Final Report draft due

April:
● 10: Student Expo 

● 26: Presentation ready

May:

● 1: All deliverables due
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Deliverables

● Project Proposal

● Proposal Presentation

● Project Website (with pdfs for Presentation and Proposal)

● Project Midpoint Progress Update

● Student Expo Presentation

● Final Report

● Final Presentation
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Project Goals
● We have simulations with smooth flight for a quadrotor

○ Duplicate simulation results with Crazyflies

● Apply formation control to multiple Crazyflies
○ Through modeling and simulations

○ Duplicate with Crazyflies

● System integration with LOCO/Kinect and ROS
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Questions?
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