

RF to DC Converter for Wireless Power Transfer Systems

Brandon White Advisor: Dr. Prasad Shastry

 Project Application Project Overview Literature Review Block Diagram Project Design Simulation Results Test Results Conclusions

Project Application

Near-field wireless power transfer systems currently in use
Industry working towards far-field wireless power transfer systems

Project Overview

Convert radio frequency (RF) signal to direct current (DC) power
Functions in the FCC regulated ISM band that includes 5.8GHz
Output will be DC with minimal ripple
Maximize efficiency
Minimize size

Literature Review

Fig 1. Efficiency of Full-Wave Rectifiers vs Input Power [1]

Literature Review Diode Configuration

Fig 2. Four Diode full-wave rectifier

Literature Review Diode Configuration

Literature Review

Not new concept
High gain antennas
Efficiency expectations

Block Diagram

Fig 4. System Block Diagram

Design – Physical System

Design – ADS Schematic

Fig 6. ADS Schematic Design of RF to DC Converter

11

Design – Matching Network

Fig 7. ADS Schematic Design of Impedance Matching Network

Design - Harmonic Suppression

Fig 9. Third Order Harmonic Suppression

Fig 8. Second Order Harmonic Suppression

Design – Diode

HSMS-2860 Schotky detector diode
Discovered in research
Pspice file
Worked perfectly

Design - Balun

Fig 10. ADS Schematic Design of Balun

Design – DC Bypass Filter

Fig 11. ADS Design of Output Microstrip Spacing

Design - Discontinuities

Fig 12. Schematic Bend

Fig 13. Schematic Tee Junction

Simulation Results - Unmatched

Fig 14. Reflection Coefficient

Fig 15. Real Impedance

18

Simulation Results - Unmatched

Fig 16. Efficiency of System in ADS Simulation

Simulation Results - Unmatched

Fig 17. Simulated Output Voltage Waveform

Simulation Results - Matched

Magnitude s11 ADS -5--10dB(S(1,1)) -15m 3 -20freq=5.800GHz dB(S(1,1))=-33,128 -25--30--35-5.60 5.65 5.70 5.75 5.80 5.85 5.90 5.95 6.00 freq, GHz

Real Impedance 60 ADS m/2 50m2 40freg=5.800GHz eal(Zn1) real(Zin1)=52.207 30-20-10-0-5.65 5.60 5.70 5.75 5.80 5.85 5.90 5.95 6.00 freg, GHz

Fig 18. Reflection Coefficient

Fig 19. Real Impedance

Simulation Results - Matched

Fig 20. Efficiency of System in ADS Simulation

22

Simulation Results - Matched

Fig 21. Output Voltage Waveform of ADS Simulations (Scale in mV)

Testing Results – Time Domain

TDS 340	U TWO CHANNEL DIGITAL REAL-TIME OSCILLOSCOPE 100 MHz 500 MS/s SELECT
Tek Roll: 500 S/s Sample	
System Output	A. 708mV @: 768mV Ch1 Max 264mV High Ch2 VERTICAL POSITION
	Low III Nax IIII Max IIII Max
200mV	MI100ms Ch1 J −12mV -more- 4 of 5 -more- 4 of 5 -more- 4 of 5 -more- 4 of 5 -more- 4 of 5 -more- - 4 of 5 - more- - m
R1+ Select Measrmnt Tor Ch1 Neasrmnt Neasrmnt Neasrmnt	High-Low Reference Levels CH 1 CH 2

Fig 22. Oscilloscope voltage reading

Testing Results – Frequency Domain

Testing Results - Efficiency

Testing Results – Power Transfer

Conclusions

Unmatched has great preliminary results
Design is very compact
Design is efficient
Design gives DC output with minimal ripple

For Future Work

Increase efficiency
Decrease size
Design to function at different frequencies (2.45 GHz 915 MHz)
Work towards marketable product

Special Thanks

Chris Mattus
Nick Schmidt
Bob Modica

Questions?

References

- [1] A. Boaventura, A. Collado, N.B. Carvalho, and A Georgiadis, "Optimum Behavior" in *IEEE Microwave Mag.*, vol. 14, no. 4, pp. 26-35, 2013.
- [2] Z. Popovic, "Cut the Cord" in IEEE Microwave Mag., vol. 14, no. 4, pp. 55-62, 2013
- [3] J. Zbitou, M. Latach, and S. Toutain, "Hybrid Rectenna and Monolithic Integrated Zero-Bias Microwave Rectifier" in IEEE *Transactions on Microwave Theory and Techniques*, vol. 54, no. 1, pp. 147-152, 2006

Parts List

HSMS 2860 Schottky Detector Diode
Premiertek 802.11n 2.4GHz/5~5.8GHz Dual Band 5dBi Antenna
Antenna, 5.8 GHz 19 dBi gain
Sunhans wifi signal booster

Appendix

Absolute Maximum Ratings, $T_c = +25^{\circ}C$, Single Diode

Symbol	Parameter	Unit	Absolute Maximum ^[1]	
		-	SOT-23/143	SOT-323/363
P _{IV}	Peak Inverse Voltage	V	4.0	4.0
Tj	Junction Temperature	°C	150	150
T _{STG}	Storage Temperature	°C	-65 to 150	-65 to 150
T _{OP}	Operating Temperature	°C	-65 to 150	-65 to 150
θ_{jc}	Thermal Resistance ^[2]	°C/W	500	150

Attention: Observe precautions for handling electrostatic sensitive devices.

ESD Machine Model (Class A)

ESD Human Body Model (Class 0)

Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control.

Notes:

- 1. Operation in excess of any one of these conditions may result in permanent damage to the device.
- 2. $T_{C} = +25^{\circ}$ C, where T_{C} is defined to be the temperature at the package pins where contact is made to the circuit board.

