Semi-Linear Induction Motor

BRADLEY University

Electrical and Computer Engineering Department Jacob Vangunten and Edgar Ramos Project Advisor: Professor Steven Gutschlag 4/27/17

Outline of Presentation

- Background and Project Overview
- Investigate 2016 SLIM Capstone Project
- Rotor Design
- Economic Analysis
- Results
- Conclusion

Outline of Presentation

- Background and Project Overview
- Investigate 2016 SLIM Capstone Project
- Rotor Design
- Economic Analysis
- Results
- Conclusion

Alternating Current Induction Machines

- Produces magnetic fields in an infinite loop of rotary motion
- Current-carrying coils create rotating magnetic field
- Powered by three phase voltages
- Stator wraps the rotor completely

Linear Transformation

Applications

[3]

[4]

Why Semi-linear?

- For a normal motor, the rotor is in motion
- For a linear motor, the stator is in motion
- Having a linear track would take up too much space
 - Significant increase in cost
 - Wouldn't be able to reach higher speeds
 - Would require a portable 3phase voltage supply

Project Overview

- Investigate 2016 SLIM Capstone Project to identify design deficiencies
- Design a new rotor for the semi-linear induction motor

Outline of Presentation

- Background and Project Overview
- Investigate 2016 SLIM Capstone Project
- Rotor Design
- Economic Analysis
- Results
- Conclusion

Prior Work

- 2016 SLIM team designed a stator for the linear induction motor
- Built stator coils

[7]

Prior Work

- 2016 SLIM team mounted stator and air core rotor
- Began testing of the SLIM

Investigation

- 2017 SLIM team performed a more complete analysis
 - Confirming Coil Orientation
 - Magnetic Field Mapping
 - Inductance Computations

Coil Orientation

[9]

- Arranged coils to match the configuration shown in Fig [9].
 - If results didn't match, we would further investigate their orientation
 - Confirming the dot notation was crucial
 - If the notation wasn't correct, magnetic field supplied to the stator would be reduced

Coil Orientation with Magnetic Field for One Phase

Magnetic Field Mapping

Map of magnetic field

Outline of Presentation

- Background and Project Overview
- Investigate 2016 SLIM Capstone Project
- Rotor Design
- Economic Analysis
- Results
- Conclusion

Rotor Redesign

- New design based on results of magnetic analysis
- Why redesign?
 - The pre-existing rotor was initially designed to work as part of a magnetic levitation capstone project
 - The rotor didn't produce acceptable results
 - Minimal rotation occurred

Preliminary Rotor Designs

19

$$L = \frac{\lambda}{I_L} = \frac{N\Phi}{I_L}$$

L = Inductance [H]

 λ = Total linkage flux [Wb]

 I_L = Inductor current [A]

N = Number of turns

 $\Phi = Flux$

(1.1)

 $\frac{N(\mu_{r}\mu_{o}A_{p}A_{ag}A_{rotor}A_{B})}{P_{r}A_{ag}A_{B}+2l_{ag}A_{rotor}A_{p}A_{B}\mu_{r}+l_{rotor}A_{p}A_{ag}A_{B}+l_{B}A_{p}A_{ag}A_{rotor}}$ (1.9) μ_r = relative permeability μ_{o} = permeability of free space A_{rotor} = cross-sectional area of the rotor[m^2] $A_{pl} = A_{p2} = cross-sectional area of the pole[m²]$ $A_{agl} = A_{ag2} = cross-sectional area of the air gap [m²]$ *l_{rotor} = length of the rotor[m]* $l_{p1} = l_{p2} = length of the pole[m]$ $l_{a\sigma}$ = length of the air gap [m] l_{B} = length of the base (stator) [m]

- Took measurements in Fig. [17] for V_s , $V_1+V_R=V_L$, V_2 , VM, I, V_2' , and VM' to calculate the inductance of the coils
- Using Fig. [18], calculated inductance with equation Eq. 1.10,

$$\overline{V_L} = \overline{I} \ \overline{Z_L} \Rightarrow \overline{Z_L} = \frac{\overline{V_L}}{\overline{I}} \Rightarrow |\overline{Z_L}| = \frac{V_L}{\overline{I}} \Rightarrow 2\pi f L = \frac{V_L}{\overline{I}} \Rightarrow L = \frac{V_L}{I(2\pi f)}$$
(1.10)

 V_L = Inductance voltage [V] I = Coil current [A] L = Inductance [H] Z_L = Inductor impedance [Ω] f = Operating frequency [Hz]

- These equations proved that output power is directly proportional to the value of phase inductance
- Old rotor was resulting in really small values of inductance

$$P_{out} = 6.66 * P * f_m * \Phi_{ag} * T_{ph} * K_W * I_{ph} * \eta * (P.F.)$$
(1.11)

$$P_{out} = 6.66 * P * f_m * \lambda_{ph} * K_W * I_{ph} * \eta * (P.F.)$$
(1.12)

$$\lambda_{ph} = T_{ph} * \Phi_{ag} \tag{1.13}$$

$$P_{out} = 6.66 * P * f_m * \frac{\lambda_{ph}}{I_{ph}} * K_W * I_{ph}^2 * \eta * (P.F.)$$
(1.14)

$$P_{out} = 6.66 * P * f_m * L_{ph} * K_W * I_{ph}^2 * \eta * (P.F.)$$
(1.15)

$$P_{out} = K * L_{ph} \tag{1.16}$$

Where:
$$K = 6.66 * P * f_m * K_W * I_{ph}^2 * \eta * (P.F.)$$
 (1.17)

Final Rotor Design

New Rotor manufactured by Laser Laminations

[21]

Mounting Copper Track

[22]

SLIM with new rotor

[23]

Outline of Presentation

- Background and Project Overview
- Investigate 2016 SLIM Capstone Project
- Rotor Design
- Economic Analysis
- Results
- Conclusion

Bill of Material

TABLE I: BILL OF MATERIAL				
Component	Supplier	Price	Quantity	Total Price
Laminated Rotor	Laser Laminations	\$575	1	\$575

Outline of Presentation

- Background and Project Overview
- Investigate 2016 SLIM Capstone Project
- Rotor Design
- Economic Analysis
- Results
- Conclusion

Results with old rotor

Results with new rotor

Outline of Presentation

- Background and Project Overview
- Investigate 2016 SLIM Capstone Project
- Rotor Design
- Economic Analysis
- Results
- Conclusion

Conclusions

- Designing a rotor with higher inductances values resulted in an increase in rotational speed
- Further testing could identify areas that could improve results
- Future teams could implement a control scheme and reinstall the magnetic levitation system

Questions?

References

[1] Linear Induction Motor. [Photograph]. Retrieved from 2016 SLIM team Final Presentation

[2] Force Engineering. How Linear Induction Motors Work. [Photograph]. Retrieved from 2016 SLIM team Final Presentation

[3] Linear Induction Motor Rollercoaster. [Photograph]. Retrieved from Great American Thrills
[4] Japan's Maglev Train of Tomorrow. [Photograph]. Retrieved from The Daily Conversation
[5] Normal Motor and Linear Motor. [Photograph]. Retrieved from Explain That Stuff
[6] Stator. [Photograph]. Retrieved from 2016 SLIM team final Presentation
[7] New Coil Shot 1. [Photograph]. Retrieved from 2016 SLIM team final Presentation
[8] Test Mounting. [Photograph]. Retrieved from 2016 SLIM team final Presentation
[11] and [12] Magnetic Field with Solenoid and Magnet. [Photograph]. Retrieved from Online Phys
[14] Simulated Track Shot 2. [Photograph]. Retrieved from 2016 SLIM team final Presentation