
Internet of Things Smart Calendar
Project Proposal

Advisor: Dr. Malinowski

Cole Lindeman, Jason Morris

Table of Contents

Abstract 2

Introduction 3

Review of Literature and Prior Work 3

Applicable Standards and Patents 4
Standards to Consider 4
Patents for Similar Ideas 4

Subsystem Level Function Requirements 5
Inside the Pi 5
Modes of Operation 9

Engineering Efforts Completed to Date 10

Parts List 11

Deliverables and Schedule 11

Discussion and Future Directions 12

References 13
Citations 13
See Also 13

1

Abstract

Many university professors like to post their schedule and office hours right outside their
door so that students know when they can find them. Unfortunately, sudden changes to
a professor’s agenda can make it hard to keep that schedule up to date. The Internet of
Things Smart Calendar seeks to offer an easy solution. The Internet of Things Smart
Calendar is a device that interfaces with Google Calendar and keeps an updated
display of the professor’s Google Calendar. It provides the service of displaying a
professor’s office hours, advertisements, announcements, and other relevant
information that the professor would like the students to know about.

Creating an approach to this solution involved many hours of planning and preparation.
Research was done on relevant projects that were similar to this one. It was decided
that the project would be powered by a Raspberry Pi and a touch screen would be used
as the display. The Raspberry Pi will be interfacing with motion and door sensors and
make decisions as to what should be displayed. So far, a user interface has been
created using HTML and CSS.

Continuing to create this solution utilizing new and up to date technology should give
teachers around the world an easier way to manage their schedule and provide their
students with desired information.

2

I. Introduction

This project is an Internet of Things Smart Calendar that organizes a collection of input
connections and uses the information to display data as well as send messages.

The Smart Calendar will display the professor’s calendar as well as advertisements on
an interactive monitor outside his room. Sensors will be used to recognize when
students are nearby for tracking purposes; the Smart Calendar will also be able to
display ads for passersby as well as display the calendar for people stopping at the
Smart Calendar.

The Calendar will be able to contact the professor to send messages. The Smart
Calendar will send an alert if a student is outside the office door during office hours.
There will also be a feature to optionally leave messages using the Calendar which will
be sent directly to the professor.

The Smart Calendar display will be placed directly outside the professor’s office while
the main controller device will be in the ceiling. Additionally, motion sensors will be
placed along the wall and a magnetic sensor will be attached to the office door.

II. Review of Literature and Prior Work

Similar projects involving a smart calendar have been created. One person has created
a project that displays their google calendar on one half of the screen, and the local
weather on the other half [1]. It automatically shuts down at night and has buttons on
the side to toggle the calendar between monthly, weekly, and daily views of the
calendar. This particular project is powered by a Raspberry Pi. However, it does not
have motion sensors or touch screen interactivity.

Another similar product that has been created is called the DAKboard [2]. The
DAKboard is a customizable wall display that displays relevant information to the user’s
life, such as pictures, weather, and upcoming calendar events. This display also lacks
motion sensors and a touch screen.

III. Applicable Standards and Patents
A. Standards to Consider

Since this project will involve electrical wires, a large concern is safety. The project will
be installed on a wall in a building where many people walk by and possibly interact with
the device. OSHA has a myriad of safety standards for electronic equipment and

3

electrical wiring. These standards must absolutely be adhered to as installing the device
in the building could be breaching building code and would have to be taken down. As
an example, OSHA standard 1910.305(f)(1) demands any “conductors used for general
wiring shall be insulated” which means that anything used has to be jacketed or covered
somehow so no conductors are exposed [3].

It would also be a good plan to follow one or more sets of cyber-security standards as
the device will connect to the Internet and could potentially have a multitude of possible
security breaches. If the device or any database that the device uses is comprised,
unwanted advertisements and announcements could appear on the Smart Calendar.

Some helpful tools applicable to solving functionality are Javascript, HTML and CSS
which all fall under W3C standards [4]. Any web applications should be designed and
tested with the wealth of standards, specifications and guidelines provided by this
platform. These standards are intended to improve quality whenever applicable and are
also free to view.

B. Patents for Similar Ideas
There are some patents for features on electronic calendars that could possibly be used
to implement required functionality. In order to avoid possible patent troubles, the
features should be implemented using different methods.

One method that cannot be used is using email to update the Smart Calendar. This
method is patented by Xerox and is very specific on patenting the idea of updating an
electronic calendar with information in an email message [5]. Luckily, there are plenty of
other options on how to update the Smart Calendar. Avoiding email updates altogether
could be possible using a direct update link or by having a website host retrievable
updates.

There are no current plans to obtain a patent for any of the other methods used for the
functionality. The project could possibly later be packaged as a product as well as
reproduced and redistributed; in order to allow this to be possible, no patents can be
violated.

IV. Subsystem Level Function Requirements

The Raspberry Pi 3 will interface with all sensors and devices. It will also communicate
with the internet using its onboard ethernet port. It needs a power supply connected to
the power inlet from a 120V conventional power line. The Pi will be resting inside a
protective case in the ceiling.

4

The wires coming in/out from the sensors need to be attached to the Raspberry Pi’s
digital I/O pins. Power will be siphoned out of the Vcc and Ground pins for the sensors’
usage using more wires. The voltage may have to be regulated to an appropriate rating
for use with the sensors which might require simple circuitry. The sensors will be placed
in necessary positions to be able to track required information. The wires will have to
reach the Pi from these positions.

The monitor for display will be mounted on the wall underneath the Raspberry Pi. The
specific monitor ordered needs an HDMI cable, a USB cable and its own power supply.
The USB and HDMI cables will need to reach the Pi and the power supply needs to
source its own power from a 120V conventional power line.

A. Inside the Pi
The Raspberry Pi will be running multiple processes to make meaningful information out
of sensors, control devices and use the internet. These processes include:

● GUI Process
This process will handle the graphics going to the in/out connection with the touch
display monitor connected via USB and HDMI. Some of the data displayed in the
graphics (Doctor Malinowski’s google calendar, class advertisements, weather, etc.) will
be grabbed from the internet.

This process also handles the message interface which allows users to leave a
message using software keyboard input typed via the touch screen. The messages will
then be stored in memory to be sent. There will also be interactivity for people to use
the GUI to control the information being displayed using the monitor’s touch controls.
When not being interacted with, this process will default to displaying advertisements to
passers-by and switch to displaying the calendar for people who stop at the calendar.

● Tracking Process
In order for the board to make sense of all of the sensor data, it needs a process to read
pin information and make decisions. The process will gather information from all motion
sensors and the open door sensor by reading the board’s specific drivers for the digital
I/O pins that the sensors are connected to. It will then form coherent, human-readable
tracking data and send it out to memory for storage. The Tracking Process will also tell
the GUI Process when someone stops in front of the Smart Calendar.

● Memory
A portion of read/write memory will be allocated on the Raspberry Pi 3’s SD card
storage for temporary data. This data will be sent to the Internet as a data file and
uploaded to Google Drive.

5

● Sleep/Wake Up Process
A process will be reading the onboard Real Time Clock. When it is time to sleep, the
process will shut down any unnecessary processes and set the digital I/O pins to low
power to unpower the sensors. When it is time to wake up, the process will start up any
other necessary processes and power the digital I/O pins to power the sensors.

● Door Lock Process
This process will accept a secure message from the internet and then use the digital I/O
pin to communicate with the electronic door lock to unlock the door.

Figure 1. Subsystem Level Diagram

A diagram detailing the connections between subsystems and I/O.

6

Figure 2. Gui Process Block Diagram

A block diagram detailing the design for the process that controls what is displayed. The
process also handles messaging.

7

Figure 3. Tracking Process Block Diagram

A block diagram detailing the design for the process that reads the infrared sensors and
sends notifications to other processes. The process also creates tracking data and

uploads the data to an online database when it is told to end.

B. Modes of Operation

In order to conserve power, the Smart Calendar will also enter modes of operation
where the system sleeps.

● Off
The device is completely powered off. This could happen if the device is manually
unpowered or if the power goes out. From this mode, the device needs to receive power
again and turn on. This might require manual interaction with the device. Once it
receives power again and is turned back on, it will enter Startup.

8

● Low Power
The device is in a power saving mode, the display is off, and all inputs are not being
read; this mode is for power saving when nobody is around to look at the calendar
overnight. The Raspberry Pi cannot shut off completely because it cannot wake itself
up, but it can enter sleep mode.

● Startup (transition)

The GUI is loaded in kiosk mode, the display is off, and all inputs are not being read;
this transition is for loading features out of Low Power mode into Powered On mode.
The Pi can automatically enter Startup from Low Power based on default criteria like a
given time of day.

● Powered On

The device is actively retrieving all inputs, displaying functionality on the monitor, and
deciding if to send alerts; this mode is for implementing all designated Smart Calendar
features.

● Shutting Down (transition)

The device sends stored tracking data to the internet, the display is off, and all inputs
are not being read; this transition is for stopping all features and going to Low Power
mode from Powered On mode. The Pi can automatically enter Shutting Down from
Powered On based on default criteria like a given time of day.

V. Engineering Efforts Completed to Date

Most of the required functionality of the Smart Calendar has already been considered.
All of the required techniques to perform the functionality have a generic design as
included in the Subsystem Level Functional Requirements section.

Many useful programming languages for this project have already been studied and
researched. This includes Python, HTML paired with Javascript/Ajax/PHP, Bash, and
various other Linux commands.

Some programming is done or is partially complete. For the display, there already is a
working framework with a section for calendar, messages, and advertisements. In the
background, example work has been done for interprocess communication.

Simulation has been done on a Raspberry Pi 2 running Ubuntu MATE and a virtual
machine running Xubuntu in order to test if the programming works correctly. Since any
version of Unix should work similarly, this simulation should provide a good basis for
what will happen when the same program is ran on the Smart Calendar.

9

VI. Parts List

● Waveshare 10.1 inch 1280x800 IPS LCD Capacitive Touchscreen with case
○ $118.99

● Raspberry Pi 3 with power supply, case and heatsinks
○ $51.94

● Sandisk 32GB microSDHC card with normal SD card adapter
○ $10.59

● Aleko magnetic reed switches
○ $9.99

● Emy passive infrared motion sensor detector modules
○ $5.49

● Ethernet*, HDMI, USB and digital I/O cables
○ $14.89

Total cost: $211.89

*Ethernet cable is in house and is not included in price.

VII. Deliverables and Schedule

Tasks will mostly be done by one individual given their specific focus and skills. Some
tasks will involve collaboration. The deliverables for Spring semester haven’t been
assigned or announced yet and are not included.

Table 1
Schedule for Completion

Week Jason’s work Cole’s work

11/27/16 12/3/16 Product Proposal presentation
Finalize Product Proposal

12/4/16 12/10/16 Final Exam

12/11/16 12/17/16 Final Exam

12/18/16 12/24/16 Winter Break​ begins

12/25/16 12/31/16 Winter Break

1/1/17 1/7/17 Winter Break

10

1/8/17 1/14/17 Winter Break​ ends

1/15/17 1/21/17 Spring Semester​ begins
Write Python code to host HTTP web server for Ajax to communicate
with

1/22/17 1/28/17 Write XML code using Ajax to
direct browser

Continue writing Python code to
communicate with Ajax

1/29/17 2/4/17 Write HTML code to direct browser
back to ads when idle for long
enough

Setup Raspberry Pi
Setup monitor for Pi

2/5/17 2/11/17 Write javascript for ads that
“follow” passersby

Figure out reading, writing, and
permissions for I/O pins
Connect sensors to Pi

2/12/17 2/18/17 Write Python script to poll I/O
pins
Write Python script to enable
and disable I/O pins

2/19/17 2/25/17 Find method to upload text files
Write script to use method to
upload tracking text file

Write Python script to track
movement with IR sensors

2/26/17 3/4/17 Write Python script to compile
movement information into a
text file

3/5/17 3/11/17 Write Python script to send
commands to Ajax using
movement information

Write Python script to
communicate with door lock

3/12/17 3/18/17 Spring Break

3/19/17 3/25/17 Test Internet communication Write script for sleep/wakeup
process

3/26/17 4/1/17 Test mount setup for project

4/2/17 4/8/17 Mount project

4/9/17 4/15/17 Spare time in case of changes

4/16/17 4/22/17 Spare time in case of changes

4/23/17 4/29/17 Spare time in case of changes

Some work has been divided up such that one person can focus on one task while the
other on another; this is due to specific focuses and skillsets. Sometimes tasks call for

11

collaboration and require both partners to work at simultaneously in which case both are
responsible.

VIII. Discussion and Future Directions

For the moment, work needs to be done with Ajax to control the web browser from
outside processes. This is the major boundary from continuing to program for the
project.

Optionally, there are plans to implement many other features. The first one likely to be
implemented would be an automatic service to pull updates from Github. This feature
would likely be turned off in the final release as this could introduce unforeseen issues
and possible breaches in security.

There is also talk on adding new tabs to the Smart Calendar for added interactivity. If all
work is completed early, work on these additional features will start. These features
could be local weather information, local weather alerts, or a simple game.

Additionally, as a side project, Jason has shown interest in making a companion phone
application to the Smart Calendar. The application would have many of the same
features of the Smart Calendar, but for a mobile platform.

IX. References

Citations
[1] Kmccb (2016, Apr. 7). ​Raspberry Pi Framed Informational Display - Google Calendar,
Weather, and More.. ​[Online]. Available: ​http://imgur.com/gallery/z94Vr

[2] M. Archambault. ​DAKboard Is a Customizable Wall Display for Photos, Calendar Events, and
Weather​ [Online]. Available:
http://petapixel.com/2015/08/19/dakboard-is-a-​Customizable-wall-display-for-photos-calendar-e
vents-and-weather/

[3] (2007, Feb. 14). ​Wiring Methods, Components, and Equipment for General Use ​[Online].
Available:
https://www.osha.gov/pls/oshaweb/owadisp.show_document​?p_table=STANDARDS&p_id=988
2

[4] ​Standards - W3C ​[Online]. Available: ​https://www.w3.org/standards/

12

http://imgur.com/gallery/z94Vr
http://petapixel.com/2015/08/19/dakboard-is-a-
https://www.w3.org/standards/
https://www.osha.gov/pls/oshaweb/owadisp.show_document

[5] JL. Meunier, C. Hagage, S. Castellani, D. Proux, E. Cheminot, F. Segond, “System and
method for updating an electronic calendar​” ​U.S. Patent 9 436 649, Sept., 6, 2016.

See Also
[6] D. J. Barrett, ​Linux Pocket Guide, ​2nd ed. Sebastopol, CA: O'Reilly, 2004.

[7] ​PHP 5 Tutorial​ [Online]. Available: ​http://www.w3schools.com/php/default.asp

[8] (2016). ​Python 2.7.12 Documentation ​[Online]. Available: ​https://docs.python.org/2.7/

[9] ​Linux Documentation ​[Online]​.​ Available: ​https://linux.die.net/

[10] ​Ajax jQuery API Documentation ​[Online]. Available: ​http://api.jquery.com/jquery.ajax/

13

http://api.jquery.com/jquery.ajax/
https://docs.python.org/2.7/
http://www.w3schools.com/php/default.asp
https://linux.die.net/

