
Formation Control of Crazyflies

Bryce Mack Chris Noe Trevor Rice

November 2017

Advisors: Dr. Ahn & Dr. Wang

Abstract

This project studies the implementation of a distributed formation
control algorithm using several nano quadcopters called Crazyflies. This
will be accomplished using the Robot Operating System (ROS) for pro-
gramming and a Kinect 360 module for localization. The Kinect module
will track each quadcopter and provide localization information to our
controller. From there, we will implement a distributed control algorithm
to a swarm of Crazyflies. This will be done with the main control law
running on remote computer and transmitting control signals to Crazyflies
through a Crazyradio dongle. The radio has the ability to send multiple
radio control signals to several Crazyflies at once, which allows us to indi-
vidually control the swarm. Furthermore, the algorithm contains various
PD and PID controllers for quick response and stabilization. With these
controls the system will achieve hovering and formation control within a
specified workspace. Our control zone will be setup in a clean, confined,
indoor space.

1

Contents

1 Introduction 4

2 Problem Statement 4

3 Functional Requirements 6

3.1 High Level System Design . 7

4 Research Problem 1:

Modeling and Control of Crazyflie 7

4.1 Quadrotor Dynamics . 8

4.2 Hovering Control Design . 9

4.3 Formation Control Design . 10

4.4 Simulation and Preliminary Results 10

5 Research Problem 2:

Implementing the Control of Crazyflie using ROS 12

5.1 Introduction of ROS . 12

5.1.1 ROS Tutorial Textbook 12

5.1.2 ROS Basics . 12

5.1.3 Honig Paper . 13

5.1.4 Complications . 13

5.2 The Basic Program Structure of Flying a Crazyflie Using a Remote 13

6 Research Problem 3:

Localization of Crazyflie using Xbox 360 Kinect and
LOCO Positioning System 14

6.1 Functionality of Kinect Sensor 14

2

6.2 The Basics of Image Processing in ROS Environment 15

6.3 The Basic Idea Using Kinect for Localization 15

6.4 LOCO Positioning System . 16

7 Research Problem 4:

System Integration and Formation Control Implemen-
tation 17

7.1 System Integration . 17

7.2 Formation Control . 18

8 Parts List and Work Plan 18

8.1 Parts List . 18

8.2 Schedule . 18

8.3 Work Division . 19

References 21

3

1 Introduction

Recent years have seen a significant progress in the technology development of
unmanned aerial vehicles (UAVs). Particularly, the usage of multiple UAVs has
received a lot of attention in both industry and military. For instance, a group
of small UAVs could be used in a search and rescue mission in a harmful region
for human.

In general, the individual UAV in a group has its own sensors and actuators.
To fully coordinate the motion of multiple UAVs for certain common tasks, the
fundamental questions become how to deal with sensing/communication among
individual UAVs and how to design simple yet efficient local control strategies
for each UAV. There exist extensive distributed cooperative control algorithms
for general linear dynamical systems. Some results may be applicable to the
distributed control of multiple UAVs. However few results are available in terms
of experimental implementation of algorithms in real UAVs especially in the
presence of various uncertainties including system dynamics uncertainty, and
sensing and communication uncertainties. The core objective of this project is
to design practically implementable distributed control algorithms for UAVs and
to implement them using an agile nano quadcopter called Crazyflie.

2 Problem Statement

In this project, we will be using the Crazyflie 2.0 produced by Bitcraze (Fig. 1).
The distributed control design will be based on the system model abstracted from
Crazyflie. The sensing/communication and control strategies will be implemented
and tested using a number of Crazyflies.

We chose to use this nano quadcopter over the others on the market because of
its high quality components. This copter is also open source, so we will be able
to program and control it using our own software. This copter is small for us
to safely test indoors. It has 5-10 minutes of flight time with less than an hour
charge time. Bitcraze also produces its own Crazyradio which can be used to
control multiple Crazyflies at once. This was a big part of our overall project and
with the Crazyflies we would not need to do much hardware development. All
the hardware integration has already been taken care of by Bitcraze. However,
we will be using the Robotics Operating System (ROS) to build and run any
software on the bot. Figure 1 shows an image of a Crazyflie 2.0. Its specifications
are given below.

• Weighs 27 g

• Size (WxDxH): 92x92x29mm (motor-to-motor and including motor mount

4

Figure 1: Crazyflie 2.0

feet)

• 20 dBm radio amplifier tested to more than 1 km range LOS with Crazyra-
dio PA

• STM32F405 main application MCU (Cortex-M4, 168MHz, 192kb SRAM,
1Mb flash)

• nRF51822 radio and power management MCU (Cortex-M0, 32Mhz, 16kb
SRAM, 128kb flash)

• IMU: 3-axis gyro, accelerometer, and magnetometer

• Max recommended payload weight: 15 g

There are several main research problems to be addressed in this project:

1. Identify an approximate mathematical model to describe the dynamics of
the Crazyflie.

2. Design a software simulation platform (Matlab/Simulink or ROS-based)
which can be used to simulate various control designs.

3. Design control algorithms for configuration stabilizing control and trajec-
tory tracking control of Crazyflies.

4. Develop an algorithm to estimate the yaw, roll, and pitch angles of
Crazyflies using its onboard IMU.

5. Develop an algorithm to estimate (x,y,z) coordinates of Crazyflies using
images captured by Kinect vision sensors.

6. Develop a distributed control strategy for formation motion of three
Crazyflies.

7. Implement and test the robustness of control algorithms.

5

Figure 2: High Level Diagram of the System

3 Functional Requirements

While the main objective of the project is to design and implement distributed
control algorithms for Crazyflies, the overall functional requirement of the project
is focused on completing two primary tasks. The primary tasks are to make the
Crazyflie hover, and then to implement a distributed control algorithm for a
swarm of Crazyflies.

We will program and control the Crazyflies using a Crazyradio PA. This device
is a USB radio dongle that can be plugged into any computer with a USB port.
Our code base will be written in C/C++ and compiled in the Ubuntu Trusty
14.04 Linux environment using ROS. The control system will be run on the
Crazyflies on-board chips, which will be doing most of the processing necessary
to keep the bots stable.

In addition to reading the Kinect 360 localization data, the laptop will be sending
localization information through the Crazyradio to update the control algorithm
running on the Crazyflies. In the case of multiple Crazyflies, we will control
them with one Crazyradio PA. We will be using GIT to track any documents or
code that we develop for simulations, models, and demonstration.

Our first model to make the Crazyflie hover in one position will be based on
the result in [1]. We will be modeling in Simulink and compare our simulations
to those found in the paper. After this, we will begin experimenting with
implementing the same algorithms in C/C++ and testing with the Crazyflie.

6

Figure 3: Simulink Model From Toolbox

3.1 High Level System Design

The High Level System Diagram is shown in Figure 2. The Kinect 360 modules
communicate with the Base Station via USB. The Base Station takes the
localization information from the Kinects. The localization information is then
transmitted to the Crazyflies through the Crazyradio PA. The Crazyflies use
the localization information to update the control algorithm running on their
on-board chips.

4 Research Problem 1:
Modeling and Control of Crazyflie

The quadrotor model included in the toolbox[2] is extremely detailed with how
it is set up. There are dozens of parameters that are specific to the quadrotor
that Corke and his research team based their model on.

We read multiple research documents on system identification for the Crazyflie.
However, there were still parameters that were not covered in the research.
The researchers focused on identifying thrust coefficients and rotor speeds. So,
instead of doing our own system identification for the Crazyflie, we chose to
leave the quadrotor model as is.

The model shown in Figure 3 is used to direct the quadrotor to a specific point.
The model contains 4 PD controllers: Velocity, height, yaw and attitude.

7

4.1 Quadrotor Dynamics

This quadrotor model requires a transformation from the Inertial Frame to the
Crazyflie Body Frame. The body frame that Corke used has the standard x-y
axes but the positive z-axis is in the downward direction. This way, gravity
corresponds to the positive z direction. While using this frame of reference for
the Crazyflie, we must remember that all values entered for z will be negative,
i.e., anything above the ground has a negative z value.

While researching quadrotors, [3] presented a simple, rigid-body model of a
quadrotor, assuming low speeds. The equations defining the model are given by

ẍ = (cosφ sin θ cosψ + sinφ sinψ)
U1

m

φ̈ = θ̇ψ̇(
Iy − Iz
Ix

)− JR
Ix
θ̇ΩR +

L

Ix
U2

ÿ = (cosφ sin θ sinψ + sinφ cosψ)
U1

m

θ̈ = φ̇ψ̇(
Iz − Ix
Iy

)− JR
Iy
φ̇ΩR +

L

Iy
U3

z̈ = −g + (cosφ cos θ)
U1

m

ψ̈ = φ̇θ̇(
Ix − Iy
Iz

) +
1

Iz
U4

(1)

As they say in [3], the desired position and orientation (pose) of a quadrotor is
hovering. Therefore, we can reduce Eqn. 1 using small angle approximations.
Let U1 = mg + ∆U1. Under these approximations the equations become

ẍ = gθ

φ̈ =
L

Ix
U2

ÿ = −gφ

θ̈ =
L

Iy
U3

z̈ =
∆U1

m

ψ̈ =
1

Iz
U4

(2)

The four inputs U1,U2,U3 and U4 represent the inputs for roll, pitch, yaw
and thrust. These are the equations that Corke’s model is based on. The 4

8

Figure 4: Original Height Controller

PD controllers are used to continuously update the input commands during
simulation.

4.2 Hovering Control Design

Our first task with the Crazyflie is to have it hover at one point in 3D space.
By following the experiments performed in [1], we will have the Crazyflie go
from the ground to a specific point a few feet away but above the ground. The
Crazyflie will hover stably in that position for up to 30 seconds. In addition
to just hovering, we would be able to introduce disturbances to the bot and it
would be able to overcome any disturbances to maintain stability.

In order for us to be able to test controlling a quadcopter, we needed a model
that we could run to simulate inputs and disturbances. Instead of starting from
scratch, we were able to use a model created by Peter Corke. We installed his
MATLAB toolbox that has been developed by Corke and multiple graduate
research students over the past two decades. Corke has also written a textbook
[2] to explain how to use various parts of his toolbox.

Originally, the height controller used PD control and had a feed-forward thrust
term that was used to compensate for the thrust needed to keep the quadrotor
airborne.

Corke used this because his quadrotor weighed 4 kg and so it required a large
amount of thrust to stay in the air. By including a constant feed-forward term,
Corke eliminated the need for integral control. This allowed his quadrotor model
to stabilize much faster since an integral controller reduces settling time.

Our Crazyflie only weighs 27 g and the thrust needed to keep it airborne is
negligible. Dr. Wang advised us to introduce integral control into the height

9

Figure 5: PID Height Controller

controller. The integral controller can be seen in Figure 5. This replaced the T0
term shown in Figure 4.

4.3 Formation Control Design

The baseline design for formation control will be based on the linearized quadrotor
model, which can be represented as a double integrator given below

ẍi = ui, i = 1, · · · , n

where xi denotes the state variable and ui is the control input. To illustrate our
idea of design, in what follows, we simply assume x ∈ < and u ∈ <. Further
design Details will be presented in the final report.

The formation control is of the form

ui =

n∑
j=1

aij(xj − xi) +

n∑
j=1

aij(ẋj − ẋi) (3)

4.4 Simulation and Preliminary Results

After making the replacement in Figure 5, we needed to modify the control
values to optimize overshoot and settling time. We modified the subsystem mask
to include inputs for kd, kp and ki. These are the proportional, derivative and
integral gains, respectively. Dr. Wang recommended that we use the control
design of kp ∗ kd > ki with all control gains > 0. For the initial test, we chose
to use

10

Figure 6: X,Y,Z Plots using control values
in Eqn. 4 Figure 7: 3D Plot of Fig. 6

kp = 5

kd = 5

ki = 10

(4)

For these simulations, we are focusing on the response of Z, shown in Fig. 6. By
running the MATLAB command stepinfo, we got the step response information.
With these control values, the overshoot was 70.2% and a settling time > 30s.
We definitely want to reduce these and have < 20% overshoot and settling time
< 10s.

After a few more trials, we learned how the controller responds to the control
gains. Reducing kd decreased the overshoot. Increasing kp decreased the settling
time. With this in mind we chose to use the following control values

kp = 10

kd = 1

ki = 8

(5)

These changes to the control values had a huge effect on the height stabilization.
The overshoot was reduced 25% and the settling time was reduced to 10.3s.

Following the modifications to the Height Controller, we will be experimenting
with the other controllers to understand how to modify the response. From
Figure 8, we would like the X-Y stabilization to be as quick as the Z stabilization.

We are executing these simulations to understand the controls of the model.
Eventually, we will switch to developing the model in code for ROS. All of the
control values will be different from what we use in Simulink. However, we will
know how to tune the control values to work for the Crazyflie.

11

Figure 8: X,Y,Z Plots using control values
in Eqn. 5 Figure 9: 3D Plot of Fig. 8

5 Research Problem 2:
Implementing the Control of Crazyflie using ROS

5.1 Introduction of ROS

At the start of the project, no one in the department much experience with the
ROS system. This means that extensive research was required in order to gain a
deeper understanding of the ROS system. The main method that was used was
reading a textbook [4] that Dr. Wang provided.

5.1.1 ROS Tutorial Textbook

The textbook went through step by step instructions on how to setup and work
with a catkin workspace using ROS commands. Many of the commands used for
navigating the environment are similar to the standard Linux bash commands.
The textbook used ROS Indigo for its examples, so that is the version that we
used as well.

5.1.2 ROS Basics

ROS is a very complex program that attempts to simplify the running of a
program on a robotic system. ROS is run entirely through the command console
on Linux. It consists of three of basic concepts:

• Packages: Contain the information needed to compile executables.

• Nodes: Small modules of processes that usually do a few tasks as part of

12

the larger project. Nodes can communicate with other nodes on the same
computer or nodes on a different networked computer through the Master.

• Master: Provides the naming and registration services for the Nodes in
the ROS system. The Master allows the different nodes to find each other
so they can communicate.

In simple terms, nodes do simple processes like fetching and processing image
data. Multiple nodes work together through the master to do much more complex
tasks, like flying a drone.

5.1.3 Honig Paper

The ”Flying Multiple UAVs Using ROS” paper[5] is a helpful paper that dealt
with creating a swarm of Crazyflies. The only problem is that the paper is
designed for flying more than 20 Crazyflies with an expensive VICON camera
system for localization. We will be only flying 3 or 4 Crazyflies using the cheaper
Kinect 360 cameras. However, the GitHub for the paper had all of the demo
files that were used to test flying the Crazyflie with the PS3 remote. The ROS
Textbook[4] used the files from the paper’s GitHub that were designed for ROS
Indigo.

5.1.4 Complications

For this project, one of the main benefits of ROS is also one of its pitfalls. The
ability of ROS to be modular is touted as one of its best aspects. However,
when the modular capability is abused, programs can become confusing and
nearly impossible to follow. This is the case with the demo programs described
earlier. There are so many different aspects of the Crazyflie that need are being
controlled through various dependency files that it is extremely difficult to follow.

Possibly the toughest task for this project on the ROS side of things will be
figuring out exactly how to edit the programs to fit our needs. The first goal is
to be able to write a short program that can send information to the Crazyflie
through the Crazyradio PA. This will also require us to figure out how to remotely
flash the firmware on the Crazyflie.

5.2 The Basic Program Structure of Flying a Crazyflie
Using a Remote

Using the files from the Honig GitHub, we were able to successfully fly the
Crazyflie using the Crazyradio PA and a PS3 remote. The demo files are

13

Figure 10: Screenshot of ROS running with the Crazyflie connected. The IMU
status is shown on the graph in the center with the pink arrow. Other information,
like battery level, is displayed in the other graphs.

extremely complex with multiple dependencies spreading through multiple direc-
tories in the catkin work-space that is made using ROS.

When the demo is run through ROS, many different nodes are created. An RViz
window is opened that shows the status of the on-board IMU. Figure 10 on
page 14 shows what is displayed while running the demo.

6 Research Problem 3:
Localization of Crazyflie using Xbox 360 Kinect and
LOCO Positioning System

6.1 Functionality of Kinect Sensor

The kinect sensor uses multiple camera sensors to measure position data. The
first two camera sensors measure 3D distance data by tracking the light pattern
disruptions as shown in [6], by using a known pattern of light. The third camera
on the front uses color and depth from focus shown in [6] , and although the
exact method is undisclosed, it is based on the structured light principle. The
kinect uses these sensors together to form a 3D position of an object. For our

14

Figure 11: Xbox 360 Kinect Module

uses we will get the 3D position of our Crazyflie and feed this information to
our PD controller.

6.2 The Basics of Image Processing in ROS Environment

There are repositories that exist to connect our Kinect to the ROS enviornment,
feeding the 3D position information to our ROS controller. The sensor, working
with our ROS controller, will help to control our Crazyflie. The algorithm
referenced in [4] uses the kinect sensor and creates a color threshold in our ROS
enviornment. This threshold tells the ROS simulator where in 3D our Crazyflie
will be, and will be used to manipulate where the Crazyflie will be moved to in
3-space. The threshold code will also allow us to use multiple Crazyflies at the
same time with different color markers.

6.3 The Basic Idea Using Kinect for Localization

The algorithm suggested by the ROS book uses color thresholding to sense where
the Crazyflie is in the frame of the Kinect. The method reads a specified color
from the Kinect image data and has a certain distance that the color has to
be constant (within a certain tolerance of color). The Kinect can output this
information as a 3 dimensional variable to the controller. The thresholds need
to be set according to the specific Kinect model and the size and color of the
marker that will be set on the Crazyflie itself.

We have been provided with 3 Xbox 360 Kinect modules as shown in Figure 11.
The ROS book references the Kinect V2.0 for its superior sensors and frame
rate, which will be a concern with our Kinect 360 modules. This will have to be
overcome during our implementation of the algorithms mentioned above. There
are multiple Git Repositories that reference the Kinect V2.0, so we should be
able to convert that code to work with our Kinect 360 modules.

The next step in our research will be to implement multiple Crazyflies in the

15

Figure 12: LOCO System Diagram

same test. The algorithm can work to have multiple colors, meaning that each
Crazyflie will have its own color marker above it to feed back position information
for all of the Crazyflies in the frame of the Kinect. We may also be able to use
multiple of the same colors and have the Kinect sense that the distance between
each color marker means that there are multiple separate Crazyflies even though
they have the same color marker.

The Kinect modules will be set up on stands keeping them about a meter off
the ground. This will create a more perfect square frame that we can use to
control the Crazyflies. We will use multiple Kinect modules over time to get
better position information for our control algorithms. We will set up a square
frame where we want the Kinect modules on different sides of the square to get
more complete position information, and to allow for yaw control.

6.4 LOCO Positioning System

The LOCO Positioning System operates like a small indoor GPS system. Anchors
around the room act as position reference markers in the 3D space. Nodes are
tracked through the 3D space, one of which is on the Crazyflie.

This system may be able to be used in place of the Kinect Module. Eventually we
may be able to use the Kinect and LOCO system in tandem for some redundancy.
The LOCO system is accurate to 10cm which is accurate enough for our project
as we do not plan on doing extremely tight maneuvers.

16

Figure 13: LOCO Setup Diagram

We will have to research the capability to track multiple Crazyflies. Right now
the system can only track one Crazyflie. So we will have to purchase more LOCO
Crazyflie decks to incorporate more Crazyflies.

7 Research Problem 4:
System Integration and Formation Control Implemen-
tation

7.1 System Integration

The LOCO Positioning System and the Kinect 360 Module can detect the
positioning of the Crazyfiles. The ROS environment on the base station will
accept inputs from the Crazyflies, the LOCO system and the Kinect. The
Crazyflies will run the control algorithm on their on-board chips. The Kinect
and LOCO systems will provide localization data to the base station. The base
station runs the cooperative control algorithm and provides localization updates
to the Crazyflies.

17

7.2 Formation Control

We will be looking to implement cooperative control theory to command the
positioning of the Crazyflies. The first step will be to simulate multiple Crazyflies
in Simulink. This should be fairly simple to implement. The current model shown
in 3 would be a subsystem within the new model. Each subsystem would then
represent one Crazyflie. The cooperative control algorithm would be running
outside all the Crazyflie models, feeding each Crazyflie model with its updated
location coordinates.

8 Parts List and Work Plan

8.1 Parts List

1. Bitcraze Components

• 6 x Crazyflie 2.0

• 3 x Crazyradio PA

• 1 x Z-ranger Deck

2. Xbox Components

• 3 x Xbox 360 Kinect

• 3 x Xbox 360 Kinect Stand

• 3 x Xbox 360 Kinect Power Supply

• 1 x Xbox ONE Kinect

3. LOCO Positioning System

• 6 x LOCO Anchors

• 6 x Anchor Power Supply

• 6 x 3D Printed Anchor Brackets

• 1 x LOCO Crazyflie Deck

4. Laptop running Ubuntu 14.04 Trusty

8.2 Schedule

November 2017:

• 28: Final Proposal and Presentation Due

18

December 2017:

• 5: LOCO system setup

• 7: Website with Deliverables Due

January 2018:

• 31:

– Single Crazyflie Control Operational

– Multiple Quadrotor Model & Simulations

February 2018:

• 16: Project midpoint check

– Kinect control operational

– LOCO system operational

March 2018:

• 29: Final Report draft due

April 2018:

• 10: Student Expo

• 26: Project presentation ready

May 2018:

• 1: All deliverables due

8.3 Work Division

Bryce Mack has being developing the model and running simulations. He will
continue to do work on tuning the controllers so that we have the smoothest
flight for implementing the hovering algorithm. He will also be focusing on
developing a new model to run simulations for multiple Crazyflies. Along with

19

running simulations, he will create videos for future demonstration. In addition
to simulations, he will record simulation data like settling time and overshoot to
determine if the control meets our requirements. The versatility of the model to
change the control inputs makes this very easy. Bryce will also be working on
the website. The website should be presentable and easy to navigate. All the
deliverables will be there as well.

Chris Noe has been studying ROS and its functionality. He has been researching
how to get the ROS environment to communicate with the Crazyflie 2.0. He
has been looking into the demo code in order to find out how the demo works
so it can be modified to suit our needs. He will also be researching the LOCO
positioning system that Dr. Wang decided we would introduce to our project.
The LOCO system has detailed setup instructions on the Bitcraze website. Chris
will be following their instructions to get it setup for experimentation. Ideally, we
will be able to integrate ROS with the LOCO system so that we can implement
our control algorithm and recreate the simulations.

Trevor Rice has also been studying ROS for our initial development. He has
been researching how to incorporate a Kinect 360 into an ROS workspace. He
will be researching and documenting which libraries and packages are needed
to setup the ROS workspace. He will be researching more on how to use the
Kinect 360 cameras to detect position. Trevor will be setting up the space in
the lab that we will be using for physical experimentation. There will need to
be a clean area setup because there shouldn’t be anything to interfere with the
Kinect’s cameras and sensors. A clean area will prevent the possiblilty of a false
detection of the Crazyflie.

20

References

[1] Pedro Castillo, Rogelio Lozano, and Alejandro Dzul. “Stabilization of a
Mini Rotorcraft with Four Rotors”. In: IEEE Control Systems (2005).

[2] Peter Corke. Robotics, Vision and Control: Fundamental Algorithms in
MATLAB R©. Springer, 2011. isbn: 9783642201431.

[3] Zachary T. Dydek, Anuradha M. Annaswamy, and Eugene Lavretsky. “Adap-
tive Control of Quadrotor UAVs: A Design Trade Study With Flight Evalu-
ations”. In: IEEE Transactions on Control Systems Technology 21.4 (2013).

[4] Carol Fairchild and Thomas Harman. ROS Robotics By Example. PACKT
Publishing, 2016.

[5] Wolfgang Honig and Nora Ayanian. Flying Multiple UAVs Using ROS.

[6] Winjun Zeng. “Microsoft Kinect Sensor and Its Effect”. In: IEEE Computer
Society ().

21

