
Indoor Robot Localization and Mapping using ZigBee
Radio Technology

Kyle Hevrdejs and Jacob Knoll
Advisor: Dr. Suruz Miah

October 31, 2016

1 Functional Description of the Project

In this project, we will implement a localization and mapping algorithm using a differential
drive wheeled mobile robot operating in an indoor environment. The mobile robot will be
equipped with an onboard microcontroller for implementing the proposed localization and
mapping algorithm. The mobile robot is supposed to receive signal strength information from
a set of ZigBee1 radio modules (called herein active beacons) mounted on three-dimensional
(3D) coordinates (ceiling of the robot’s workspace, for example). The proposed localization
and mapping algorithm is expected to determine the position and orientation (pose) of the
mobile robot and 3D coordinates of active beacons (in this project, these are XBee modules2

that support the ZigBee protocol). Appropriate actuator commands are then applied for the
mobile robot to follow a set of two-dimensional waypoints within the robot’s workspace. The
information from the active beacons will allow the mobile robot to estimate the locations of
beacons and its pose in an indoor environment simultaneously using an extended Kalman
filter3 (simultaneous localization and mapping). Based on the estimated pose of the mobile
robot and the position of beacons, the necessary linear and angular velocities (actuator
commands) will be applied to the mobile robot’s left and right wheels in order to follow the
path defined by pre-determined waypoints.

2 Related Work

One of the major areas in the field of robotics is localization.To control any type of robot (in
our case a mobile robot), certain aspects of the environment must be known or able to be
detected through the use of various sensors. Generally, there are two pieces of information
that are gained by localization, the current location and the current orientation. By far the
most common way to gather these two values is through the use of dead reckoning. This
method uses the mobile robot’s onboard odomettry to measure the distance traveled and

1https://en.wikipedia.org/wiki/ZigBee
2See http://www.digikey.com/ for details.
3https://en.wikipedia.org/wiki/Kalman filter

1

https://en.wikipedia.org/wiki/ZigBee
http://www.digikey.com/product-detail/en/XB24-AWI-001/XB24-AWI-001-ND/935965?WT.mc_id=IQ_7595_G_pla935965&wt.srch=1&wt.medium=cpc&WT.srch=1&gclid=CIHY-u-zxs8CFQqKaQodSI4FJw
https://en.wikipedia.org/wiki/Kalman_filter


convert that to a position and orientation (pose). For small environments, this method is
adequate, but once the distance traveled becomes greater is becomes less accurate. The
decreasing accuracy mostly stems from error in measurements since they will accumulate
over time. Another limitation to this method is that the mobile robot must know its initial
position, otherwise all subsequent calculations will be wrong. Therefore, dead reckoning is
usually paired with another localization method.

Over the years there has been a sizeable amount of work done to increase the accuracy
of robot localization. Much of this work is based on the same algorithm, called SLAM (Si-
multaneous Localization and Mapping) and its variants such as EKF (Extended Kahlman
Filter) SLAM and fastSLAM. Since the algorithm is already well established, it makes sense
that the work centered around is focusing on new ways to achieve the localization aspect.
Some of these methods include the use of RFID [4][1][2], directional antennas [5], and XBee
networks [3].

The method presented in [1] uses the phase of ultra high frequency RFID signals in order
to find the position and orientation of the mobile robot. The work presented shows the
potential of such a system in real world use. However, due to the nature of RFID and signal
processing, certain errors are produced in their algorithm. Since only two passive RFID
tags were used, there were uncertainties in the localization algorithm. The system was also
developed purely to test the feasability of the technique and was not used to do any sort of
navigation. However this method does present a viable option for solving the localization
problem.

In [4], the author seeks to improve upon the accuracy of the method shown in [1]. In
this paper, the author builds upon the previous method by adding the use of phase shift
measurements in combination with RSSI. This improves accuracy significantly. Another
improvement from the old method is the use of more passive tags in the beacon network.
However, like the previous paper, the system was implemented to simply test the method
and was not used to navigate an environment and had the mobile robot follow a line marked
on the floor.

Another paper presenting mapping and localization using RFID can be found in [2]. This
method presents refined method of mapping an environment and localizing a mobile robot
within it. Similar to the work presented in [4] and [1], RFID tags are mounted on the ceiling.
The main difference is the use of two, forward-facing directional antennas. This allows for
the detection of RFID tags in certain zones within a known range of angles, simplifying
the calculations. This paper also used the fastSLAM method, which is more robust than
regular SLAM. This allowed the mobile robot to localized itself relatively quickly. The main
disadvantage of this method (and the previous two) is the use passive RFID tags that have
a range of only a couple meters in optimal conditions. In a real-world scenario, beacons may
not be as numerous or densely placed in an environment.

The logical solution to this issue is to change wireless technologies. In the work pre-
sented in [5], the authors replace the passive RFID tags with a large number of wireless

2



sensor nodes. This increases the size of the operating area. The setup of this system is also
simpler, utilizing only a single directional antenna for sensor detection. The advantage of
this system is clearly the simplicity of its hardware which requires minimal RF knowledge.
However, the diisadvantage comes in the complexity of the calculations and computing power
required. It also appears that it takes more time to localize the robot as more radio sources
are introduced, which is not desired.

3 System Level Block Diagrams

A system level block diagram is shown in Figure 1. The main source of power for this system
will be the 12V connection available within the mobile robot. The user will also be able to
supply a set of predefined waypoints to the controller, which will define the mobile robot’s
trajectory through the environment. In order to follow this trajectory, the system will also
need the received signal strength and IDs from the active beacons. This data will be sent
through a 2.4GHz wireless signal using ZigBee protocol. Since the RSS measurements are
subject to environmental noise, there is a certain amount of noise picked up by the signal as
it radiates from the active beacons.

Since the main function of the system is navigation, most of the outputs are used for
debugging and status indication to the user. The mobile robot’s estimated pose is the
location the mobile robot thinks it is currently located at. The active beacons’ estimated
positions is similar, except it outputs the estimated positions of all active beacons within
the XBee network. The last output is the mobile robot’s path following waypoints, which is
simply the path the mobile robot follows as it navigates to its current waypoint.

Localization
and Mapping

Power (12 V)

Pre-defined
waypoints

Beacon's received signal
strength (RSS) and ID from beacon

Robot's estimated
pose

Beacons' estimated
position

Robot's path
following waypoints

Noise from
environment

Input Output

Figure 1: High level block diagram of the Robot System

4 Modes of Operation

• Initialization - This mode will run at startup and will handle the activation/initialization
of subsystems. This mode will also reset any components that require it. The only

3



input required for this mode is power.

• Calibration - Once the system has been initialized, this mode will be entered. During
this mode, the system will perform a preliminary discovery of all active beacons within
a specified range. It will then run calibration functions to calculate necessary constants
and parameters used in later modes. The two inputs required in this mode are power,
beacon received signal strength and ID, and environment noise. This mode will also
utilize the output for requesting signal strength and ID.

• Discovery - This mode will handle the discovery of active beacons in the environment.
Unlike the calibration mode, this mode will run at set intervals during operation of
the system in order to prevent loss of wireless signal. The required inputs for this
mode of operation are power, active beacon’s received signal strength and ID, and
noise from environment. The output during this mode of operation is the request for
signal strength and ID.

• Navigation - This is the main mode of the system, it will handle the navigation of
the mobile robot along the path defined by the pre-determined waypoints. This mode
utilizes all inputs and outputs of the system, with the outputs being displayed for
status information.

5 Subsystem Level Block Diagrams

Controller Preprocessor
Mobile

Robot

Estimation

Predefined
Waypoints
(desired)

XBee

Network

ν (linear velocity)

γ (steering angle)

ν (linear velocity)

! (angular velocity)

Noisy Pose

Beacon
IDs

Beacons' received
signal strength (RSS)

Noise from
environment

Robot's path

following way-

points

Estimated Position of XBees

Estimated Pose

Figure 2: Subsystem block diagram of the Robot System

4



6 Functional Descriptions of Subsystem Blocks

6.1 Robot

This subsystem block handles the movement of the system within its environment. For our
project, the mobile robot will be the Pioneer 3-DX running the ROSARIA4 package.

6.2 Mapping and Localization

This subsystem contains the interface between the transmitter (XBee) and the Beaglebone
Black microcomputer. The transmitter will communicate received signal strength indicator
(RSSI) information and ID tags from the XBee netowrk to the microcomputer via UART
where the estimated positions of the active beacons will be determined (mapping). Angle
information of the active beacons with respect to the positive x-axis of the (x, y) plane will
also communicated to the microcomputer. The implementation of getting angle information
about the active beacons has not been finalized. Using the estimated active beacon positions
and angles, the subsystem will estimate the position and orientation of the robot platform
with respect to the (x, y) plane (localization). A flowchart showing the procedure used by
the estimation subsystem can be seen in Figure 3.

6.3 Controller

This subsystem will handle the control of the mobile robot through linear and angular
velocity inputs. These inputs are calculated so that when they are applied, the mobile robot
will converge towards its current waypoint. Once the waypoint is within a certain distance,
it will automatically switch to the next input so the mobile robot will continue to follow
the predetermined path. The controller will be able to communicate with other subsystems
via ROS, a widely used pseudo-operating system offering high-level abstraction from low
level systems, which will simplify the communication and control aspect of the system. A
flowchart showing the procedure used by the controller can be seen in Figure 4.

6.4 Preprocessor

This subsytem is not very complicated. Its only purpose is to convert the linear velocity and
steering angle produced by the controller into the linear and angular velocity values needed
by the mobile robot. Since this is a simple conversion, there is no flowchart included for this
block in section 7.

7 Flowcharts

7.1 Mapping and Localization

The flowchart showing the process of the estimation block is show in Figure 3. The steps
are detailed below.

4http://wiki.ros.org/ROSARIA

5

http://wiki.ros.org/ROSARIA


Step 0: This step initializes the variables for SLAM state, SLAM state co-variance, sam-
pling time interval, data association table, data association gates, observation parameters,
and others so they may be used by other parts of the mapping and localization block.
Step 1: This step handles the receiving of the noisy pose data in the form of RSSI and
angle value.
Step 2: Using the information received in step 1, the EKF predict state covariance are
calculated. This is the first step of the Extended Kalman filter for performing simultaneous
localization and mapping.
Step 3: If enough time has passed since the last localization, localize again by continuing
to step 5. If not, wait until the necessary amount of tie has passed.
Step 4: Observe RSSI and ID tags from beacons that are visible within the robot’s semi-
circular view.
Step 5: Associate new observations with previous observations.
Step 6: Calculate extended Kalman filter update using Cholesky factorization given the
prior SLAM state and state covariance.
Step 7: Augment the SLAM state and state covariance using the data from step 6.
Step 8: Save states for next loop.
Step 9: Output estimated mobile robot pose and estimated beacon positions from SLAM
state. After this step is complete, the algorithm returns to step 3.

7.2 Controller

The flowchart showing the process of the controller is shown in Figure 4. The steps are
detailed below.
Step 0: The first step executed by this block is the initialization of variables. As seen in the
figure, this step only occurs immediately after the block starts. This step mostly consists of
environment setup and verifying connections.
Step 1: Once the block has started, it must check if this is the first iteration it has run
since this step will be repeated every time the mobile robot moves. This step defines how
the main loop will handle the waypoints initially.
Step 2: This step can be reached in two ways. If it is reached through step 1, it will set
the new waypoint to be the first in the list of predefined waypoints (the start of the mobile
robot’s path). If it is reached through step 7, it will increment to the next waypoint in the
list provided by the user.
Step 3: This step uses the estimated pose of the mobile robot provided by the mapping
and localization block and the position of the current waypoint. The only calculations made
here are the distance between the mobile robot and the waypoint and the angle between the
mobile robot’s current orientation and its desired orientation. This information is sent on
the step 4.
Step 4: Using the information provided by step 3, this step calculates the necessary linear
velocity and steering angle in order to drive to the current waypoint.
Step 5: This is the last step of the main loop. It will take the calculated linear velocity and
steering angle and output them to the preprocessor block shown in Figure 2. Once this is
complete, the process returns to step 1.

6



Step 6: This step is very simple and only handles the input of the estimated pose of the
mobile robot and sends it directly to step 3. This information is obtained from the estima-
tion block, specifically from step 9 in Figure 3.
Step 7: This step is reached every time after the first iteration. It checks to see if the mobile
robot is within a certain distance to the waypoint. If the answer is yes, the next step is step
2. If the answer is no, the next step is step 8.
Step 8: When the mobile robot is not close enough to the current waypoint, this step is
reached. Instead of changing to a new waypoint as in step 2, this step simply keeps the
current waypoint and continues on with the loop.

Initialize variables

Start

Receive noisy

pose information

Has enough time

passed since the

last observation?

EKF predict state

and covariance

Get RSSI and ID

from beacons

Data association

Update EKF state

Augment EKF state

Save states

Output estimated

robot pose

YesRepeat

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Figure 3: A flowchart showing the process of the estimation block

7



Input estimated

robot pose

Calculate distance

between waypoint and

robot pose

Start

Initialize variables

Set new waypoint

First iteration?
Robot within

required distance?

Keep waypoint

Calculate linear velocity

and steering angle

Output linear velocity

and steering angle

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Yes

No

Yes

No

Figure 4: A flowchart showing the process of the controller block

8



References

[1] E. DiGiampaolo and F. Martinelli. Mobile robot localization using the phase of passive
uhf rfid signals. IEEE Transactions on Industrial Electronics, 61(1):365–376, Jan 2014.

[2] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose. Mapping and localization
with rfid technology. In Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004
IEEE International Conference on, volume 1, pages 1015–1020 Vol.1, April 2004.

[3] B. N. Hood and P. Barooah. Estimating doa from radio-frequency rssi measurements
using an actuated reflector. IEEE Sensors Journal, 11(2):413–417, Feb 2011.

[4] F. Martinelli. A robot localization system combining rssi and phase shift in uhf-rfid
signals. IEEE Transactions on Control Systems Technology, 23(5):1782–1796, Sept 2015.

[5] D. Song, C. Y. Kim, and J. Yi. Simultaneous localization of multiple unknown and
transient radio sources using a mobile robot. IEEE Transactions on Robotics, 28(3):668–
680, June 2012.

9


	Functional Description of the Project
	Related Work
	System Level Block Diagrams
	Modes of Operation
	Subsystem Level Block Diagrams
	Functional Descriptions of Subsystem Blocks
	Robot
	Mapping and Localization
	Controller
	Preprocessor

	Flowcharts
	Mapping and Localization
	Controller

	References

