

RF to DC Rectifier Project Proposal Brandon White Advisor: Dr. Prasad Shastry

Department of Electrical and Computer Engineering

10/6/15

Agenda

- Past Project
- Problem Background
- Constraints
- Design Approach
- Subsystem Block Diagram
- Nonfunctional Requirements
- Functional Requirements
- Economic Analysis
- Scheduling
- Societal and Environmental Impacts
- Conclusion

Problem Background (Bradley)

- Project from 2014
- Sergio Sanchez, Tyler Hoge, & Elie Baliss
- Dr. Prasad Shastry
- Wireless Power Transfer System
- Commercial Parts
- 915MHz frequency
- 2 Meters between antennas

Bradley Cont.

- Second system design of rectenna
- Functioned at 5.8 GHz
- 1 Watt power transferred
- Was not completed
- Closely related

Constraints

- Must output DC
- Must connect to an antenna at its input terminal
- Must operate in frequency range between
 5.725GHz and 5.875GHz

• HSMS -2860 Schottky Detector Diode

Two Diode Full Wave Rectifier

:	•	•		•	•				HARI	NON	IIC B	ALAI	NCE				· ·	•		•				 	•		•	· ·		•	· ·	•
•	•	•	•	•	•	•	•	HB1	onicBal	·	V	\overline{D}	•		•	•	· ·	•	• •	•	•	•	•	· ·	5	\mathcal{D}	•	· ·	•	•	· ·	
								Orde	1]=5.8 C	GHZ	∕ र	7		+ .										1	5	2						
												robe													V_F	Prob	e.					
											. V_P	robe	1			•				•					V_F	rob	e2					
							Ē		1Tone		· ·			· ·			' .	<u></u>		•	·		•				•	Ŧ	Ter			•
•				•	·	•		N	RT1 m=3							•	hsms	•	•	•							•	Ś		m_2 m =2		• •
•		•			•	•	- (*	Ƴ 'z=	50 Ohm					· ·		•	X1 M=1			•			•				•	ן. ר		50 O		•
Ċ	•		•		•				50 m W xq=5.8 G	Hz						•		•						· ·				1				
			1	-				- I					$\overline{\mathbb{Q}}$															=				
			=				. –	<u> </u>	1Tone			1	\triangleleft																			
								· · · · ·	RT2 m=1				/_Prol /_Prol							•												•
·					·		- (50 Óhm			ľ				•			•	•												•
·					•		5		50 mW							-	- ·	-			J ·		•									•
·					·	•	·	· Fre	q=5.8 G	HZ						·	<u> </u>		•			·	·	• •			•	• •			• •	•
																	hsms X2															
																	_M=1															

Diode Bridge Circuit

Out of Phase Input Voltage

Output Voltage

Efficiency Chart

$$P_r = P_t + G_t + G_r + 20\log_{10}\left(\frac{\lambda}{4\pi R}\right)$$

Friis Transmission Formula

Subsystem Block Diagram

Nonfunctional Requirements

- Objectives list for RF to DC converter:
- Conversion should be efficient
- Should be small
- Should be safe to use
- Should be cost efficient to produce

Functional Requirements

- Functions for RF to DC converter:
- Should convert RF to DC
- Should filter out harmonic frequencies generated by rectifier circuit
- DC output filter should create a DC output
- Should be matched to antenna input impedance

Functional Requirements

- Specifications for RF to DC converter:
- Will work in the frequency range of 5.725GHz to 5.875GHz
- Will attach to an antenna at its input

Economic Analysis

- Feasible to produce at a low cost
- Cheap components being used in design
- Massive market
- Not ready for commercial use yet

Schedule

ID	Task Name	Start	Finish	Duration	Spring 2015 - Spring 2016
1	Research	Spring 2015	Spring 2016	40 Weeks	
2	Diode Selection	Fall 2015	Fall 2015	1 Week	
3	Diode Configuration	Fall 2015	Mid Fall 2015	6 Weeks	
4	Filter Design	Mid Fall 2015	Mid Fall 2015	6 Weeks	
5	Impedance Matching	Mid Fall 2015	End Fall 2015	6 Weeks	
6	Purchase Parts	End Fall 2016	End Fall 2015	1 Day	
7	Circuit Implementation	Beginning Spring 2016	Mid Spring 2016	12 Weeks	
8	Contact Manufacturor	Mid Spring 2016	End Spring 2016	1 Week	
9	Test Product	End Spring 2016	End Spring 2016	3 Weeks	

Societal and Environmental Impacts

- Convenience
- Safe
- Potential to be used in the future
- Less efficient than wired power transfer
- Trade-off

Conclusion

- RF to DC rectifier
- Continuation of 2014 project
- Design Approach
- Efficiency
- Endless Possibility

Questions?

Metrics for Objectives

- 0 5 point scale
- 5 highest
- 0 lowest
- Efficiency
- Size
- Safety
- Cost

References

- [1] Boaventura, Alirio, et al. "Optimum Behavior." *IEEE Microwave Magazine* Mar.-Apr. 2013: 26-35. Print.
- [2] Flynn, Brian W., and Kyriaki Fotopoulou. "Rectifying Loose Coils." *IEEE Microwave Magazine* Mar.-Apr. 2013: 48-54. Print.
- [3] Lin, James C. "Wireless Power Transfer for Cell Phones or Other Mobile Communication Devices and Biological Implications." *IEEE Microwave Magazine* July-Aug. 2013: 18-22. Print.
- [4] Scheeler, Robert, Sean Korhummel, and Zoya Popovic. "A Dual-Frequency Ultralow-Power Efficient 0.5-g Rectenna." *IEEE Microwave Magazine* Jan.-Feb. 2014: 109-14. Print.
- [5] Shinohara, Naoki. *Wireless Power Transfer via Radiowaves*. Hoboken: ISTE, 2014. Print.
- [6] Wireless Power Transfer System (2014). Print.