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Abstract

Addressing the navigation (localization and motion control) problem of a mobile robot,
coupled with its mapping problem, remains a significant challenge to date. The well–
known simultaneous localization and mapping (SLAM) problem of mobile robots has been
addressed in the literature without specifically taking into account the robot’s motion con-
trol tasks. Moreover, its implementation can cost more than the robot itself. Robot’s
motion control strategies developed in the literature either (i) rely on sophisticated hard-
ware platforms, (ii) assume noise-free environments, or (iii) are based on abstract theories
which are validated using computer simulations only.

The work presented herein solves the navigation and mapping problems of mobile robots
using open–source hardware and range–only measurements from a network of radio sources.
The hardware platform used in this work is customized such that it is cost–effective
and easy-to-implement, addressing the aforementioned issues in developing motion con-
trol strategies. Here, the robot estimates its position and orientation, builds a map of its
operating environment using radio frequency (RF) signals received from radio sources. It
then navigates through a path defined by a set of 2D points on the ground using a motion
control strategy in cooperation with a tool of computational intelligence. The proposed
robot navigation and mapping scheme is tested in an indoor laboratory environment and
its performance is compared with the simulation counterpart using a commercial robot
simulator.
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Chapter 1

Introduction

In recent years, mobile robot navigation has became a popular topic in research, mili-
tary, and commercial applications. Successful navigation relies on addressing two major
challenges in the field of robotics: (i) localization and mapping, and (ii) motion control.
Previous works have solved the simultaneous localization and mapping problem (SLAM)
alone without taking into account motion control, see the work in [6, 23, 12] and some
references therein. In many of these instances, the hardware necessary to implement the
SLAM algorithm can be more expensive than the robot itself. The robotics community
has also been interested in the motion control problem and has addressed robot dynamics,
kinematics, and its actuator constraints assuming the fact the map of the robot’s operating
environment is known. See the papers, [17, 18, 16, 19], for example. Proposed solutions to
the SLAM problem have lately involved the use of RF signals from radio sources to localize
a mobile robot [4, 14, 8, 9, 1]. Specifically, received signal strength indicator (RSSI) mea-
surements have been common in these works, see [2, 13, 21, 22]. However, a major issue of
using RSSI measurements for localizing a robot is that they are less sensitive to the robot’s
location. The signal-to-noise ratio associated with RSSI information is relatively low com-
pared to other RF signals due to the fact that they are dependent on robot’s operating
environment. Also, RSSI measurements also rely on the radiation pattern of the antenna
mounted on the selected radio. Despite these side effects of using RSSI measurements, they
are a common choice for indoor/outdoor robot position and orientation (pose) estimation
due to the fact that most radio sources are inexpensive, require little to no maintenance,
and the RSSI data from them can be obtained relatively easy. In addition, radio sources
have integrated circuits that store individual unit identifiers (ID) and the last RSSI in
their memory. Therefore, radio sources can be uniquely identified by a receiver mounted
on the robot, coupling RSSI measurements with IDs. Thus, bypassing the common data
association problem encountered when performing measurements.

For this project, a mobile robot placed in an indoor environment must simultaneously
navigate through a set of predefined waypoints on the ground while estimating its own
pose and postions of radio sources in the operating space. Mobile robot navigation and
SLAM has been done by many, but these works usually solve only one of the problems,
use expensive equipment, or only show simulation results. The goal for this project was to
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Chapter 1. Introduction

simulate and implement a cost-effective, easy to use, and modular mobile robot navigation
and mapping system. Due to the lack of reliable GPS signals indoors, RSSI measurements
from radio sources in the robot’s operating range are used to estimate the robot’s pose in
this work. Several drawbacks of using RSSI have been addressed by building an inexpensive
custom radio transceiver which increases accuracy of measurements, aiding in the mapping
of the radio source’s positions. XBee radios are used as radio sources in this work. They
are low-cost and communicate using the ZigBee protocol which allows for easy access to
RSSI information. In order to simultaneous localize the mobile robot and map the XBee
radios, or beacons, the well-known extended Kalman filter algorithm is utilized due to its
resilience in noisy environments. To control the motion of the robot, a fuzzy logic controller
and proportional controller have been implemented. A fuzzy logic controller uses human
like reasoning to determine the robot’s linear speed without requiring accurate approxi-
mate distances between the robot and it’s current waypoint. To test the performance of
the proposed solution, several simulations have been completed using a commercial robot
simulator, and results from laboratory experiments using off-the-shelf hardware confirm
the implementation of a fully-functional system.

The rest of the report is organized as follows:

• Chapter 2 discusses the simultaneous navigation and mapping algorithm.

• Chapter 3 shows a simulation of the navigation and mapping algorithm in V-REP.

• Chapter 4 describes the customized radio transceiver and its use for range and bearing
approximation.

• Chapter 5 shows the experimental results of the implemented navigation and mapping
algorithm in a laboratory environment.

• Chapter 6 draws conclusions from the results and presents future related work.

• Appendex A goes through the steps to simulate the algorithm in V-REP.

• Appendex B explains to the run an experiment using the customized radio transceiver
and Pioneer 3-DX.
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Chapter 2

Simultaneous Navigation and
Mapping

This chapter discusses the EKF-SLAM algorithm, other mathematical models, and the
robot’s motion controllers. First, Section 2.1 the mobile robot’s kinematics are modeled
and illustrated. In Section 2.2, the EKF-SLAM algorithm is presented in detail. Section 2.3
covers the measurement model of using RSSI to determine range and bearing of the XBee
radios. This is followed by a description of the fuzzy logic and proportional controller used
for motion control in Section 2.4.

2.1 Robot Model

Even though a circular shaped differential-drive mobile robot was used to conduct the
simulations and experiments for this project, the kinematic model of an Ackermann steering
vehicle operating on a ground–fixed inertial reference frame X-Y was considered [3]. This is
done so the proposed localization and mapping algorithm can be applied to a wide range of
robotic vehicles. Let qk,r ≡ [xk, yk, θk]

T denote the pose (position and orientation) vector
of the robot at time t ≥ 0 with t = kT, k ∈ N0, the subscript r in qk,r indicates robot’s
pose, and T > 0 being the sampling time. The robot’s discrete-time model is approximated
by the first-order Euler integration given as

xk+1 = xk + Tνk cos (θk + γk), (2.1a)

yk+1 = yk + Tνk sin (θk + γk), (2.1b)

θk+1 = θk + Tνk
sin (γk)

`
, (2.1c)

where γk ∈ (−π
2
, π
2
) is the front wheel steering angle with respect to the robot’s orientation

θk ∈ [−π, π), νk is the linear speed, and ` is the distance between the drive wheels of the
robot. A compact form of model (2.1) can be written as

qk+1,r = fr(qk,r,uk), (2.2)

Senior Capstone Project, 2017 Page 3 of 42



Chapter 2. Navigation and Mapping 2.2. EKF-SLAM Algorithm

`

X

Y

xk

yk

θk

γk

(0,0)

Figure 2.1: Illustration of the Ackermann steering vehicle model.

where the vector-valued vector function fr : R3 ×R2 → R3 and the robot’s motion control
input uk = [νk, γk]

T ∈ R2. It is assumed that the left and right wheels of the robot steer
together under a no slip condition [3].

2.2 EKF-SLAM Algorithm

Simultaneous localization and mapping (SLAM) is a standard problem in the field of
mobile robotics and has been an active research topic in recent years (see [21] and some
references therein). A significant challenge in solving this problem is to overcome the effect
of multipath on measurement signals when a robot operates in an indoor environment.
Even though a large body of research has been conducted to solve this problem in an indoor
environment, a well-balanced compromise between the accuracy of the SLAM algorithm
and the cost to implement it has yet to be reached. The well–known Extended Kalman
Filter (EKF)–SLAM method employed in the current work recursively estimates both the
robot’s pose and the 2D positions of the XBee radios in the environment despite noisy
measurements. The EKF–SLAM technique is mostly exploited by the robotic community
for its simplicity and capability to sustain exaggerated noise inherent in both robots and
sensory measurements. The robot model is subject to process noise ζk associated with the
motion control input uk at discrete time index k, for k ∈ N0. Without loss of generality,
the process noise is assumed to be Gaussian with mean 0 and covariance Qk, i.e., ζk ∼
N (0,Qk). Taking into consideration the robot’s process noise, the discrete-time model (2.2)
can be rewritten as

qk+1,r = fr(qk,r,uk, ζk). (2.3)

Assume that the robot is initially perturbed from its reference pose. Hence, the initial
state error covariance matrix is given by P0,rr = diag((q0,r − q̂0,r) � (q0,r − q̂0,r)). Note
that conventional EKF-SLAM performs two standard steps (prediction and update) for
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Chapter 2. Navigation and Mapping 2.2. EKF-SLAM Algorithm

solving the localization and mapping problem of a mobile robot. Interested readers are
encouraged to read papers [15, 20] and some references therein for more details on classical
EKF and EKF-SLAM techniques that are commonly used in implementing mobile robot
navigation techniques. Following [11], we briefly illustrate the main steps of the EKF-
SLAM strategy for estimating the robot’s pose (localization) and positions of radio sources
(map). Suppose that s, 0 ≤ s ≤ s

′
, XBee radios are mapped in the robot’s workspace and

the corresponding map is denoted by the set B = {b[1], . . . ,b[s]}. Let qk ∈ R2s+3 denote
the augmented state vector and Pk ∈ R(2s+3)×(2s+3) be the corresponding augmented state
covariance matrix, i.e.,

qk =
[
qk,r,b

[1], . . . ,b[s]
]T

and Pk =

[
Pk,rr Pk,rB
Pk,Br Pk,BB

]
,

where Pk,rB ∈ R3×2s is the covariance matrix that maps the state of XBee radios to the
state of the robot. Similarly, Pk,Br ∈ R2s×3 is the covariance matrix that maps the state of
the robot to the state of XBee radios. The covariance matrix Pk,BB ∈ R2s×2s corresponds
to the states of XBee radios that are mapped in the robot’s environment. Let(·)− and (·)+
denote the a priori (predication) and a posteriori (update) estimates of the quantity (·). A
priori estimate of the robot’s pose and its map (before taking into account measurements
from XBee radios) is given by the classical EKF prediction model which is summarized as

q̂−k+1 = q̂+
k + CT fr(q̂

+
k,r,uk,0), (2.4a)

P−k+1,rr = FkP
+
k,rrF

T
k + LkQkL

T
k , (2.4b)

P−k+1,rB = FkP
+
k,rB, (2.4c)

P−k+1,Br =
(
P−k+1,rB

)T
, where (2.4d)

C =

1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0

 ,Fk =
∂fr
∂qk,r

∣∣∣
(q̂+

k,r,0)
,

and Lk = ∂fr
∂ζk

∣∣∣
(q̂+

k,r,0)
. The measurement model (2.9) at discrete time index k+ 1 is written

as

y
[j]
k+1 = h(qk+1,r,b

[j], ξk+1), (2.5)

with ξk+1 ∼ N (0,R), where R = diag(σ2
d, σ

2
b ) is the measurement noise covariance matrix

with σd and σb being the standard deviations of the noise associated with the range and
bearing measurements, respectively, ∀j ∈ {1, 2, . . . , s}. Let v = y

[j]
k+1 − h(q−k+1,r,b

[j],0)
define the robot’s measurement innovation vector. A posteriori estimate of the robot’s
pose and its map (after taking into account measurements from XBee radios) is given by
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Chapter 2. Navigation and Mapping 2.2. EKF-SLAM Algorithm

the classical EKF update model which is summarized as

S =
[
Hr Hbj

] [P−k+1,rr P−
k+1,rbj

P−
k+1,bjr

P−
k+1,bjbj

] [
HT
r

HT
bj

]
+ R, (2.6a)

Kk+1 =

[
P−k+1,rr P−

k+1,rbj

P−k+1,Br P−
k+1,Bbj

] [
HT
r

HT
bj

]
S−1, (2.6b)

q̂+
k+1 = q̂−k+1 + Kk+1v, (2.6c)

P+
k+1 = P−k+1 −Kk+1SK

T
k+1, (2.6d)

where the jacobians of the measurement model (2.5) are

Hr =
∂h

∂qk+1,r

∣∣∣
(q̂−k+1,r,0)

and Hbj =
∂h

∂b[j]

∣∣∣
(q̂−k+1,r,0)

.

Therefore, the EKF prediction model (2.4) and the update rule (2.6) are employed recur-
sively to estimate the robot’s pose q̂k,r and the position of XBee radios, b̂[j], j = 1, . . . , s,
that are mapped in the robot’s environment for k ∈ N0.
Suppose that a new measurement y[s+1] at discrete time index k+1 is received by the base
XBee on-board the mobile robot in its operating range. The 2D position of the XBee radio
that corresponds to this measurement is not in the current map of the robot. Hence, an
inverse measurement model is given by

b[s+1] = g
(
q̂+
k+1,r,y

[s+1]
)

=

x̂+k+1 +
(
r[s+1] + ξd

)
cos
(
θ̂+k+1 + β[s+1]

)
ŷ+k+1 +

(
r[s+1] + ξb

)
sin
(
θ̂+k+1 + β[s+1]

) .
Without loss of generality, the noise ξ = [ξd, ξb]

T is chosen such that ξd ∼ N (0, σ2
d) and

ξb ∼ N (0, σ2
b ). Before augmenting the XBee radio associated with the new measurement

y[s+1], let us define jacobians Gr ∈ R2×3 and Gy[s+1] ∈ R2×2 based on this measurement
with

Gr =
∂g

∂q+
k+1,r

∣∣∣
(q̂+

k+1,r,0)
and Gy[s+1] =

∂g

∂y[s+1]

∣∣∣
(q̂+

k+1,r,0)
.

The state covariance matrices associated with the new measurement are given by

Pb[s+1]b[s+1] = GrP
+
k+1,rrG

T
r + Gy[n+1]RGT

y[n+1] ,

Pb[s+1]q = GrPk+1,rq = Gr

[
P+
k+1,rr P+

k+1,rB
]
,

where the covariance matrix P+
k+1,rB ∈ R3×2s. The augmented state and the state covariance

matrix are then updated using the update rule

qk+1 =

[
q+
k+1

b[s+1]

]
and Pk+1 =

[
P+
k+1 PT

b[s+1]q

Pb[s+1]q Pb[s+1]b[s+1]

]
,
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Chapter 2. Navigation and Mapping 2.3. Measurement Model

where the dimensions of the new state covariance matrices, Pb[s+1]b[s+1] and Pb[s+1]q, are
2 × 2 and 2 × (2s + 3), respectively. The new augmented state qk+1 and the augmented
state covariance matrix Pk+1 follows the classical EKF predication and update steps defined
in (2.4) and (2.6), respectively, to recursively estimate the robot’s pose and the position of
the XBee radios in the updated map. While updating the state (robot’s pose and map),
the robot also tunes its motion controller in order to follow the path defined by a set of
pre-defined 2D points, P .

2.3 Measurement Model

Note that the XBee radios are placed at 2D positions of the robot’s workspace are un-
known to the robot. These positions are to be estimated by the robot in addition to its
own pose. Each XBee radio has its own ID and is able to store the signal strength infor-
mation, RSSI, of the signal received from the base XBee radio. Therefore, there is no data
association problem which is typical in many RF-based sensor networks. The customized
radio transceiver mounted on the robot broadcasts an RF signal in its operating region. It
then receives the RSSI measurements back from the XBee radios in the operating range.
Similar to [5], the line-of-sight (LoS) distance between the robot and the jth, j = 1, . . . , s

′
,

XBee radio at discrete time index k ∈ N0 is approximated using the RSSI measurement
given by

z
[j]
k ≈ Pref − 10η log10 r

[j]
k , (2.7)

where r
[j]
k =

√
(xk − x[j]k )2 + (yk − y[j]k )2 is the ideal LoS distance between the robot and

the jth Xbee radio, Pref is the power level (in this work, Pref = −29 dBm) at a reference

distance of 1 m, η is the signal propagation constant (here, η = 2), and z
[j]
k < 0 is the RSSI

that the robot receives from the jth XBee radio. Furthermore, the bearing information β
[j]
k

(angle between the robot’s current orientation and the jth, j = 1, . . . , s
′
, XBee radio) at

discrete time index k ∈ N0 is also assumed to be maximum RSSI in a set of measurements
made by the robot, stated by

β
[j]
k = arg max

[−π,π)
R[j], (2.8)

where R[j] denotes the set of RSSI measurements of the jth XBee radio. Therefore, the
robot’s measurement model considered in this work consists of noisy LoS distance (deter-
mined by the inverse model of (2.7)) and bearing, which are modeled by

y
[j]
k =

[
r
[j]
k , β

[j]
k

]T
+ ξk = h(qk,r,b

[j], ξk), (2.9)

where ξk ∈ R2 is the noise associated with the range (LoS distance) and bearing measure-
ments at discrete time index k ∈ N0 and function h : R2 × [−π, π)× R2 → R2. Note that
the model (2.9) will be employed in the localization and mapping algorithm which will be
discussed in later chapters.
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Chapter 2. Navigation and Mapping 2.4. Motion Control Strategy

2.4 Motion Control Strategy

Suppose that the a posteriori estimate of the robot’s pose at discrete time index k, k ∈ N0,
is [x̂+k , ŷ

+
k , θ̂

+
k ]T , which is determined by the EKF-SLAM algorithm illustrated in the previ-

ous section. The motion control strategy of the robot is implemented using a proportional
(P) controller in cooperation with a fuzzy logic controller. Fig. 2.2 summarizes the robot’s
motion control scheme used in this work. The pre-processing block takes the robot’s es-

Pre-processing
EKF-SLAM κγ

ρk

γk

Post-processing
νk

γ
sat
k

νk

!k

Motion Control Strategy

(signal conditioning)

Figure 2.2: Robot’s motion control mechanism.

timated pose and the ith, i = 1, . . . , n, 2D point, p[i], in the path. It then computes the

Euclidean distance ρk =
√(

x[i] − x̂+k
)2

+
(
y[i] − ŷ+k

)2
and the necessary steering angle γk,

which are passed on to the motion controller block (see Fig. 2.2). For the robot to steer
towards the ith, i = 1, . . . , n, point in the path, its steering angle is determined by the
P-controller using

γnewk = Kγ

(
ATAN2

(
y[i] − ŷ+k , x

[i] − x̂+k
)
− θ̂+k

)
where Kγ > 0 is the proportional constant. Therefore, the robot’s actual steering tune-up
is then updated by

∆γk = γnewk − γoldk ,

where γoldk is the current steering angle of the robot’s wheels. Due to limited steer-
ing rate, the steering tune-up ∆γk is saturated using the saturation function ∆γsat =
sign(∆γk)min(∆γmax, |∆γk|), where ∆γmax = TΥmax with Υmax being the maximum al-
lowed steering rate and the function sign(·) gives −1 for the argument (·) < 0 and +1,
otherwise. The robot’s steering angle is updated using the update rule γnewk = γoldk +∆γsat,
which is also saturated using γsatk = sign(γnewk )min(γmax, |γnewk |) with γmax being the maxi-
mum steering angle of the robot allowed.
The robot moves towards the current point p[i] in the path with the linear speed νk which is
determined by a single-input single-output (SISO) fuzzy logic controller (FLC). The FLC
implemented in this work is based on fuzzy logic theory [10], which is a tool of computa-
tional intelligence that has received thorough attention from the control community for its
modeling capability of highly nonlinear systems. The current work relies on the robot’s
state estimation, therefore, finding the accurate distance between the robot and the current
2D point in the path is impossible. As such, a fuzzy logic controller is generally a choice
due to its human like reasoning capability to determine the robot’s speed without relying
on the accurate mapping of the LoS distance between the robot and the current 2D point in
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Chapter 2. Navigation and Mapping 2.4. Motion Control Strategy

the path. In addition, an FLC is employed on-board the robot’s microcontroller to mimic
the behavior much like an indoor delivery robot (room service orders in hotel, for instance).
The reasoning mechanisms of an FLC are represented by linguistic descriptions with a set
of well-structured if-then rules. The if–then rules are based on heuristics, knowledge, and
experience, and are often used to control the states of a given system. The information
stored in the knowledge–base of the FLC is processed by an inference engine to determine
appropriate control actions to be taken in any given operating condition. The SISO fuzzy
logic control mechanism adopted in this work is similar to the one presented in [7] and
its technical details are omitted here due for conciseness. Let ρmin denote the minimum
distance between the robot and the current 2D point, p[i], in the path before changing its
orientation towards the next point, p[i+1]. If the robot’s position error with respect to the
point p[i] satisfies the condition ρk ≤ ρmin, then it updates its steering angle towards the
next point p[i+1] until the point p[n] in the path.

In this chapter, the simultaneous navigation and mapping was discussed in detail. While
the robot used in this work is differential-drive, the kinematic model of an Ackermann steer-
ing vehicle is modeled to show the modularity of the algorithm. The popular EKF-SLAM
algorithm was then outlined. This is followed by the measurement model to determine
the range and bearing of the XBee radios in the the environment. The robot’s motion
is controlled by a fuzzy logic controller and a proportional controller. The next chapter
shows a simulation of the simultaneous navigation and mapping algorithm.
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Chapter 3

V-REP Simulation

In the previous chapter, the simultaneous localization and mapping strategy was presented.
In the following chapter, this strategy is applied for use in a virtual robot simulator.
The Virtual Robot Experimentation Platform (V-REP), is an industry standard robot
simulator that is able to reproduce theoretical results in almost the same way as would
be seen in an experimental environment. V-REP also simulates the physics of the objects
and robots within the environment, leading to higher accuracy. The chapter is broken up
as follows: Section 3.1 details the setup of the V-REP simulator, Section 3.2 gives some
of the simulation parameters used in the algorithm, and Sections 3.3 and 3.4 present the
simulation results.

3.1 V-REP Setup

In order to simulate the EKF-SLAM algorithm, a V-REP scene was constructed. An
example scene containing the Pioneer 3-DX model is shown in Fig. 3.1. Based on the
mobile robots available in the lab, the Pioneer 3-DX was chosen for use within in V-REP.
There are multiple ways to interface with the simulator for both the control of objects
and the gathering of data. For our purposes, MATLAB was chosen so data could be more

Figure 3.1: Pioneer 3-DX model used in V-REP simulations.
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Chapter 3. V-REP Simulation 3.2. V-REP Simulation

easily analyzed and plotted. The performance of the algorithm will be evaluated using the
Root Mean Square Error. The general equation of this measure is defined as

RMSE =

√√√√kf<∞∑
k=0

(e[k])2 (3.1)

3.2 V-REP Simulation

The algorithm and control of the Pioneer 3-DX was written in MATLAB with the aim of
being as modular as possible. Since V-REP currently does not support the simulation of
RF signal propagation, the distance between the Pioneer model and beacons was calculated
in m and converted to an RSSI value in dB ·m. Noise was then added to this value and
converted back to a distance in m. Noise was also added to the bearing estimation in a
similar manner.Two different simulations were run in V-REP. Other than the positions of
waypoints and beacons, parameters remained the same for both simulation cases. These
parameters are given in Table 3.1.

Table 3.1: Simulation parameters used within V-REP.

Name Value Unit
σν 0.0119 m · s−1
σω 0.0012 rad · s−1
σr 2 m
σβ 18 ◦

d 0.1950 m
` 0.331 m

3.3 Simulation Case I

In the first case, the Pioneer navigated through a set of four waypoints placed on the ground
(shown as red diamonds in Fig. 3.2). These waypoints were placed at p[1] = [2, 2]T m,
p[2] = [2, 7]T m, p[3] = [7, 7]T m, and p[4] = [7, 2]T m. In a similar fashion, beacons are
shown as green circles in Fig. 3.2. The true positions of these beacons are unknown to
the algorithm in the sense that only the noisy range estimates are used to estimate their
locations. However, these locations are read from V-REP by MATLAB for use in the
real–time plotting of the simulation as well as error calculations. As the simulation was
ran in V-REP, the data was retrieved and saved using MATLAB, allowing the data to
be plotted (see Fig. 3.3).The data collected in this first simulation case shows promising
results for the navigation and mapping by a mobile robot along a simple trajectory. As can
be seen, the EKF-SLAM algorithm does a reasonable job of estimating the positions of the
beacons as well as the pose of the mobile robot. For comparison, beacons are located at
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p[1]

p[2] p[3]

p[4]

Robot

b[3]

b[2]
b[1]

b[4]

(a) (b)

Figure 3.2: Case I: Robot configurations from V-REP while performing the simultaneous
navigation and mapping algorithm at (a) t = 25 s and (b) t = 300 s.

b[1] = [0, 3.5]T m, b[2] = [6.5, 2.5]T m, b[3] = [4, 7.25]T m, and b[4] = [0, 8]T m. Using Eq. 3.1,
the RMSE for the robot’s position error and the RMSE for the beacon position errors were
calculated. These calculated values are shown in Table 3.2.

Table 3.2: Simulation Case I RMSE values.

RMSE[m] RMSEθ[rad] RMSE
[1]
b [m] RMSE

[2]
b [m] RMSE

[3]
b [m] RMSE

[4]
b [m]

0.69 0.04 0.36 0.32 0.36 0.25

3.4 Simulation Case II

To test the performance of the algorithm in a more complex environment (both trajec-
tory and distribution of beacons), another test case was devised. This case has the robot
navigating through six waypoints arranged so turns are tighter and the direction of travel
alternates more. Similar to the simulation case presented in Section 2.4. Similar to the
previous case, waypoints are represented by red diamonds. Shown in Fig. 3.4, the way-
points are located at p[1] = [9, 3]T m, p[2] = [5, 5]T m, p[3] = [3, 7]T m, p[4] = [8, 8]T m,
p[5] = [8, 2]T m, and p[6] = [2, 2]T m. Following the same method as Case I, the data was
collected from V-REP and plotted using MATLAB (shown in Fig. 3.5). Despite the more
complex setup of this simulation, the algorithm still does a reasonable job of localizing
the robot and mapping the environment. There is more error present in the estimation
of the robot’s pose. This is due to the instantaneous speed being applied that may be
causing some wheel spin, leading to error in the estimation. As the speed decreases when
approaching a waypoint, the error also decreases.In this simulation case, beacons are lo-
cated at b[1] = [0, 0]T m, b[2] = [9, 2]T m, b[3] = [4, 4]T m, and b[4] = [8, 7]T m. The RMSEs
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Figure 3.3: Data gathered from the first simulation case.
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Figure 3.4: Case II: Robot configurations from V-REP while performing the simultaneous
navigation and mapping algorithm at (a) t = 25 s and (b) t = 300 s.
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Figure 3.5: Data gathered from the second simulation case.
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for this case were calculated in the same manner as in case I and are shown below in Ta-
ble 3.3. Considering the noise present within each simulation case, the algorithm performs

Table 3.3: Simulation Case II RMSE values.

RMSE[m] RMSEθ[rad] RMSE
[1]
b [m] RMSE

[2]
b [m] RMSE

[3]
b [m] RMSE

[4]
b [m]

0.15 0.14 0.73 0.21 0.46 0.47

well. In the more complex scenario of case II, more error was present. This error could be
attributed to the length of the trajectory or the amount of time the simulation was run for.

In this chapter, two simulations in V-REP of the simultaneous navigation and mapping
algorithm are presented. As it can be seen, the robot’s pose and beacon positions are
estimated reasonably. If simulations are run for longer times, the RMSE for the pose and
beacon positions will be less, due to the recursive nature of the algorithm. In the next
chapter, the customized radio transceiver which aids in the approximation of range and
bearing of XBee radios is discussed. This hardware is necessary for the implementation of
this algorithm.
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Chapter 4

Customized Radio Transceiver

In this chapter, the methods for approximating range and bearing using the customized
radio transceiver is outlined. The working principle behind this system is described in
Section 4.1. Range and bearing approximation using the customized radio transceiver and
XBee radios is covered in Section 4.2 and 4.3, respectively. The cost-effective hardware
chosen to build the customized radio transceiver and its interconnections are illustrated in
Section 4.4. Section 4.5 describes the open-source software running on a BeagleBone Black
to acquire the RSSI measurements and communicate with other subsystems. Section 4.6
shows initial experimental results of using the customized radio receiver to approximate
range and bearing.

4.1 Working Principle of the Transceiver

In order to implement the algorithm simulated previously, a customized radio transceiver
was designed to measure received signal strength indicators (RSSI) from XBee S2C mod-
ules, herein beacons, dispersed in the environment. This range-only data is utilized to
determine the range and bearing of each XBee with respect to the mobile robot. The
design is centered around another XBee S2C module acting as the coordinator of the wire-
less personal area network (WPAN). The coordinator XBee is mounted within a parabolic
reflector, which is mounted on a stepper motor. This design allows the reflector and coor-
dinator XBee to rotate on the Z-axis. Due to the nature of the parabolic reflector, RSSI
measurements for beacons are greatest when the reflector is pointing toward that beacon.
The reflector also improves the sensitivity of the measurements, allowing for greater ac-
curacy. The coordinate system of the customized radio transceiver is assumed to be the
same as that of the mobile robot upon which it is mounted (see Fig. 4.1). This assumption
allows for easier calculations and data processing within the EKF-SLAM algorithm.
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Figure 4.2: An example ZigBee data packet obtained using the ND command.

4.2 Range Approximation

Due to the simplicity of the ZigBee protocol utilized by the XBee S2C, the command set
was all that was necessary to estimate the range between the customized radio transceiver
and the beacons distributed throughout the environment. The BeagleBone Black micro-
computer sends the node discover ND command serially to the coordinator XBee. This
initiates the coordinator XBee to request that each XBee in the WPAN to respond with a
data packet much like the one shown in Fig. 4.2. The coordinator XBee then fowards the
receiverd data packets for each discovered XBee serially to BeagleBone Black for process-
ing. Using the serial number SL field of the data packet, each XBee module is uniquely
identified. This allows the RSSI stored in DB to be associated with its corresponding
source. Upon gathering the RSSI measurements, the measurement model discussed in
Section 2.3 was used to convert the RSSI measurements to a distance in meters.
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Figure 4.3: The connection diagram of the customized radio transceiver.

4.3 Bearing Approximation

The range estimation technique can be extended to the estimation of bearing as well. By
rotating the parabolic reflector through a set of known positions, data can be gathered in
order to estimate the bearing of each beacon. It is assumed that the strongest RSSI mea-
surement for the jth beacon is present when the reflector is oriented in the LoS of the jth
beacon. This operation to determine bearing is described mathematically in measurement
model in Section 2.3. Depending on the size of the rotational step used, the accuracy can
be changed (more/less measurements will cause higher/lower accuracy).

4.4 Hardware

The customized radio receiver, shown in Fig. 4.4, was built to gather RSSI measurements
from all angles while minimizing cost. The main component of the customized radio
transceiver is the BeagleBone Black. It has a 1 GHz processor, 512 MB of primary memory
with a variety of configurable input/output ports while costing approximately $70. The
particular model of BeagleBone Black chosen was the BeagleBone Black Wireless. This new
BeagleBone Black has built–in WiFi and Bluetooth capabilities, simplifying the setup and
implementation. The BeagleBone Black interfaces with the coordinator XBee and stepper
motor driver through its GPIO. The XBee S2C is relatively low cost, easily configurable
with the XCTU software, and an API mode for structured communication. Therefore,
it is utilized in both the customized radio transceiver and the beacons. The beacons are
powered by a 9 V battery which is stepped down to 3.3 V by a voltage regulator and
any noise is filtered by a 10 µF capacitor. To increase RSSI measurement sensitivity, an
aluminum sheet was curved into a parabolic shape with hardboard. A stepper motor was
chosen to rotate the reflector and XBee as the exact amount of rotation can be determined
from the number of pulses inputted to the stepper motor driver. A simple power supply
circuit was also designed to provide 12 V from the Pioneer 3-DX to the stepper motor
driver. The interconnections of the custom radio transceiver are illustrated in Fig. 4.3.
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(a) (b)

Figure 4.4: (a) The completed customized radio transceiver and (b) an assembled beacon
used to implement the EKF-SLAM algorithm.

4.5 Software

The BeagleBone Black runs the Ubuntu 16.04 as to support the most recent version of the
Robot Operating System. The Robot Operating System (ROS) is a collection of software
frameworks written for robot development. It allows for a high–level abstraction from
operations happening within the system, leading to easier programming and control. In this
project, ROS is utilized for the control of the Pioneer 3-DX and the communication between
subsystems. All software on the BeagleBone Black was written in C++ for compatibility
with the open-source libraries used for interfacing with XBees and for easier use of GPIO
on the BeagleBone Black. Since the BeagleBone Black is running Ubuntu, it was easy to
write code on a laptop for easier checking of syntax and then transferring to the BeagleBone
Black for implementation. Using the two open–source libraries previously described, the
software was written to promote customization. By changing parameters within the code,
the angle increment between observations of the environment can be tuned for the best
performance for the current situation. For the experimental cases performed in the lab,
the angle increment was chosen to be 9◦. This was done to balance the speed of operation
with the number of data points to determine the bearing to beacons.

4.6 Initial Experimental Results

Before using the customized radio transceiver to implement the EKF-SLAM algorithm,
a simple range and bearing estimation test was done to gauge the performance of the
constructed system. The environment for this preliminary experiment consisted of the
customized radio transceiver and four beacons. These beacons were placed at known po-
sitions in order to quantify the performance. To test the customized radio transceiver’s
ability to measure RSSI for use in range estimations, four beacons were placed at ranges
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Figure 4.5: (a) Measured RSSI vs. ideal distance and (b) distance vs RSSI comparing the
ideal range from equation (2.7) and the approximate range from measurements.

of 0.5 m, 1 m, 2 m, and 3 m in a straight line from the reflector, which was placed on top of
the Pioneer 3-DX much like it would be while running the actual EKF-SLAM algorithm.
To get the best possible results, the XBee radios were placed on the same 2D plane as the
reflector and the coordinator XBee. Without rotating the reflector (no power was supplied
to the motor driver), 40 RSSI measurements were taken and the data was collected. The
average of these measurements for each beacon can be seen in Table 4.1 as well as a com-
parison with the ideal range curve using equation (2.7) in Fig. 4.5. For these preliminary
experiments, Pref = −33 dB ·m and η = 2. Notice how the RSSI measurements, when plot-

Table 4.1: Average of RSSI measurements obtained with customized radio transceiver

Ideal Range 0.5 m 1 m 2 m 3 m
Measured RSSI [dB ·m] −23 −33.103 −38.308 −41.974
Approximated Range[m] 0.3162 1.0119 1.8425 2.81

Error [m] 0.1838 −0.0119 0.1575 0.19

ted, decrease in value logarithmically as would be expected. The bearing estimation was
tested in a similar fashion. With the robot placed at q = [1 m, 1 m, 0 rad]T , and beacons
placed in the corners of the workspace at b[1] = [0, 0]T m, b[2] = [0, 3]T m, b[3] = [3, 0]T m,
and b[4] = [3, 3]T m. Measurements were taken while rotating the reflector a full 360◦ and
the data was plotted. This plot can be seen in Fig. 4.6. The actual estimations of bearing
can be seen in Table 4.2. Notice how in Fig. 4.6 the RSSI value decreases when the reflector
is not pointing toward the beacon. This is the underlying principle used to determine the
bearing. Examining the error in Table 4.2, all estimates are within about 21◦. While this
may seem high, it is actually quite reasonable considering a rotational step size of 9◦ is
being used. If this rotational step size was decreased, the accuracy of bearing estimates
would increase.
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Figure 4.6: Data collected during the bearing estimation test.

Table 4.2: Bearing approximation using customized radio transceiver.

b[1] b[2] b[3] b[4]

Actual β 225◦ 120◦ 333◦ 45◦

Measured β 207◦ 99◦ 330◦ 45◦

Error 18◦ 21◦ 3◦ 0◦
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This chapter discusses the customized radio transceiver and initial performance tests of
range and bearing approximation. The transceiver and XBee radio beacons were built to
use off-the-shelf and be cost-effective. Range and bearing are approximated adequately
and error is expected due to the noisy environment. The next chapter combines the si-
multaneous navigation and mapping technique from Chapter 2 with the customized radio
transceiver into a fully-implemented system where results of multiple experiments are re-
ported.
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Chapter 5

Implementation

Using the customized radio transceiver from the previous chapter to approximate range
and bearing of the XBee radios, and the EKF-SLAM algorithm presented in Chapter 2,
an experimental setup was designed and is described in Section 5.1. The following sections
represent four experiments with varying trajectories and XBee radio positions. A simple
square trajectory is tested in Section 5.2, a more complex trajectory in Section 5.3, and
a figure-eight trajectory in Section 5.4. Section 5.5 is an experiment with a real-world
trajectory, but an unexpected error has corrupted some results.

5.1 Experimental Setup

Since the Pioneer 3-DX was chosen as the mobile robot for the simulation cases, it was also
chosen for use in the implementation. The Pioneer 3-DX is a widely used mobile robot in
research due to its accuracy and the available accessories. In this setup, it is not equipped
with any accessories except the customized radio transceiver. All noise parameters were
also kept the same as those given in Table 3.1 to keep results consistent. XBee radios
are placed in the robot’s operating range and their positions are unknown to the robot.
Multiple experimental cases were run to validate the algorithm and will each be discussed
in the following sections.

5.2 Experimental Case I

A simple trajectory was chosen for the first experimental case in order to verify that
everything was working correctly. With the Pioneer 3-DX having an initial pose of q =
[1.5, 0, π

2
]T m, four waypoints were placed at p[1] = [0.6, 0.6]T m, p[2] = [0.6, 2.4]T m,

p[3] = [2.4, 2.4]T m, and p[4] = [2.4, 0.6]T m to form a square (shown in Fig. 5.1). For
this case, the EKF-SLAM algorithm was run for 1000 iterations (not including the time it
takes to conduct an observation). Upon completion, the data was processed and the plots
seen in Fig. 5.2. As it can be seen in Fig. 5.2, the algorithm does a satisfactory job of
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Figure 5.1: Case I: Robot’s configuration while performing the simultaneous navigation
and mapping algorithm at time (a) t = 25 s and (b) t = 300 s.
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Figure 5.2: Case I: MATLAB plots showing (a) the ideal (solid line) and estimated (dashed
line) robot trajectories and estimated XBee radio positions, (b) the distance estimate used
by the fuzzy logic controller, (c) the robt’s position estimation error, and (d) the beacon
position estimation error.
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Figure 5.3: Case II: Robot’s configuration while performing the simultaneous navigation
and mapping algorithm at time (a) t = 25 s and t= (b) t = 300 s.

both localizing the robot and mapping the beacons placed in the corners of operating area
(located at b[1] = [0, 0]T m, b[2] = [0, 3]T m, b[3] = [3, 0]T m, and b[4] = [3, 3]T m). Note
the estimated position of beacon 2. While the estimate is roughly 0.5 m off from the true
position, the accuracy of the estimate was still improving as the experiment ended. If the
experiment continued, this error would have decreased to the amounts seen in the other
beacons. Considering the physical size of the Pioneer 3-DX and the operating environment,
the mapping performance is satisfactory. The localization accuracy seen in this experiment
is also satisfactory in that the error was almost nil with respect to the size of mobile robot.
For performance comparison between experimental cases, the RMSE for the robot position
estimation error and beacon position estimation error were calculated using (3.1). These
values are shown in Table 5.1.

Table 5.1: Experimental Case I RMSE values.

RMSE[m] RMSEθ[rad] RMSE
[1]
b [m] RMSE

[2]
b [m] RMSE

[3]
b [m] RMSE

[4]
b [m]

0.04 0.03 0.28 0.67 0.39 0.53

5.3 Experimental Case II

Upon satisfactory completion of the simple trajectory presented in Section 4.2, a more
complex trajectory was designed with the robot’s initial pose being q = [2, 3, −π

2
]T m. This

path consists of five waypoints arranged to form a concave shape. As seen in Fig. 5.3,
waypoints are located at p[1] = [2.4, 2.4]T m, p[2] = [0.92, 2.13]T m, p[3] = [1.8, 1.2]T m,
p[4] = [0.6, 0.6]T m, and p[5] = [2, 0.6]T m. Much like Case I, the algorithm was run for 1000
iterations and data was plotted using MATLAB. These plots can be seen in Fig. 5.4. As
seen in Fig. 5.4, the algorithm is again able to perform satisfactorily with respect to the size
of the trajectory, complexity, and the operating area. However, there is more error present
in this case when estimating the positions of the beacons (located at b[1] = [0, 0]T m,
b[2] = [9, 2]T m, b[3] = [4, 4]T m, and b[4] = [8, 7]T m). This can be seen most clearly in the
beacon position estimation error plot for b[2], which, at the time the experiment ended,
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Figure 5.4: Case II: MATLAB plots showing (a) the ideal (solid line) and estimated (dashed
line) robot trajectories and estimated XBee radio positions, (b) the distance estimate used
by the fuzzy logic controller, (c) the robt’s position estimation error, and (d) the beacon
position estimation error.
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had an error close to 1 m. This can be attributed to the length of the trajectory being
followed leading to less measurements being done in the vicinity of b[2]. If the number of
max iterations were to be increased, this error would decrease. The RMSE values for this
experiment can be seen in Table 5.2. While the performance in this case was not as good

Table 5.2: Experimental Case II RMSE values.

RMSE[m] RMSEθ[rad] RMSE
[1]
b [m] RMSE

[2]
b [m] RMSE

[3]
b [m] RMSE

[4]
b [m]

0.05 0.04 1.03 0.88 0.53 0.33

as in the first case, they are still satisfactory since the beacon position estimation error
is decreasing as the number of iterations increase and the error for the robot is negligible
with respect to its own size.

5.4 Experimental Case III

For the following two experimental cases, the images of the mobile robot driving in the
lab environment are omitted as they are not necessary for the analysis of the results. In
this experimental case, the Pioneer 3-DX’s initial pose is q = [0, 0, π

2
]T m and follows a

small figure-eight with waypoints at p[1] = [2, 2]T m, p[2] = [1, 2]T m, p[3] = [2, 1]T m, and
p[4] = [1, 1]T m. After running for 1000 iterations, the data was plotted (see Fig. 5.5). As
shown in Fig. 5.5, the algorithm had no issues following the defined trajectory. Again,
due to the nature of RSSI measurements, there is noticeable error in the beacon position
estimations. The error for b[1] is actually increasing after about 400 iterations. While
this is not desireable, the accuracy of the other three beacons is still satisfactory. Over
time, the error for b[1] would begin to decrease again, but over just 1000 iterations of the
EKF-SLAM algorithm, its performance is still reasonably acceptable. The RMSE values
for this experiment are shown in Table 5.3.

Table 5.3: Experimental Case III RMSE values.

RMSE[m] RMSEθ[rad] RMSE
[1]
b [m] RMSE

[2]
b [m] RMSE

[3]
b [m] RMSE

[4]
b [m]

0.06 0.04 0.41 0.36 0.34 0.66

5.5 Experimental Case IV

We also ran an experiment that would be similar to a real–world scenario, with a longer
trajectory, more obstacles in the environment affecting measurements, and a longer run
time. In this test, the robot’s initial pose is q = [0, 0, π

2
]T m and waypoints were placed

at p[1] = [2, 1.5]T m, p[2] = [2.4, 8.4]T m, p[3] = [−0.6, 8.5]T m, and p[4] = [−0.9, 1.2]T m.
Unfortunately, one of the beacons lost power and a bug in the code caused the program
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Figure 5.5: Case III: MATLAB plots showing (a) the ideal (solid line) and estimated
(dashed line) robot trajectories and estimated XBee radio positions, (b) the distance es-
timate used by the fuzzy logic controller, (c) the robt’s position estimation error, and (d)
the beacon position estimation error.
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Figure 5.6: Case IV: The ideal (solid line) and estimated (dashed line) robot trajectories
and estimated XBee radio positions.

to fail and most of the data was lost. The only data that was able to be recovered was
the robot’s current estimation of its position, the estimates of where the beacons were
placed, and the MATLAB figure showing the final trajectory. This figure can be seen in
Fig. 5.6. Using the last known estimates of the positions of the four beacons (located at
b[1] = [1, 2]T m, b[2] = [1.8, 4.8]T m, b[3] = [1.2, 9.5]T m, and b[4] = [−0.3, 4.8]T m.) the
error was able to be calculated. This error can be seen in Table 5.4. Despite the program

Table 5.4: Experimental Case IV final estimation error values.

e
[1]
b [m] e

[2]
b [m] e

[3]
b [m] e

[4]
b [m]

0.28 1.32 2.97 0.36

crashing about 50 iterations before it would have been completed, it can still be seen that
there is a reasonable amount of accuracy with respect to the size of the trajectory being
followed. If the data had been able to be recovered, the plots would have looked similar to
the other experimental cases with decreasing estimation error. Due to the data loss, the
RMSE was not able to be calculated.

As it can be seen from the first three experimental cases, the mobile robot navigates
through the waypoints very well and the positions of the XBee radios are mapped reason-
ably. The last experiment shows that this system can be applied to a real-world scenario
and it is unfortunate that the data was lost. Like the simulations from Chapter 2, if the
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experiments are run for a longer period of time, the RSME of the robot’s pose and XBee
radio positions will decrease. The following chapter will draw conclusions from this work
and propose future related work.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

As can be seen in the work presented in this reported, the designed system used in con-
junction with the widely used EKF-SLAM algorithm offers a modest amount of accuracy
in short to medium range (around 3 m) and when used in noisy environments. Over larger
trajectories the error is more apparent but over time the error is still decreasing due to the
nature of the EKF-SLAM algorithm. The original specifications planned for this project
were (1) a cost less than $500, (2) have the robot localized within 30 cm of its true posi-
tion, and (3) estimate the positions of beacons within 20 cm of their true positions. The
first specifications was easily met as the total cost of the customized radio transceiver is
about $140 and each beacon was about $20. The second two specifications are a little more
complex, as the RMSE was chosen instead to measure algorithm performance. However,
looking at the error plots for each experimental case, the error for both the robot’s position
estimate and the beacon position estimates are around the desired specification. Of course,
by running the algorithm for a longer period of time the specifications will eventually be
met.

6.2 Future Work

While the presented system provides a reasonable amount of accuracy for the cost, there are
still some improvements that could be made to improve the overall performance. First, the
addition of a slip ring (such as the one found here https://www.adafruit.com/product/

736) and a new mounting solution would let the reflector assembly rotate without wires
becoming tangled around the stepper motor’s axle. This could lead to faster performance
since the reflector would not need to rotate back to the home position after each obser-
vation. To that extent, the software could be modified so the direction of the reflector’s
rotation would alternate for every observation scan, eliminating the problem of tangled
wires. Another possible improvement would be further tuning of the observation scan
functions themselves. It would not be too difficult to minimize the amount pauses or to
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find the optimal speed for the stepper motor rotation. If responses from beacons could be
minimized, the time it takes to make a complete observation would decrease and it would
probably appear as if the reflector was not stopping at all. One other major aspect of
the algorithm that could be improved is the method of prediction for q since there are
still some inaccuracies in certain situations such as fast turns or when the Pioneer 3-DX is
coming to a stop for an observation.

System performance could be improved by using a store bought reflector and antenna.
This was not pursued in the current work due to our limited RF knowledge and desire for
a less expensive, more attainable system. The hardware for range and bearing estimation
subsystem could be implemented using a microcontroller instead of the BeagleBone Black.
This may increase efficiency and reduce the amount of computations done by the Beagle-
Bone Black.

With the completion of this work, several new avenues of research have been opened using
our work as the base. Some possible topics include an EKF-SLAM algorithm that only
relies on bearing estimations for use in the localization and mapping subsystem. This is
still a relatively new technique for use in localization and mapping algorithms and would
be a novel extension of the completed work. In future extensions of this project, it may
be advantageous to find a way to accurately measure the true position of the mobile robot
instead of comparing to encoder values as those are not always correct.
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Appendix A

Running V-REP Simulations

This appendix gives a simple set of steps to simulate the algorithm using V-REP. In
Section A.1 the V-REP setup is explained and in Section A.2 the steps necessary for
running the simulation are given.

A.1 Setup

The simulations presented in this report were completed using V-REP and the remote API
for MATLAB. There are no objects included in the scene other than the markers used to
show where waypoints and beacons are located. The code is written in such a way that
dummy objects placed in V-REP act as beacons. These dummies are stationary so at the
beginning of the MATLAB code, the locations are just retrieved and stored. This allows
the visual aspect in V-REP to be used directly by MATLAB.It is not necessary to create
a custom V-REP scene to simulate the algorithm as a sample scene is included with the
simulation code. The simulation code can be found within the file named simulationV10.m.
The V-REP scene associated with this MATLAB script is called simulationV10.ttt. If
desired, the dummy objects labelled as beacons can be repositioned and the change can be
seen in MATLAB when the simulation is started, as detailed in the next section.

A.2 Runtime

If the provided V-REP scene is being used for the simulation, no settings need to be
changed. Press the play button on the top toolbar to start the simulation. This only starts
the V-REP simulation. Now in MATLAB, open the provided MATLAB code. There
should be no changes necessary for it to run so just press Run again. It will take a couple
seconds for it to connect to the simulator but once everything is set up the Pioneer 3-
DX model should begin to move in V-REP. This will run until the maximum iterations
(customizeable within the MATLAB script) is met. The program will then plot all the data
collected during the simulation and save the recorded video that was created by MATLAB.
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Some examples of the plots created after the V-REP simulation completes are shown in
this report (see Fig. 3.3 and Fig. 3.5).
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Appendix B

Running Experiments

This appendix gives the steps necessary for running the algorithm on a physical robot,
namely the Pioneer 3-DX. Sectionsec:append-bbb-setup gives a detailed set of instructions
to set up the BeagleBone Black Wireless. Section B.2 gives some notes on things to consider
when setting up XBees. Section B.3, explains the setup needed to run the algorithm and
then Section B.4 details how to start the actual experiment.

B.1 BeagleBone Black Wireless Setup

In order to run the experiments in the lab, quite a bit of setup is needed. This setup is
done with the assumption that the BeagleBone Black Wireless is being used.

Before setting up anything on the BeagleBone Black, the disk image for Ubuntu 16.04 LTS
must be downloaded, put on a 16 GB microSD card. The disk image used for this project
can be found at http://rcn-ee.net/rootfs/2017-01-23/microsd/bone-ubuntu-16.

04.1-console-armhf-2017-01-23-2gb.img.xz. This can be placed on a microSD using
Win32 Disk Imager (available at https://sourceforge.net/projects/win32diskimager/).

Once the disk image is on the microSD card, put it in the BeagleBone. If you are us-
ing a new BeagleBone, you will need to hold down the boot select button, S2, while
connecting the power for the first time so the BeagleBone will automatically boot from the
microSD card in the future. At the time of install, the image is taking up only 2 GB of
the microSD. This must be expanded to use all of the available space. The Linux program
Parted will be used to accomplish this. Unfortunately, this program is not included in the
image and must be installed first, which requires an Internet connection. For conciseness,
it is assumed that the network used for ROS communication is also connected to the In-
ternet. In the case that it is not, the process of connecting to a new network will need to
be repeated each time it is desired to change networks. The command below will connect
the BeagleBone Black to the network with the name ECE-Robots-1 using interface wlan
without a password. It also sets a static IP of 192.168.1.3 that is necessary for the ROS
node to connect to MATLAB in later sections.
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sudo nmcli con add con-name wireless ifname wlan type wifi ssid ECE-Robots-1 \ip4 192.168.1.3/24 gw4 192.168.1.1

These values can be changed to whatever is needed for your specific router. You should
now be connected to the Internet. Before installing Parted, you should update Linux using
the below command.

sudo apt-get update

Now install Parted using the following command and once it is installed, find the name of
the boot device.

sudo apt-get install parted
df -h /

Most likely the name of the boot partition will be /dev/mmcblk0. If it is something else
then the command will need to be changed accordingly.

sudo fdisk /dev/mmcblk0
p

Take note of the boot partition (marked with an asterisk) after using the p command
within fdisk. Also write down the starting sector.

d
n

Use the defaults until you are asked for the starting sector. For the starting sector, use
the exact same value that you wrote down earlier or nothing will work when you reboot.
Continue accepting the defaults until it says a new partition has been created. Use p
to view the list of partitions again. If the boot partition is not marked as such, use the
following command.

a

To finish setting up the partitions, use these commands.

w
sudo partprobe
sudo resize2fs /dev/mmcblk0p1

The filesystem now fills the entire microSD card. It is a good idea to run updates again
now just in case.

sudo apt-get update
sudo apt-get upgrade
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Now it is time to setup ROS. All of the commands for this are given below.

cd
mkdir seniorProject
cd seniorProject
git clone https://www.github.com/attie/libxbee3
cd
sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list’
sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116
sudo apt-get update
sudo apt-get install ros-kinetic-ros-base
sudo rosdep init
rosdep update
echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
source ~/.bashrc
sudo apt-get install python-rosinstall

The base ROS install will take a good amount of time since there is a lot to download,
unpack, and install. There is still more to install, as detailed below.

. /opt/ros/kinetic/setup.bash
cd seniorProject
mkdir -p /catkin_ws/src
cd /catkin_ws/src
catkin_init_workspace
cd ../
catkin_make
. /devel/setup.bash
cd /src
git clone https://github.com/amor-ros-pkg/rosaria.git
sudo apt-get install ros-kinetic-tf

Now that the ROS package for the Pioneer is downloaded, ARIA must be downloaded and
installed before continuing. These instructions assume you are still /seniorProject/catkin ws.

cd ../
wget http://robots.mobilerobots.com/ARIA/download/current/ARIA-src-2.9.1.tar.gz
tar -xvzf ARIA-src-2.9.1.tar.gz
cd Aria-src-2.9.1/src
make
cd ../ArNetworking
make
cd ../
sudo make install

With ARIA compiled, the library can be added to the library cache.

sudo nano /etc/ld.so.conf

In this file, add the following text in a new line at the end of the file.

/usr/local/Aria/lib
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Save and exit the file. Continuing with the installation of ROS components,

sudo ldconfig
rosdep install rosaria

Everything needed for rosaria is now downloaded and the package can be built. Make
sure you have successfully compiled and installed ARIA before doing any of the commands
below or it will not work (build errors).

cd ../catkin_ws
catkin_make

Note: There is a alternate version of ROSARIA used in this project that allows the pose
in the robot odometry to be changed using ROS, this lets multiple experiments be run
without restarting the robot. This version can be downloaded at https://github.com/

TheSmallHill/rosaria.

Now that everything is setup for the Pioneer, download the EKF-SLAM package from
https://github.com/TheSmallHill/ekf_slam/tree/ros-matlab-1. Make sure to down-
load the branch called ros-matlab-1. In the case that this branch no longer exists, download
the master branch as ros-matlab-1 has been merged to the master. Use the following com-
mand from the base folder of the catkin workspace to build just the ekf slam package.

catkin_make --pkg ekf_slam

This is the end of the setup for ROS. The following section gives some high–level comments
on the setup of XBees.

B.2 XBee Network

Instructions to set up an XBee network will not be given in this appendix as there is a
multitude of tutorials online. Some things to consider will be given instead. The XBee
mounted within the rotating reflector needs to be setup as the coordinator of the network
and beacons will be setup as endpoints. In order for the algorithm to function, the XBees
must be given node identifiers in the form beacon# where # is the beacon number. All
beacons being used must be numbered in order starting at one as well. All beacons have
the same pan ID as well so any message the coordinator sends will go to all beacons in
the network. If desired, more information on the XBee setup can be sought in the lab
notebook for this project.

If these considerations are kept in mind when setting up the XBee network there should
be no issues. The next section details how to start the ROS nodes for EKF-SLAM and the
Pioneer.
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B.3 ROS Node

The setup for running experiments is a little more involved than the setup for the simulation
cases. First plug in the customized radio transceiver into the two DC power jacks coming
out of the Pioneer 3-DX. Be sure to use the correct jack for each connection, the DC power
connector with an inline voltage regulator must be plugged into the BeagleBone Black
Wireless. If the BeagleBone Black has not already been configured for connecting to a
wireless network, that must be done over a direct serial connection. The wireless connection
is required for MATLAB to control the customized radio transceiver and the Pioneer 3-
DX.Once you are able to connect to the BeagleBone Black using an SSH connection,
a couple commands must be run before starting the ROS node. These commands are
detailed below.

sudo su
echo BB-UART2 > /sys/devices/platform/bone_capemgr/slots
exit
cd seniorProject/catkin_ws
source devel/setup.bash

At this point the ROS node is ready to be started on the BeagleBone Black. To do this,
use the following command,

roslaunch ekf_slam node.launch

The Pioneer 3-DX should make an activation sound and the startup information will be
displayed in your SSH session window.

B.4 Runtime

Now that the ROS node is running on the BeagleBone Black, all that needs to be done is to
change the robot’s initial pose, waypoint locations, and the beacon locations. At this time
these values must be measured by hand and entered into the program manually. Open the
MATLAB script titled ekfSlam.m and do this. Make sure you place the Pioneer near its
intended starting position and then press Run. Once the program starts successfully, no
further action is required.If desired, the values for the proportional controller and maximum
velocities can be adjusted before pressing Run.
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