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\ Motivation

e UAVs have attracted significant attention in both industry and
military in recent years
o Reconnaissance
o Cooperative exploration for search and rescue missions

o Environmental observation
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Motlvation
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\ Motivation

e Entertainment

BRADLEY University



\ Motivation

e Surveillance and Monitoring
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\ Objectives

e Thechallenges are:
o How to deal with information sharing based on sensing/communication
among individual UAVs
o How to design simple yet efficient local control strategies for each UAV
e Theoverall goal of this project is to:
o Design practically implementable distributed control algorithms for
UAVs

o Implement algorithms using an agile nano quadcopter, the Crazyflie
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\ Objectives

Use the Kinect 360 camera for localization and stabilizing control of Crazyflie

e Use the Loco Positioning System for localization and stabilizing control of
multiple Crazyflies

e Design and implement control algorithms for Crazyflie following various
trajectories

e Design and implement formation control algorithms for multiple Crazyflies
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MODELING AND \
CONTROL DESIGN
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\ Quadrotor Coordinate System

e Theinertial frame designates Z to be any direction coming out of the earth
e The body frame of the quadrotor designates Z to be into the earth
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\ Quadrotor

Body Frame
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\ Quadrotor Model

e Adaptive Control of Quadrotor UAVs: A Design Trade Study With Flight Evaluations
o By Zachary Dydek

e Usingsmall angle approximations Eqn. 1 becomes Egn. 2
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Simulink Modeling

e Installed MATLAB Robotics, Vision and Control Toolbox developed by Peter Corke
e Explored the Quadrotor model that they created
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\ Hierarchical Control Strategy

High-level control for waypoint generation
e Low-level control for Height, Velocity, Yaw and Attitude
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\ Altitude Control

e Old model: PD + a feed-forward thrust constant
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\ Height PID Controller

e Design PID which replaces feed-forward term
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PID Tuning

e |Initial Height PID Gains e Tuned Velocity Gains
o KP=4 o KP=12
o KD=1 o KD=5
o NoKiI o KI=0.6

e Initial Velocity PID Gains e Tuned Velocity Gains
o KP=0.1 o KP=0.02
o KD=0.2 o KD=34
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\ Adjusting Height Control

Trajectory in 3D Space
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\ Adjusting Velocity Control

Trajectory in 3D Space Trajectory in 3D Space
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\ Simulation Results

Tuning the controllers allowed us to reduce the overshoot to 6% for X and Y
We decided for Z to have 0% overshoot
o  Critically damping the system
We don’t want the crazyflie ever crashing into a ceiling was our reasoning
Z is able to settle within 6.5 seconds
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rajectory Control

e Circle
o sine and cosine inputs to simulate a circle
> 3sin(t/8)
> 3cos(t/8)
e Figure8

o  2sininputs that create a figure 8
> 3sin(t/10)
> 3sin(t/20)
e Square
o 4stepinputs
o Each activating after ‘x’ seconds
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https://docs.google.com/file/d/17OvrIs4bW00hTRdNZV_WVMY909nv66AV/preview
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https://docs.google.com/file/d/1LrkfgltqlHiiBN3om_rsjAfCfjUutV_3/preview
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https://docs.google.com/file/d/1_WB1ZuFlkh13dDMD_dJbVe9dY7KEiBid/preview

Experimental
Implementation
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\ Parts List

Bitcraze Components

e 6 xCrazyflie 2.0
e 3xCrazyRadio PAs
e 1xZ-Ranger Deck

Loco Positioning System (LPS)

6 x LPS Anchors

6 x Anchor Power Supplies

6 x 3D Printed Anchor Brackets
5 x LPS Crazyflie Decks

BRADLEY University

Xbox Components

e 3 xXbox 360 Kinects
e 3 xXbox 360 Stands
e 3 xXbox 360 Kinect Power Supplies

Laptop Running Ubuntu 14.04 Trusty

Total Cost: $2585
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Using KINECT 360

for Localization \
and Control
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\ Kinect 360

e Kinect has 31/0O devices: cameras, audio, and motors
e Onlyused camera functions, not audio output or motor input

o  Thecamerahas 2 outputs to the python script
m RGBcamera- Video
m IR Blaster and monochrome CMOS sensor - Depth

e Kinect captures 640 x 480-pixel resolution at 30 FPS

XBOX 360
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\ Kinect Localization

Kinect localizes the Crazyflie using two devices, the RGB camera and the IR

camera
IR camera provides depth

e RGB cameraidentifies the marker set on the Crazyflie

(@)

(@)
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Red tape

IR Emitter

Color Sensor

IR Depth Sensor

Microphéne Array

Tilt Motor
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\ Kinect Libraries

e Discovered that python library libfreenect2 does not recognize the Kinect
360

e Libfreenect, older library, successfully communicates with Kinect 360
Libfreenect and Crazyflie-Clients-Python library bridged communication
between the Kinect and the Crazyflie
Scripts were updated to output localization data to .csv file

e Tuned PID values to test for better control
o Decided original values were optimal
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\ Kinect Workspace

e Dedicated space in Robotics Lab for Crazyflie operation
e Kinect operating ranges

o  Minimum distance: 0.5 m

o  Maximum distance: 4.5 m

o Height:0-3m
e Flight area defined by the line of sight of the Kinect

o Theflight space needs to be “visually clean”
m  Redinthe frame would cause a false positive
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e Photois ascreenshot of the video stream
shown when controlling the Crazyflie

e Textoverlaydisplays alive feed of PID
control values, position, depth, and thrust

e Graphshows X and Y output data from
one of the flights plotted in MATLAB
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esting Results
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https://docs.google.com/file/d/1xxRKRYiwEnxn08r5gr5ODWXxi3S7bkil/preview
https://docs.google.com/file/d/1xxRKRYiwEnxn08r5gr5ODWXxi3S7bkil/preview

Using Loco Positioning
System for Localization
and Control
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\ Loco Positioning System (LPS)

Set up as an “indoor gps system”

6 anchors set up in our space

A tag (deck) is placed on each crazyflie

Uses 2.4 GHz pings to estimate location in 3D space

BRADLEY University
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LPS System

Diagram
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\ LPS Modes of Operation

e Two-Way Ranging:
o  Anchors and Crazyflie both send out pings
o More accurate mode
o Limitedto 1 crazyflie
e Time Distance of Arrival (TDoA):
o  Only the anchors send out pings
o Slightly less accurate
o Can be expanded to multiple Crazyflies
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\ LPS Setup

3D printed brackets used to keep
space between the anchors and solid
surfaces

e Accurate measurements must be taken
of the locations of the anchors

e Used 6 anchors
o Can be expanded to 8 anchors for
greater accuracy

BRADLEY University
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\ Python Library Setup

e Initially tried using Ubuntu 14.04 virtual machine
o Latency issues with library execution
o More success using the Bitcraze virtual machine
o Alsotried in an Anaconda environment on a Windows machine
o Setupin Virtualenv (virtual python environment) on laptop with Ubuntu 14.04
natively installed (Dr. Wang’s PC for future use)

BRADLEY University
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High-Level System Diagram
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\ Python Library Development

e Library was developed to handle lower level control of the crazyflies
(rotor speed, IMU readings, etc)
e We focused on higher level control functions

(@)

Sending position setpoints to the crazyflie

e Developed code, from examples, using the library to create formation
flights
e Saved flight positioning data to .csv files

(@)

BRADLEY University

Later analyzed using MATLAB
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\ LPS Results - 1 Crazyflie

Started off programming hover sequence
Proceeded to program square and circular trajectories

e Square Flight: within 20% of target height at 1m (0.8049m-1.19m)

(@)

Max takeoff overshoot of 26.9% (1.269m)
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\ Circular Flight

{
b J(
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https://docs.google.com/file/d/1WvK2IFRbFwbUk_iO6xKKBqybVBTsAlRr/preview
https://docs.google.com/file/d/1WvK2IFRbFwbUk_iO6xKKBqybVBTsAlRr/preview

\ LPS Results - Multiple Crazyfies

e Used library’s parallel threading function to expand to multiple Crazyflies

e Flewupto4 Crazyfliesin “Pyramid” Formation
o Onedronehoveringat 1.75m
o  3dronescircling at 1m high
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\ LPS Results - Multiple Crazyflies
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https://docs.google.com/file/d/1OSlbNEMPrj0hp3v1KobQmO5p_jhdwk9x/preview
https://docs.google.com/file/d/1OSlbNEMPrj0hp3v1KobQmO5p_jhdwk9x/preview

\ LPS Results - Multiple Crazyflies

e Flew 5 Crazyflies in a multi-planar, parallel, concentric circular formation
o 3flyingat 1m
o 2flyingat 1.75m
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\ Conclusions

Accomplishments:

e Successfully achieved circular flight from the simulations
e Successfully able to do simple formation control of multiple Crazyflies
e Discovered that the Kinect 360 was able to fly only 1 Crazyflie

Future Work:

e Continue development with Python API
e Readlocalization data from logs in real time using URIs
e Develop and tune higher level cooperative control algorithms
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