

COOPERATIVE CONTROL OF HETEROGENEOUS MOBILE ROBOTS NETWORK

Gregory Bock, Brittany Dhall, Ryan Hendrickson, & Jared Lamkin **Project Advisors:** Dr. Jing Wang & Dr. In Soo Ahn Department of Electrical and Computer Engineering March 1st, 2016

Outline

I. Introduction

- II. E-puck Progress Brittany & Jared
- III. Kilobot Progress Jared
- IV. Qbot Progress Ryan & Greg
- V. Summary & Conclusions

I. Introduction

Problem Description

 Design cooperative control algorithms for heterogeneous groups of robots

 Implement algorithms on different robot platforms

Objectives

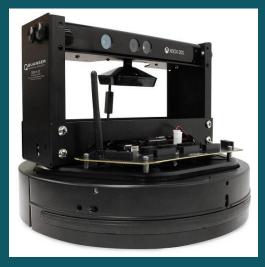
- Design and Experimental Validation of Cooperative Control Algorithms
 - Sensing/communication between robots
 - Implementation of local flocking control algorithms
 - Implementation of local formation control algorithms

Solution

Cooperative control algorithm design

- Linear model
- Non-linear model
- Deployment and validation through experimental testing
 - Modular design
 - System integration

Algorithm Test Platforms


Kilobot

E-Puck

Qbot

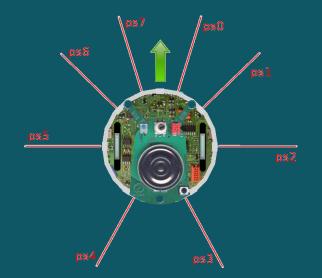
Division of Labor Overview

	Kilobots	Jared					
Individual Behavior	Qbots	Ryan/Greg					
	E-pucks	Brittany					
	Kilobot - Kilobot	Jared					
Individual Communication	Qbot - Qbot	Ryan/Greg					
	E-puck - E-puck	Brittany					
	Kilobot - E-puck	Jared/Brittany					
Integrated Communication	Kilobot - Qbot	Jared/Ryan/Greg					
	E-puck - Qbot	Brittany/Ryan/Greg					
Algorithm Design	Linearization Based Model	Jared/Brittany/Ryan/Greg					
Integrated Behavior	Formation Control Behavior	Jared/Brittany/Ryan/Greg					
	Flocking Behavior	Jared/Brittany/Ryan/Greg					
Tosting	Software Implementation	Jared/Brittany/Ryan/Greg					
Testing	Hardware Implementation	Jared/Brittany/Ryan/Greg					

II. E-puck Progress - Brittany

Recap of Last Semester

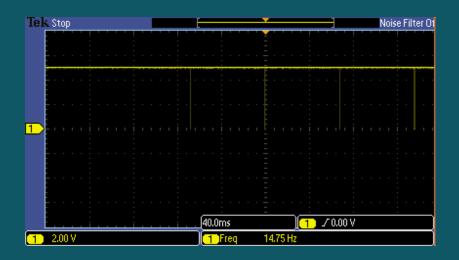
Used IR proximity sensors for object detection
Used IR proximity sensors for object following


Work Accomplished

- IR proximity sensors used for communication
- Un-brick E-pucks
- Received new batteries for better life of the robot

IR Proximity Sensors

- Proximity sensors can send a pulse wave
- IR receiver circuit detects signal
- Method to communicate with Kilobots
 - Sent a message (Kilobots could not see it)



Example Code for IR Proximity Sensor

```
int main() {
```

```
long timer = 0;
     //configure LEDs pin direction
      PULSE IRO DIR = OUTPUT PIN;
      LEDO DIR = OUTPUT PIN;
while (1) {
      PULSE IRO = 0;
      LEDO = 0;
      for(timer = 0; timer < DELAY; timer++);</pre>
      PULSE IRO = 1;
      LED0 = 1;
      for(timer = 0; timer < DELAY; timer++);</pre>
```

Oscilloscope Captures

iek. Stop				E			Ť							I	Vois	e Filt	ter O
	- - -		 - - -			- - -	 Ŭ			! '			' - -				
				_			 			-							
<u> </u>																	•
-	1.1.1																
		, i	 		20.0	ms	0.0	0000	s][1)	Ζ0,	00 \	/			<1	10 H
1) 2.00 V						Freq	1	4.75	Hz								

Unbricked two E-pucks

• Used the MPLAB ICD 3

- Use MPLAB IDE v8.30
- E-puck must be turned off to start
- Open MPLAB IDE v8.30
- Remove the top portion of the E-puck
- Connect the ICD₃ to the computer, then to the Epuck

- Import a basic file into MPLAB
- Go to Programmer -> Select Programmer -> MPLAB ICD3
- Go to Programmer -> Settings -> Program Memory Tab

ico s settings	
Program Memory Configuration Status	Power
Program Memory Configuration Status Allow ICD 3 to select memories and ran Manually select memories and ran Memories Program Configuration EEPROM ID Boot Flash Program Memory Range (hex) Statt 0 End 17fff 	id ranges
Full Range Automatically Program after successful build Run after successful program	Cancel Apply Help

ICD₃ Settings Power Tab

IC	CD 3 Settings ? X	J
	Program Memory Configuration Status Power	
		ľ
	Power target circuit from MPLAB ICD 3	
	Voltage	
	5.500	
	OK Cancel Apply Help	
		5

- Select Programmer -> Erase Flash Device
- When Finished, power cycle the E-puck
- Select Programmer -> Program

Problems Encountered

 Infrared sensor communication (no add-on IR Ring)

 Communication using the proximity sensors to the Kilobots

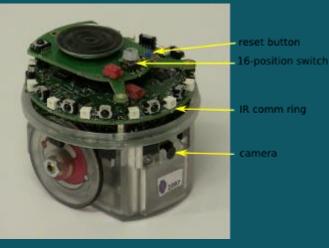


Fig. 2 – E-puck without Addon IR ring

Fig. 1. http://www.eecs.harvard.edu/ssr/teaching/epucks/e-site_files/Page609.htm Fig. 2. http://hades.mech.northwestern.edu/index.php/E-puck_Mobile_Robot • E-puck to E-puck communication

- Using the E-puck's camera
- Q-bot to E-puck communication

Gantt Chart – Future Work

Task Name	Group Member Responsible for Task	Finish by Date/Due Date	Dec	- 16	Ja	Jan-16		Feb-16			Mar-16					-16	
			1	8	19	26	5 2	9 1	6 23	1	8 1	5 22	29	5	12	19	26
Individual Communication																	
Research/Test E-puck - E-puck	Brittany	December 14, 2015															
Integrated Communication																	
Test Kilobot - E-puck	Jared/Brittany	December 14, 2015															
Test E-puck - Qbot	Brittany/Ryan/Greg	December 14, 2015															
Algorithm Design																	
Design Linear Based Model	All	December 14, 2015															
Integrated Behavior																	
Formation Control Behavior																	
Localization	All	January 25, 2016															
Point Convergence	All	January 25, 2016															
Leader Follower	All	January 25, 2016															
Testing																	
Software Implementation	All	March 7, 2016															
Hardware Implementation	All	March 7, 2016															

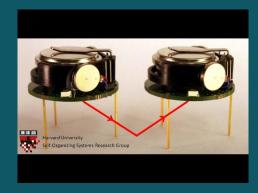
E-puck Progress- Jared

Color and Object Detection

The E-puck CMOS camera is capable of 640X480 resolution, in color or grayscale
However, the image is too large to process, so instead we use a 1X120 image
Color uses RGB565, where each pixel has 5 bits for red, 6 bits for green, and 5 bits for blue

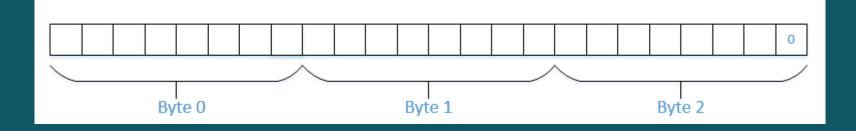
Color and Object Detection

- First step to object detection is edge detection
- The image array is searched for two edges, from both left and right starting positions
- Individual pixels are compared to the average of the previous ten pixels
- If the difference is greater than three, that location is set as an edge
- Based on the number of edges found (0,1,2,3,4), The E-puck calculates where the center of the object is, and how wide it is.


Color and Object Detection

- After Edge detection is complete, the E-puck moves on to color comparison
- The E-puck computes the average RGB value of the object
- The average is compared to the specified value within a certain tolerance
- If the comparison is acceptable, The E-puck begins maneuvering to it.

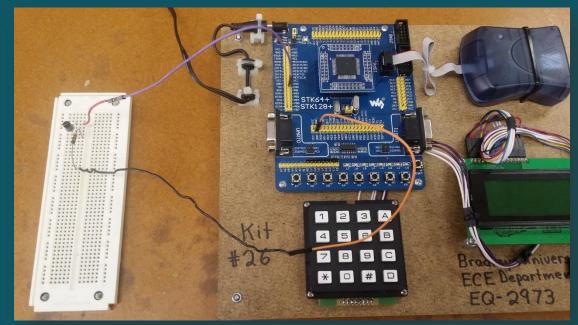
III. Kilobot Progress - Jared


How Kilobots Communicate

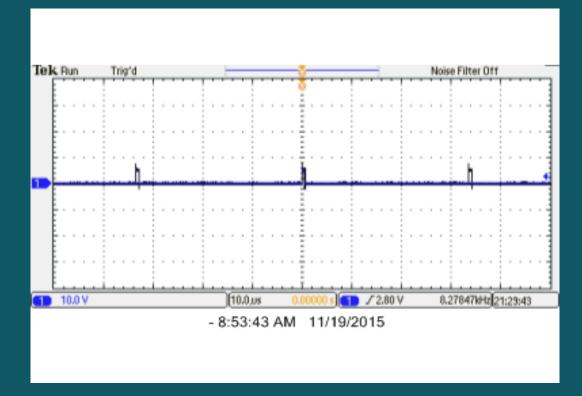
- Use infrared light
- Reflects light off the floor
- Measures light intensity to calculate distance
- Maximum rated range is 7 cm
- Messages are sent every 200 milliseconds

Preparing Messages to send

- A message is composed of 23 bits (2 full characters, and an even character)
- A check sum is generated by taking the sum of the bits and 128
- All four bytes are operated on
- Each byte is then shifted left and incremented by 1



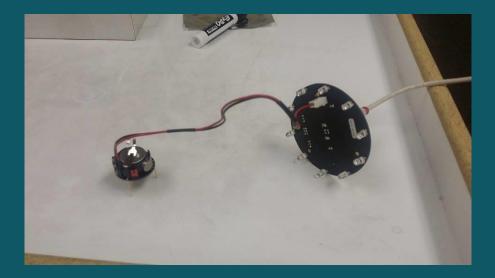
Sending messages


- Signal goes high briefly (0.75 microseconds)
- Signal is then set low for a duration (92.25 microseconds)
- Each bit is sent: high for 1, low for 0
- Signal is set low between each bit (13.875 microseconds per bit)
- 537 microseconds for entire message to be sent

Circuit

Used an Atmega128 board from the lab
PBo in series with a 330 ohm resistor and an IR LED

Oscilloscope capture


Initial Testing

 A Kilobot was programmed to turn its LED green if message was received

- The Kilobot turns it LED red if message is not received after a set amount of time
- The IR LED light was reflected off the ground next to the Kilobot

Further Testing

- Kilobot was connected to serial cable and programmed to print message values to hyper terminal
- Kilobot was placed at measured distances and compared to printed distance

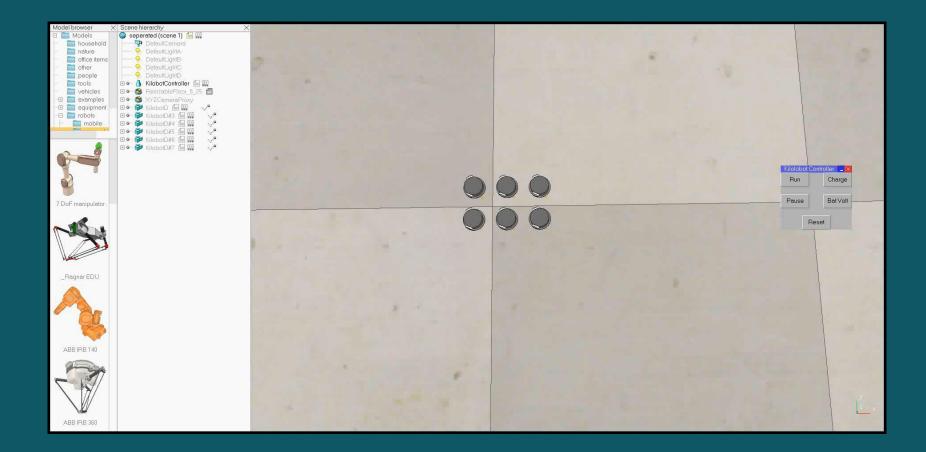
Controllable Node

 A Kilobot programmed to receive orders from an outside source

- Transmits orders to follower Kilobots to mimic its behavior
- Only performs orders if at least one follower is within range

Follower Nodes

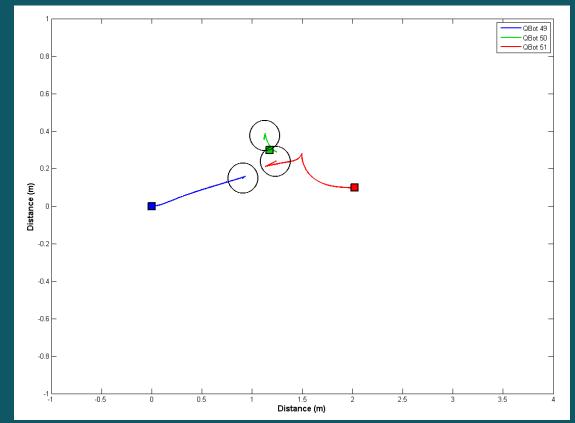
- Perform order received from controllable node
- At start up they perform gradient algorithm with other followers
- Only perform orders received from lowest value follower within range
- They only move if they are within range of the next lowest follower
- Transmit gradient value and heading


Simulation of Controllable and Follower Nodes

Separation and Attraction

- Kilobots generate a random ID at startup
- Kilobots then try to separate into two groups, evens and odds
- Opposites attempt to repulse each other, by orbiting
- Like attracts
- If an agent loses contact with others it stops
- Current issues are collision avoidance

Separation and Attraction Simulation

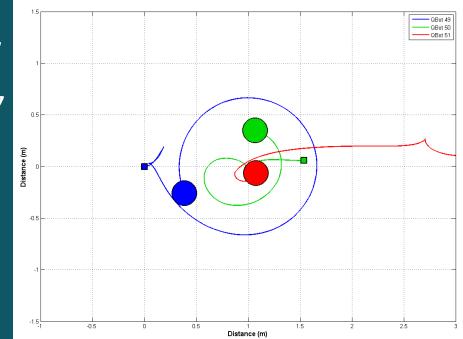

Gantt Chart – Future Work

Task Name	Group Member Responsible for Task	Finish by Date/Due Date	D	ec-15	Ja	n-16		Fe	b-16	í		Ma	r-16			Ар	r-16	
			1	8	19	26	2	9	16	23	1 8	15	22	29	5	12	19 2	26
Integrated Communication																		
Test Kilobot - E-puck	Jared/Brittany	December 14, 2015																
Test Kilobot - Qbot	Jared/Ryan/Greg	November 16, 2015																
Test E-puck - Qbot	Brittany/Ryan/Greg	December 14, 2015																
Algorithm Design																		
Design Linear Based Model	All	December 14, 2015																
Integrated Behavior																		
Formation Control Behavior																		
Localization	All	January 25, 2016																
Point Convergence	All	January 25, 2016																
Leader Follower	All	January 25, 2016																
Flocking Behavior																		
Neighbor Repulsion	All	February 1, 2016																
Enpoint Attraction	All	February 1, 2016																
Heading	All	February 1, 2016																
Testing																		
Software Implementation	All	March 7, 2016																
Hardware Implementation	nentation All March 7, 2																	

III. QBot 2 Progress – Ryan & Greg

Recap of Last Semester

- Localization
- Point Consensus
- Formation


Path Following

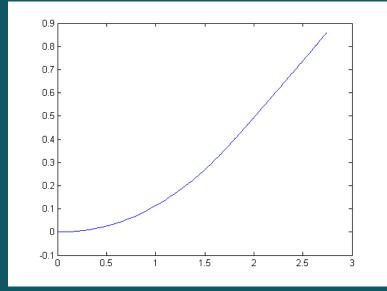
- Sinusiodal Motion
- $\dot{x} = \omega$
- $x_d = \omega t$
- $\dot{y} = \omega \cos(x_d)$
- $y_d = \sin(x_d)$
- $v_1 = -k(x_d z_1) + \dot{x}$
- $v_2 = -k(y_d z_2) + \dot{y}$

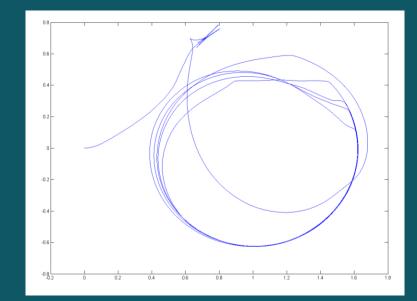
Path Following

Circular Motion

• $v_1 = -k(x_d - z_1) + \dot{x}$ • $v_2 = -k(y_d - z_2) + \dot{y}$ • $x_d = a + r\cos(t/n)$ • $y_d = b + r\sin(t/n)$ • $\dot{x} = -r\sin(t/n)/n$ • $\dot{y} = r\cos(t/n)/n$

Path Following – Figure 8




QBot Progress - Greg

Object Avoidance Using Fuzzy Logic

- Non-binary, degrees of truth
- Three inputs left side, middle, right side
- Two outputs left motor, right motor

Object Avoidance Using Fuzzy Logic Results

Object Avoidance

Gantt Chart – Future Work

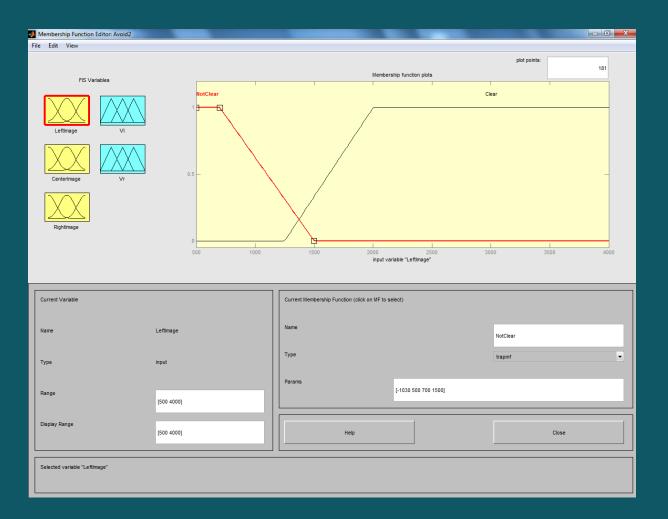
	Group Member Responsible for					n-																				
Task Name	Task	Date/Due Date		15		6		eb-					<u>:-16</u>			Ap										
			1	1 8		1 8		181		181		1 8 1		26	29	16	23	1	8	15	22	29	5	12	19	26
Integrated Communication																										
Test Kilobot - E-puck	Jared/Brittany	December 14, 2015																								
Test Kilobot - Qbot	Jared/Ryan/Greg	November 16, 2015																								
Test E-puck - Qbot	Brittany/Ryan/Greg	December 14, 2015																								
Algorithm Design																										
Design Linear Based Model	All	December 14, 2015																								
Integrated Behavior																										
Formation Control Behavior																										
Localization	All	January 25, 2016																								
Point Convergence	All	January 25, 2016																								
Leader Follower	All	January 25, 2016																								
Flocking Behavior																										
Neighbor Repulsion	All	February 1, 2016																								
Enpoint Attraction	All	February 1, 2016																								
Heading	All	February 1, 2016																								
Testing																										
Software Implementation	All	March 7, 2016																								
Hardware Implementation	All	March 7, 2016																								

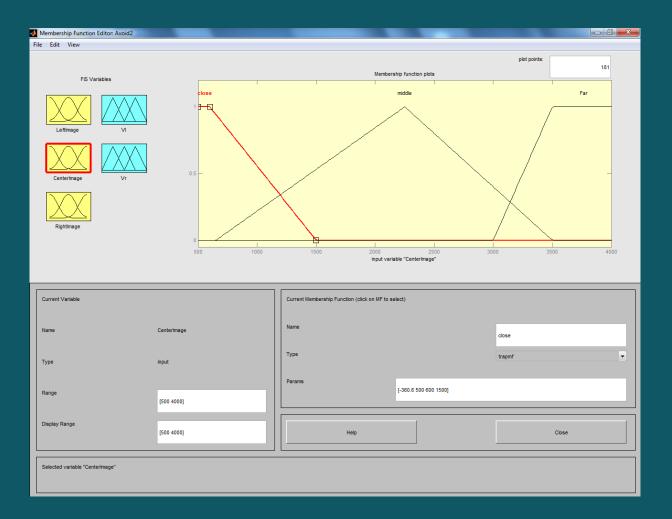
VIII. Summary & Conclusions

Summary & Conclusions

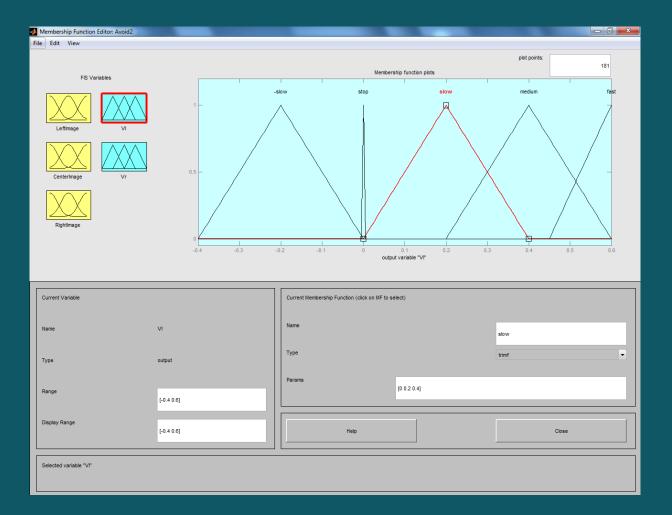
- Design cooperative control algorithms for heterogeneous groups of robots
- Implement algorithms on different robot platforms
- Prevent collisions and implement network security
- Behind Schedule

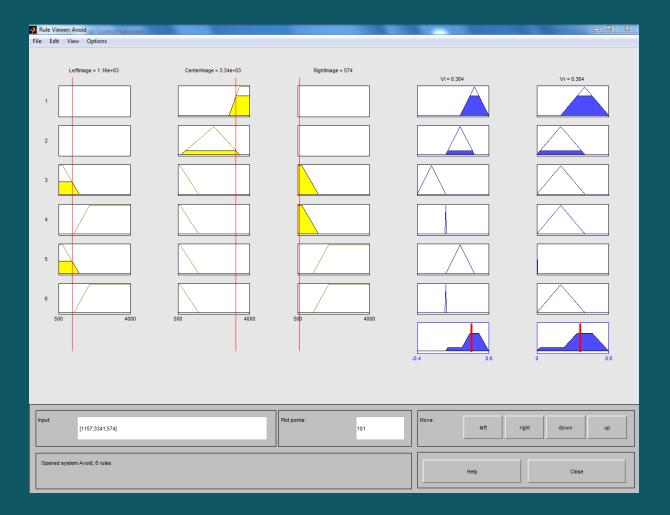
Future Plan of Action


- Communication between platforms
- Algorithm design
- Integrated behavior


COOPERATIVE CONTROL OF HETEROGENEOUS MOBILE ROBOTS NETWORK

Gregory Bock, Brittany Dhall, Ryan Hendrickson, & Jared Lamkin **Project Advisors:** Dr. Jing Wang & Dr. In Soo Ahn Department of Electrical and Computer Engineering October 6th, 2015


Left Side Input


Middle Input

Left Motor Output

Simulation of Rules

Design Constraints

- Must overcome limited communication among networked robots
- Must overcome limited sensing capability of robots
- Must overcome system uncertainties

Objectives

Mobile robot network should be applicable to different robot platforms

- Mobile robot network should be robust
- Mobile robot network should be autonomous

Solution

Cooperative control algorithm design

- Linear model
- Non-linear model
- Deployment and validation through experimental testing
 - Modular design
 - System integration

Robot Model

Linear Model

- $\dot{x} = U_x$
- $\dot{y} = U_y$
- Non-linear Model
 - $\dot{x} = v cos(\theta)$
 - $\dot{y} = vsin(\theta)$
 - $\dot{\theta} = \omega$

Solution Testing

Software Implementation

- Simulation
- Algorithm validation
- Algorithm implementation on platforms
- Hardware Implementation
 - Robot calibration
 - Multiple sensor fusion
- System Integration
 - Software
 - Hardware

Criteria to Determine a Successful Project

- Algorithm can be deployed on multiple robots
- Autonomous robots
- Communication amongst multiple robots

Project Funding

- Air Force Research Lab
- Air Force Proposal "Multiagent task coordination using a distributed optimization approach"
- Grant Agreement Number FA8780-13-1-0109

Expenses

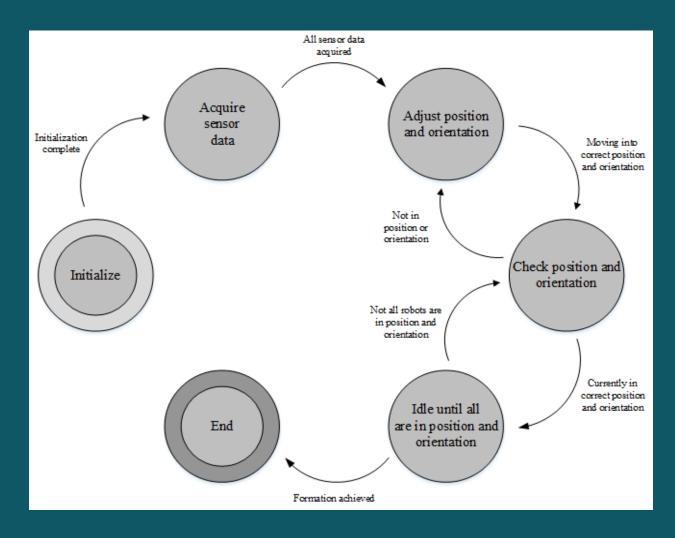
Robotic platforms (software included)
Auxiliary components

Project Platform Costs

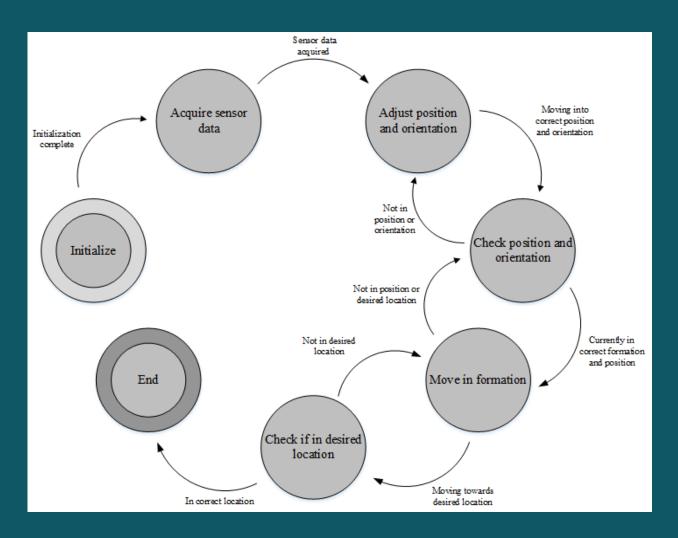
Platform	Quantity	Total Price
Qbot2	3	\$9,999.00
Kilobot Kit	20	\$4,583.00
Epucks	3	\$5,093.00

Programming Software Costs

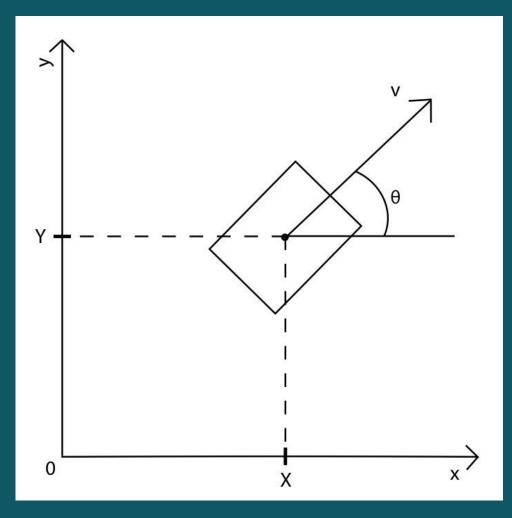
Software	Quantity	Total Price
Kilobot Controller IDE	1	\$0.00
E-puck Programming Software	1	\$0.00
MATLAB Courseware	1	\$0.00


Gantt Chart

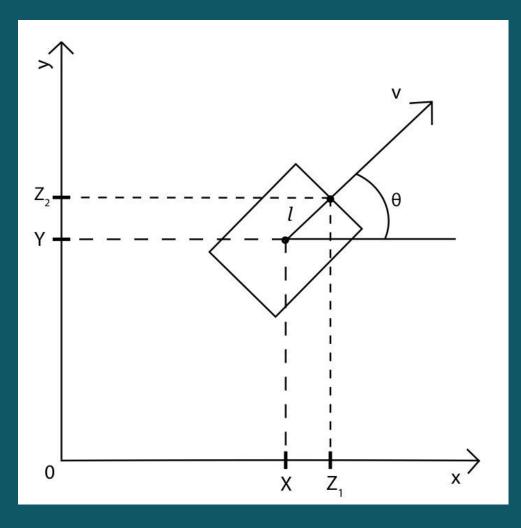
Task Name	Group Member Responsible for Task	Finish by Date		S	ep-15	;		0	ct-15	5		No	v-15	;		De	ec-15	5		Ja	m-1	6	F	Feb-16			Mar-16				Apr-1		
			1	8 1	5 2	2 2	29 6	5 13	20	27	3	10	17	24	1	8 15	2	2 2	29 5	12	19	26	2 9	9 1	5 23	3 1	8 15	5 22	29	5 1	12	19 26	
Individual Behavior																																	
Research Kilobot Sensors	Jared	September 28, 2015																															
Research Kilobot Communication Protocol	Jared	October 12, 2015																															
Research Q-bot Image Processing	Ryan/Greg	October 5, 2015																															
Research Q-bot Sensors	Ryan/Greg	September 28, 2015																															
Research Q-bot Communication Protocol	Ryan/Greg	October 19, 2015																															
Research E-puck Sensors	Brittany	October 26, 2015																															
Research E-puck Communication Protocol	Brittany																																
Individual Communication																																	
Research/Test Kilobot - Kilobot	Jared	October 19, 2015																															
Research/Test E-puck - E-puck	Brittany	December 14, 2015																															
Research/Test Qbot - Qbot	Ryan/Greg	November 2, 2015																															
Integrated Communication																																	
Test Kilobot - E-puck	Jared/Brittany	December 14, 2015																															
Test Kilobot - Qbot	Jared/Ryan/Greg	November 16, 2015																															
Test E-puck - Qbot	Brittany/Ryan/Greg	December 14, 2015																															
Algorithm Design																																	
Design Linear Based Model	All	December 14, 2015																															
Integrated Behavior																																	
Formation Control Behavior																																	
Localization	All	January 25, 2016																															
Point Convergence	All	January 25, 2016																															
Leader Follower	All	January 25, 2016																															
Flocking Behavior																																	
Neighbor Repulsion	All	February 1, 2016																															
Endpoint Attraction	All	February 1, 2016																															
Heading	All	February 1, 2016																															
Testing																																	
Software Implementation	All	March 7, 2016																															
Hardware Implementation	All	March 7, 2016																															


Gantt Chart – Deliverables

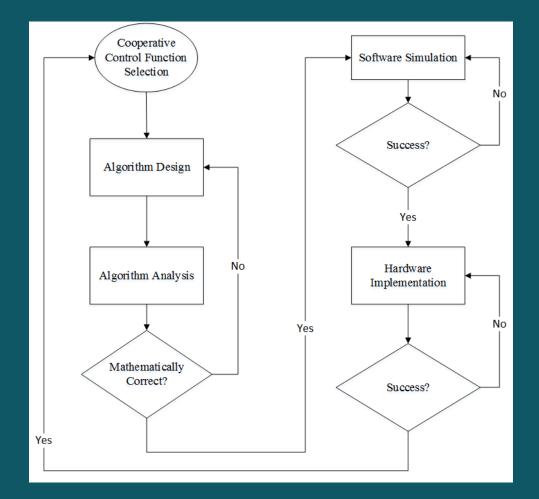
	Finish by Date/Due	S	lep	-15	;	0	ct-]	15	1	Nov	-15]	Dee	c-1	5	J	an	-16	Fe	b-1	6	N	lar	-16	5	Ar	or-16	6
Task Name	Date																										2192	
Deliverables																												
Project Proposal - Oral																												
Presentation	October 1, 2015																											
Project Proposal - Document	October 15, 2015																											
Webpage Release	October 28, 2015																											
Fall Progress Presentation	November 19, 2015																											
Fall Performance Evaluation	November 19, 2015																											
Fall Performance Review	December 3, 2015																											
Spring Progress Presentation	February 18, 2016																											
Student Expo Abstract	March 18, 2016																											
Project Demonstration	March 24, 2016																											
Final Presentation	April 7, 2016																											
Student Expo Poster Printing																												
Deadline	April 11, 2016																											
Student Expo Poster Setup	April 12, 2016																											
Student Expo	April 14, 2016																											
Final Report (Draft)	April 14, 2016																											
Final Report	April 28, 2016																											
Final Web Page	April 28, 2016																											
Advisory Board Poster Printing																												
Deadline	April 28, 2016																											
Advisory Board Poster																												
Presentation	April 29, 2016																											


State Diagram: Formation Control Behavior

State Diagram: Flocking Formation



Non-linear Model


Quanser Inc. "QBOT 2 Workbook" Markham, Ontario

Linear Model

Quanser Inc. "QBOT 2 Workbook" Markham, Ontario

Solution Testing

E-puck Object Following Code

```
/** Motor speed controlled depending on front proximity sensor values **/
#include "p30f6014A.h"
#include "e epuck ports.h"
#include "e init port.h"
#include "e ad conv.h"
#include "e prox.h"
#include "e_motors.h"
#define DELAY 50000
int main() {
   long timer = 0;
   //system initialization
   e init port();
                           // configure port pins
   e_init_ad_scan(ALL_ADC);
                           // configure Analog-to-Digital Converter Module
   while (1) {
      if (e get prox(0)> 500) {
                                 //escape
          e_set_speed_left(0);
          e set speed right(0);
      } else if (e get prox(0)>100) { //follow
          e set speed left(400);
          e set speed right(400);
      } else {
                                 //stop
          e set_speed_left(0);
          e_set_speed_right(0);
      //wait a little to let the robot move
      for(timer = 0; timer < DELAY; timer++);</pre>
```

Kilobot message operations

data_out[i]=(data_to_send[i] & (1<<0))*128 + (data_to_send[i] & (1<<1))*32 + (data_to_send[i] & (1<<2))*8 + (data_to_send[i] & (1<<3))*2+ (data_to_send[i] & (1<<4))/2+ (data_to_send[i] & (1<<5))/8 + (data_to_send[i] & (1<<6))/32 + (data_to_send[i] & (1<<7))/128;

data_out[i]=data_out[i]<<1; data_out[i]++;

LEDs and Buttons

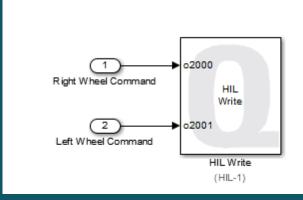
 Found LED and Button addresses for reading and writing

- LEDs can be used for debugging
- Buttons can be used for synchronous startup

QBot Point Convergence Code

```
v11 = k1*(z21 - z11); % Calculate velocity in x direction
v12 = k2*(z22 - z12); % Calculate velocity in y direction
mat = [cos(myTheta) -d/2*sin(myTheta); sin(myTheta) d/2*cos(myTheta)];
myControl = inv(mat)*[v11;v12];
```

```
% Determine total velocity
V = myControl(1);
```

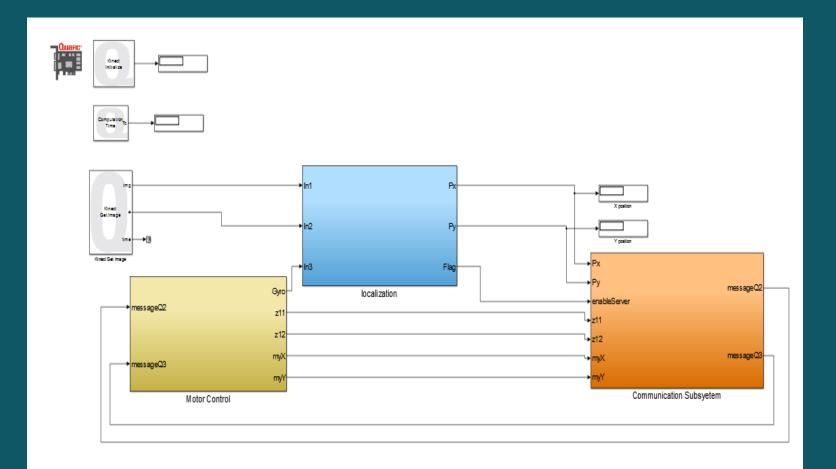

```
% Determine angular velocity
omega = myControl(2);
```

```
% Determine left and right wheel velocity
V1 = (2*V-d*omega)/2;
Vr = (2*V+d*omega)/2;
```

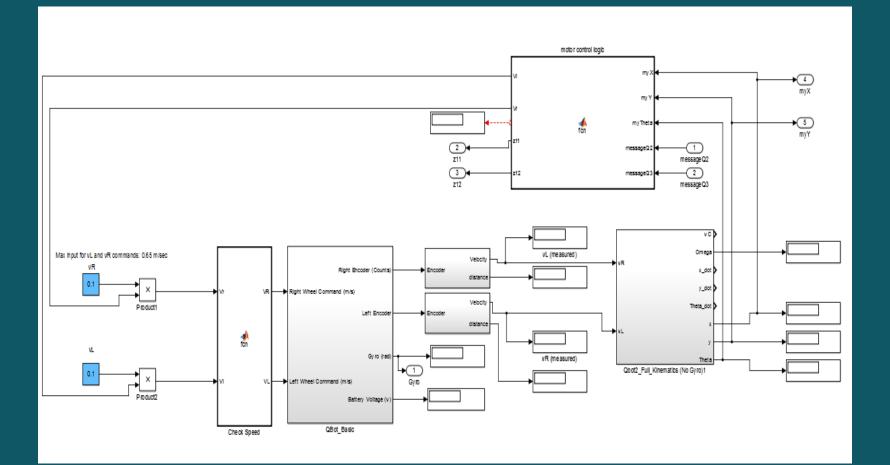
QBot Obtained Angle Equation

• $\alpha = (320 - column) * (57/640) * (\pi - 180)$

HIL Write Block


🛃 Source Block Parameters: HIL Write				
HIL Write				
Writes to a combination of output channels of a hardware-in-the-loop card.				
Navigation				
Go to HIL blocks using this board				
Board name: HIL-1				
Analog channels:				
PWM channels:				
0				
Digital channels:				
<u> </u>				
Other channels:				
[2000:2001]				
Sample time (seconds):				
-1				
Vector inputs				
OK Cancel Help Apply				

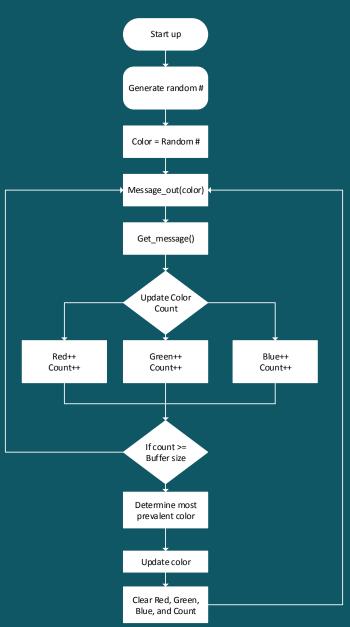
Find Object Parameters


- Specify RGB values
- Value threshold
- Number of objects

Function Block Parameters: Find Object
Find Object (mask) (link)
Finds the center-of-mass coordinates (in pixels) of the object detected in the given image.
Parameters
Detection Mode: RGB
Pixel format: RGB8
Number of Objects (1-5):
1
Threshold:
30
Minimum object size (pixels):
16
R:
158
G:
201
B:
124
Sample Time (secs):
-1
OK Cancel Help Apply

Overall Simulink Model

Motor Control



84

E-puck Tiny Bootloader

Tiny Bootlo	ader - demo6.hex		
C:\Users\britt\E)ocuments\Bradley\Senior Project\ledson.hex	•	<u>B</u> rowse
Write Flash	Messages Terminal Options termOpt		
 CheckPIC	Interface to TinyBootLoader, v1.9.8 contact: claudiu.chiculita@ugal.ro http://www.etc.ugal.ro/cchiculita/software/picbootloader.htm		*
	Warning: piccodes.ini not found.		
Comm	Connected to \\.\COM7 at 115200 HEX: 4 days old, INHX32,dsPICcode, total=6488 bytes.		
115200 👻	Searching for PIC Found:ds6014/6012		
Search	WRITE OK at 13:22, time:2.140 sec		
com7			
COM3 COM8			
com7			
			-

Color Consensus Flowchart

Localization Equations

•
$$C_i = \sqrt{(x_0 - x_i)^2 + (y_0 - y_i)^2}$$

• $V_i = \langle \frac{x_0 - x_i}{C_i}, \frac{y_0 - y_i}{C_i} \rangle$
• $n_i = (x_i, y_i) - D_i * V_i$
• $(x_0, y_0) = (x_0, y_0) - \frac{(x_0 - n_{ix}, y_0 - n_{iy})}{4}$