SEMI-LINEAR INDUCTION MOTOR

Electrical and Computer Engineering Edgar Ramos and Jacob Vangunten Project Advisor: Professor Gutschlag 11/29/16

Outline of Presentation

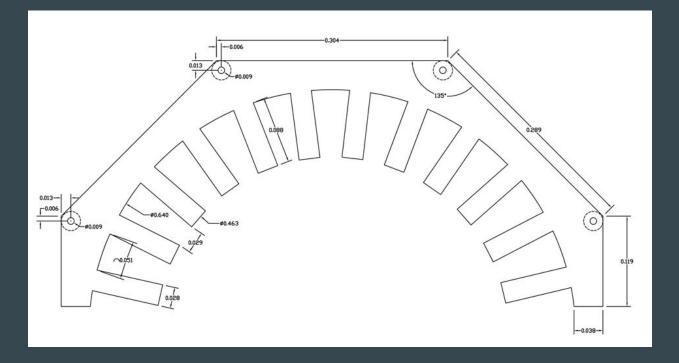
- Introduction
- Prior Work
- Subsystem Level Functional Requirements with Specifications
- Engineering Efforts Completed to Date
- Parts List
- Division of Labor
- Conclusion

Introduction

• Semi-Linear Induction Motor Background

- \circ Alternating current (AC) motor
- Powered by a three phase voltage source
- Force and motion are produced by a semi-linear moving magnetic field
- Can be used to drive gears and turn wheels

Problem Statement


- Troubleshoot previous team's design to understand the limited functionality
- Thoroughly test the SLIM once reasonable functionality is attained
- Meet all functional requirements
- Redesign the rotor

Prior Work

Prior Work

- Design and build Semi-Linear Induction motor
 - Developed equations for the design of the three phase stator
 - Stator designed to have 12 teeth and 4 poles
 - Wounded the coils and places them on stator teeth
 - Built base and mounted rotor within the stator
 - Wired the SLIM using a Wye Connection

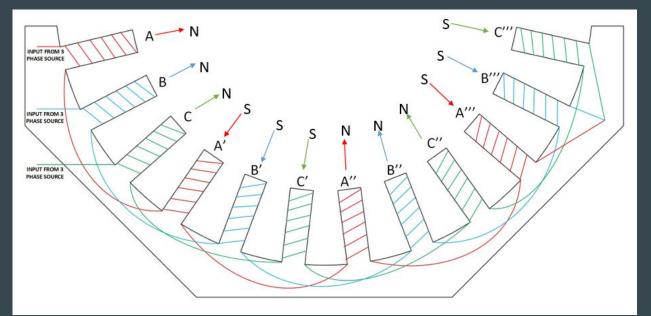
Stator Design

[1]

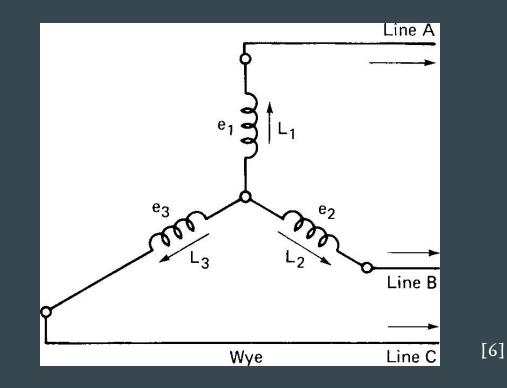
Had Stator Manufactured by Laser Laminations

[2]

Wound Coils


Mounted and Wired SLIM

[4]


Stator Wiring Diagram

- Figure [5] shows the orientation of the north and south pole at a particular moment in time
- The poles will actually change with the magnetic field as time goes on

[5]

Wye Connection

Subsystem Level Functional Requirements with Specifications

Subsystem Level Functional Requirements

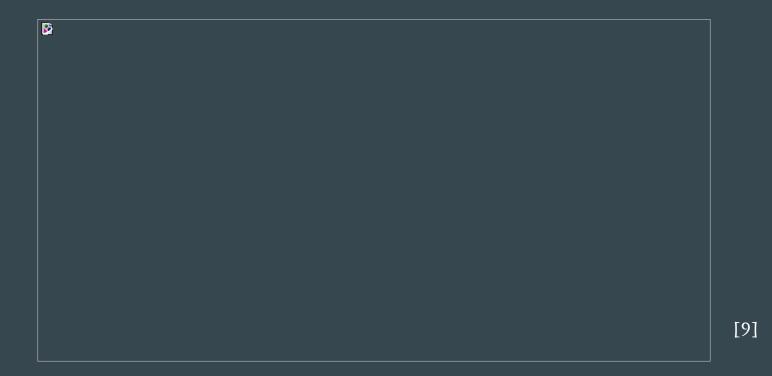
- VFD will vary the frequency and voltage to produce a moving semi-linear magnetic field that will turn the rotor
- The generated rotation will be measured with a speed sensor that generates a train of pulses via photo-interrupter
- The VFD requires a 0-10 V reference signal that corresponds to a 0-120 Hz frequency range

LCD Subsystem

- Display
 - VFD Output Frequency
 - \circ Rotor speed
 - Desired rotor speed

Tachometer Subsystem

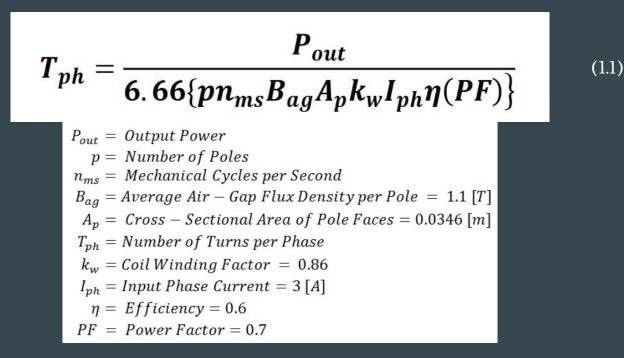
- Main Components
 - Photo-interrupter
 - Transparent disk with notches
- External Interrupt
 - Counts pulses
 - Four pulses per rotation
 - Updates data every 250 ms
- RPM
 - Read speed sensor data
 - Convert pulses to revolutions per minute
 - Convert to string
 - Input string to LCD


Subsystem to Control Variable Frequency Drive (VFD)

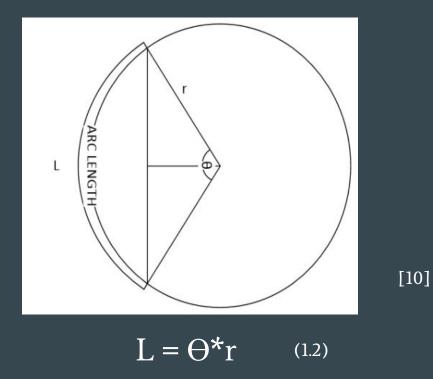
- 0-10 V signal correlates to 0-120 Hz
- A/D Converter
 - Onboard the Atmega128
 - 250 ms interrupt
 - Resolution is 0-5 V
- D/A Converter
 - External Chip
 - Provides 0-10 V reference signal to VFD to control output frequency

[8]

Subsystem Block Diagram



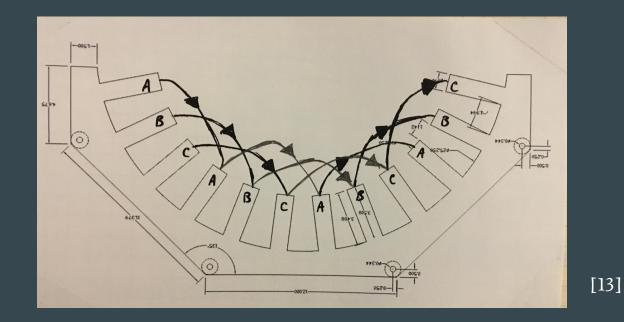
Engineering Efforts Completed to Date


Engineering Efforts

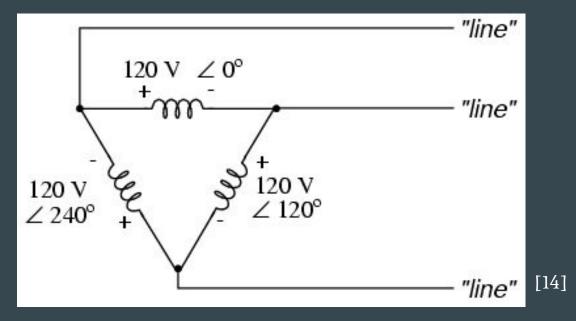
- Reviewed and analyze previous team's design equations
- Determined correct orientation of coils
- Determined if there were any short-circuits in the coils
- Mapped out the magnetic field each phase was producing
- Configured and tested SLIM using a delta connection
- Researched and planned the design of a new rotor

Turns per phase

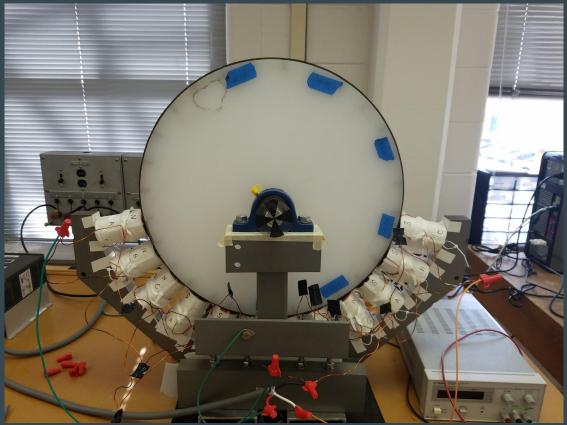
Arc Length


Coil Orientation

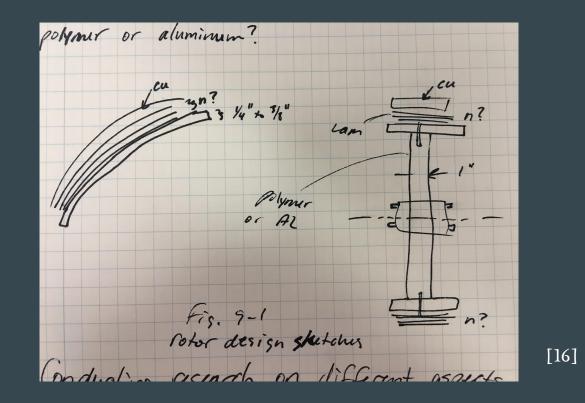
[11]



Map of Magnetic Field



Changed to a Delta Configuration


- The current nearly tripled with this configuration
- Rotation was produced
- After testing the SLIM with delta connection, we can assume the stator was designed to be connected with a Wye connection

Video of Rotor Rotation using a Delta Connection

Rotor Design Sketches

Parts List

Parts List

- The parts list is pending the completion of a new rotor design
 - Will probably include:
 - Rotor Shaft
 - Laminations
 - Laminations will be probably be Aluminum
 - Outside track
 - Some type of bolts and screws

Division of Labor

Division of Labor

- Troubleshooting
 - Review and analyze design equations
 - Edgar and Jacob
 - $\circ \quad \text{Determine coil orientation} \\$
 - Edgar and Jacob
 - Test for short-circuits
 - Edgar and Jacob
 - Map magnetic field
 - Edgar and Jacob
 - Configure and test delta connection
 - Edgar and Jacob

- Research and design new rotor
 - Edgar and Jacob

	T!- bl	Oct 30	Nov 6	Nov 13	Nov 20	Nov 27	Dec 4	Dec 11	Dec 18
	Task Name	S M T W T F S	6 S M T W T F S S	6 M T W T F	S S M T W T F S	S S M T W T F S	SMTWTFS	S M T W T F	SSMTWTFS
- 21	Troubleshoot previous team's design			Troublesh	oot previous team's design				
2	Review equations used		Review equations	used					
3	Determined coil orientation			Determine	d coil orientation				
4	Tested the SLIM			Т	ested the SLIM				
5	Determine if any short circuits were present in coils			Determine	if any short circuits were present i	n coils			
6	Mapped out the magnetic field			Mapped o	ut the magnetic field				
7	Configured and tested SLIM using Delta connection			c	onfigured and tested SLIM using D	Delta connection			
8	Got the rotor to turn			G	ot the rotor to turn				
9	Researched and planned rotor redesign							Researched and planned roto	r redesign
10	Discussed possible rotor design					D	iscussed possible rotor design	n	
11	Order parts for rotor							Order parts for rotor	
12	Fabricate new rotor								
13	Construct rotor to design								
14	Test new rotor								
15	Mount new rotor								
16	Thouroughly test new system								
17	Determine if more improvements can be made								
18	Connect Atmega 128A to SLIM								
19	Create program to read input from tachometer								
20	Create program to output information to display								
21	Work on final report								
22	Work on final report								
23	Work on final presentation								

	Te ali blave a	Jan 15	Jan 22	Jan 29	Feb 5	Feb 12	Feb 19	Feb 26	Mar 5	Mar 12
	Task Name	S M T W T F S	SMTWTFS	S M T W T F S	S M T W T F S	S S M T W T F S	SMTWTFSS	MTWTFS	S M T W T F S	SM TW TFS
- 11	Troubleshoot previous team's design									
2	Review equations used									
3	Determined coil orientation									
4	Tested the SLIM									
5	Determine if any short circuits were present in coils									
6	Mapped out the magnetic field									
7	Configured and tested SLIM using Delta connection									
8	Got the rotor to turn									
9	Researched and planned rotor redesign									
10	Discussed possible rotor design									
11	Order parts for rotor									
12	Fabricate new rotor			Fabrica	ite new rotor					
13	Construct rotor to design			Constru	uct rotor to design					
14	Test new rotor						Test new rotor			
15	Mount new rotor				Mount new ro					
16	Thouroughly test new system					Thouroughly te	st new system			
17	Determine if more improvements can be made						Determine if more im	provements can be made		
18	Connect Atmega 128A to SLIM								Connect Atmega 12	BA to SLIM
19	Create program to read input from tachometer								to read input from tachometer	
20	Create program to output information to display								Create program to c	utput information to display
21	Work on final report									
22	Work on final report									
23	Work on final presentation									

	F1-NI			Mar	12		Mar 19				Mar 26				Apr 2					Apr 9				Apr 16			6 Apr 23				Apr 30					May 7							
	Fask Name	S	м	τV	V T		s M	Т١	νт	F S		мТ	W			S N	1 T	W			S N	ΛТ	W.		S S	6 M	τV			S N	4 T	WT	s s	6 M	τV	NT		s s	6 M		w :	TF	S
- M [Troubleshoot previous team's design																					1																					
2	Review equations used																																										
3	Determined coil orientation				1																																						
4	Tested the SLIM																																										
5	Determine if any short circuits were present in coils																																										
6	Mapped out the magnetic field																									1																	
7	Configured and tested SLIM using Delta connection																																										
8	Got the rotor to turn																					1		1																			
9	Researched and planned rotor redesign																																										
10	Discussed possible rotor design																					1		<u>ì</u>								111											
11	Order parts for rotor																																										
12	Fabricate new rotor																							1																			
13	Construct rotor to design																																										
14	Test new rotor																																										
15	Mount new rotor																																										
16	Thouroughly test new system																																										
17	Determine if more improvements can be made																																										
18	Connect Atmega 128A to SLIM																																										
19	Create program to read input from tachometer																																										
20	Create program to output information to display																																										
21	Work on final report																										8					8				Work	on fina	l repo	ort				
22	Work on final report																										1	vork on	final r	eport													
23	Work on final presentation																																			Work	on fina	Ipres	entati	on			

Conclusion

Conclusion

- Future Directions
 - Design a new rotor
 - Increased efficiency
 - May possibly be able to use water jet in Morgan hall to cut out laminations for rotor
- Delta Configuration resulted in significantly larger currents than Wye Configuration
 - May want to return to Wye Connection
 - \circ ~ If we can increase efficiency with new rotor design then the smaller currents will be fine

Questions?

References #1-6

[1] Stator Design. [Diagram]. Retrieved from 2016 LIM Senior Electrical Engineering Project Final Report.

[2] Stator. [Photograph]. Retrieved from 2016 LIM Senior Electrical Engineering Project Final Report.

[3] Wound Coils. [Photograph]. Retrieved from 2016 LIM Senior Electrical Engineering Project Final Report.

[4] Mounted and Wired SLIM. [Photograph]. Retrieved from 2016 LIM Senior Electrical Engineering Project Final Report.

[5] Stator Wiring Diagram. [Diagram]. Retrieved from 2016 LIM Senior Electrical Engineering Project Final Report.

[6] Wye Connection. [Diagram].

References #7-14

[7] Tachometer. [Photograph]. Retrieved from 2016 LIM Senior Electrical Engineering Project Final Report.

[8] Variable Frequency Drive. [Photograph]. Retrieved from 2016 LIM Senior

Electrical Engineering Project Final Report.

[9] Subsystem Block Diagram. [Drawing].

[10] Arc Length. [Drawing]. Retrieved from 2016 LIM Senior Electrical Engineering Project Final Report.

[11] Compass. [Photograph].

[12] Coil Orientation. [Photograph].

[13] Map of Magnetic Field. [Photograph].

[14] Delta Configuration. [Drawing].

References #15-19

[15] Rotor Rotation using a Delta Connection. [Video].
[16] Rough Rotor Design. [Photograph].
[17] Ideal Schedule for Completion #1. [Photograph].
[18] Ideal Schedule for Completion #2. [Photograph].
[19] Ideal Schedule for Completion #3. [Photograph].

$$\begin{split} P_{out} &= \eta P_{in} \\ P_{in} &= 3V_{ph}I_{ph}(PF) \\ P_{out} &= \eta 3V_{ph}I_{ph}(PF) \\ V_{ph} &= 4.44f_s \Phi_{ag}T_{ph}k_w \\ P_{out} &= 3\left\{4.44f_s \Phi_{ag}T_{ph}k_w\right\}I_{ph}\eta(PF) \\ f_s &= \frac{pn_{ms}}{2} \\ P_{out} &= 3\left\{4.44\frac{pn_{ms}}{2}\Phi_{ag}T_{ph}k_w\right\}I_{ph}\eta(PF) \\ \Phi_{ag} &= B_{ag}A_p \\ P_{out} &= 3\left\{2.22pn_{ms}B_{ag}A_pT_{ph}k_w\right\}I_{ph}\eta(PF) \\ f_s &= Synchronous Electrical Frequency \end{split}$$

 $\Phi_{ag} = Air - Gap Flux per Pole (Average)$

 $V_{ph} = Input Phase Voltage$

WHERE: