RF to DC Rectifier

Project Proposal

Brandon White

Advisor: Dr. Prasad Shastry

Department of Electrical and Computer Engineering

10/6/15
Agenda

• Past Project
• Problem Background
• Constraints
• Design Approach
• Subsystem Block Diagram
• Nonfunctional Requirements
• Functional Requirements
• Economic Analysis
• Scheduling
• Societal and Environmental Impacts
• Conclusion
Problem Background (Bradley)

- Project from 2014
- Sergio Sanchez, Tyler Hoge, & Elie Baliss
- Dr. Prasad Shastry
- Wireless Power Transfer System
- Commercial Parts
- 915MHz frequency
- 2 Meters between antennas
Bradley Cont.

- Second system design of rectenna
- Functioned at 5.8 GHz
- 1 Watt power transferred
- Was not completed
- Closely related
Constraints

• Must output DC
• Must connect to an antenna at its input terminal
• Must operate in frequency range between 5.725GHz and 5.875GHz
Design Approach

- HSMS -2860 Schottky Detector Diode
Design Approach

Input Voltage

Output Voltage
Design Approach

Two Diode Full Wave Rectifier
Design Approach
Design Approach

Input Voltage

Out of Phase Input Voltage

Output Voltage
Design Approach

Diode Bridge Circuit
Design Approach
Design Approach

Input Voltage

Out of Phase Input Voltage

Output Voltage
Design Approach

Input Frequencies

![Input Frequencies Graph](image1)

Output Frequencies

![Output Frequencies Graph](image2)
Design Approach
Design Approach

Input Voltage

Out of Phase Input Voltage

Output Voltage

Output Voltage
Design Approach

Efficiency Chart

Friis Transmission Formula

\[P_r = P_t + G_t + G_r + 20\log_{10} \left(\frac{\lambda}{4\pi R} \right) \]
Design Approach

Subsystem Block Diagram
Nonfunctional Requirements

• Objectives list for RF to DC converter:
 • Conversion should be efficient
 • Should be small
 • Should be safe to use
 • Should be cost efficient to produce
Functional Requirements

• Functions for RF to DC converter:
 • Should convert RF to DC
 • Should filter out harmonic frequencies generated by rectifier circuit
 • DC output filter should create a DC output
 • Should be matched to antenna input impedance
Functional Requirements

• Specifications for RF to DC converter:
 • Will work in the frequency range of 5.725GHz to 5.875GHz
 • Will attach to an antenna at its input
Economic Analysis

• Feasible to produce at a low cost
• Cheap components being used in design
• Massive market
• Not ready for commercial use yet
Schedule

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Start</th>
<th>Finish</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Research</td>
<td>Spring 2015</td>
<td>Spring 2016</td>
<td>40 Weeks</td>
</tr>
<tr>
<td>2</td>
<td>Diode Selection</td>
<td>Fall 2015</td>
<td>Fall 2015</td>
<td>1 Week</td>
</tr>
<tr>
<td>3</td>
<td>Diode Configuration</td>
<td>Fall 2015</td>
<td>Mid Fall 2015</td>
<td>6 Weeks</td>
</tr>
<tr>
<td>4</td>
<td>Filter Design</td>
<td>Mid Fall 2015</td>
<td>Mid Fall 2015</td>
<td>6 Weeks</td>
</tr>
<tr>
<td>5</td>
<td>Impedance Matching</td>
<td>Mid Fall 2015</td>
<td>End Fall 2015</td>
<td>6 Weeks</td>
</tr>
<tr>
<td>6</td>
<td>Purchase Parts</td>
<td>End Fall 2016</td>
<td>End Fall 2015</td>
<td>1 Day</td>
</tr>
<tr>
<td>7</td>
<td>Circuit Implementation</td>
<td>Beginning Spring 2016</td>
<td>Mid Spring 2016</td>
<td>12 Weeks</td>
</tr>
<tr>
<td>8</td>
<td>Contact Manufacturer</td>
<td>Mid Spring 2016</td>
<td>End Spring 2016</td>
<td>1 Week</td>
</tr>
<tr>
<td>9</td>
<td>Test Product</td>
<td>End Spring 2016</td>
<td>End Spring 2016</td>
<td>3 Weeks</td>
</tr>
</tbody>
</table>
Societal and Environmental Impacts

• Convenience
• Safe
• Potential to be used in the future
• Less efficient than wired power transfer
• Trade-off
Conclusion

• RF to DC rectifier
• Continuation of 2014 project
• Design Approach
• Efficiency
• Endless Possibility
Questions?
Metrics for Objectives

- 0 – 5 point scale
- 5 highest
- 0 lowest
- Efficiency
- Size
- Safety
- Cost
References

