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|. Introduction




Objectives

Design and Experimental Validation of Cooperative
Control Algorithms

Sensing/communication between robots
Implementation of local flocking control algorithms
Implementation of local formation control algorithms



Project Background

Cooperative systems found in nature
Flock of birds
School of fish
Swarm of insects
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http://www.huffingtonpost.com/2013/10/07/plane-hits-bird-ohare_n_4058132.html



Possible Applications

© Cooperative systems found in engineering
e Smart Grid
» Sensor Network
» Traffic Network

http://www.siemens.com/press/en/events/2012/corp
orate/2012-06-wildpoldsried.php




Heterogeneous Groups
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Point Consensus
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Design Constraints

Must overcome limited communication among
networked robots

Must overcome limited sensing capability of robots
Must overcome system uncertainties
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Test Platform — Kilobot

Diameter of 3.3 cm
Two differential vibration motors

IR transmitter and receiver (7 cm range)

Ambient light sensor
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Test Platform — E-puck

Diameter of 7 cm
IR transmitter and receiver ring (25 cm range)
On-board CMOS camera

Bluetooth 2.0

dsPIC 30F6014A on-board computer
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Test Platform — QBot 2 14

Open-architecture autonomous ground robot
Xbox 360 Kinect

Kobuki robot base

Gumstix DouVero Zephyr on-board computer




Il. E-puck — Brittany
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Work Accomplished e

Software & hardware implementation
Object detection/following

Odometry

Vicsek Model

Fix battery issues

https://www.cyberbotics.com/item?id=8



Infrared proximity sensors

8 infrared proximity sensors
Composed of two parts -IR emitter & photo-sensor

Can detect objects within 4 centimeters
IR7 IRO

IR6 IR1

IR5 IR2

IR4  IR3
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Object Detection and Following

Proximity sensors -> detected distance
Compare with true specified distance
Velocity = gain™®(specified distance — detected distance)



Object Detection -




Object Following




Odometry

Using odometry the E-puck can compute their position
and orientation

A6
Ax=AS*cos(9(k)+T>

A6
Ay=AS*sin(9(k)+T)

ok + 1) = (k) +ATH

A S —average change in steps of both left and right
motors

A 6 — change in the angle of the agents heading
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Vicsek Model

0,(k) + 3, 6; ()
n+1
0;(k + 1) - Next heading of agent

0; (k) - current heading of agent

Hl(k + 1) —

?:1 0; (k) - sum of all neighboring agents at time k

n - number of neighboring agents
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|Vicsek Model
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E-puck Battery Problem — Solution

Original Design Solution #1 Solution #2
*Bad connection *Added an addition on *Resoldered positive
between positive and top of E-puck, for better terminal
negative terminals from connection to terminals

battery to E-puck




Testing communication between E-
puck and Kilobot

Tested E-puck communications with infrared receiver
connected to oscilloscope initially, followed by testing
with Kilobot

Verified E-pucks sent message with correct protocol

Verification of communication between E-puck and
Kilobot would be accomplished by observing change
in LED from red to green
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Infrared Receiver Circuit

38kHz Infrared Receiver Infrared Receiver Circuit
Module

Used a 5V supply & oscilloscope to
view the signals

A%

2

5V /F
el SIGNAL
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http://www.ebay.com/itm/like/141932065528?|pid=82&chn=ps&u|_nc§pp=true




l1l. Kilobot - Jared
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Kilobot

Atmega 328 (8-bit @ 8 MHz)

32kB flash, 1kB EEPROM, 2kB SRAM
2 vibration motors

IR LED and receiver

Ambient light sensor

Infrared Receiver Microcontroller

Infrared
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b a0 8 »“
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/ B T .0\‘ : Transmitter Bottom View
/ Reflective Infrared

e
— Communica tion Path Side View

https://Ih3.googleusercontent.com/-g2ISChnX4DI/U-1VyxOKwsl/AAAAAAAALSA/3mi89VoBBfs/s640/kilobot-closeup-
overview.jpg
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How Kilobots Communicate

Use infrared light
Measures light intensity to calculate distance
Messages are sent every 200 milliseconds

https://i.ytimg.com/vi/ISMwLCFwgK4/maxresdefault.jpg
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Color Synchronization Video
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Kilobot Movement: Orbiting
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Multiple Agent Orbiting
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Simple Localization: Gradient >3

Can determine how many agents are displaced from a
specified agent

Individuals receive gradient values from local agents
until a buffer is full

Smallest value in buffer is incremented by 1, which
becomes agent’s gradient value



Gradient
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Advanced Behaviors

By combining gradient, orbiting, and/or light
detection more advanced behaviors can be achieved
such as:

. Kilobots converge to a fixed-
point
. Kilobots orbit multiple stationary
agents
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Fixed-Point Consensus
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Follow-the-Leader
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I1l. QBot 2 — Ryan & Greg
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QBot 2 - Ryan

40



Non-linear Model

Non-linear Model
x = vcos(6)
y = vsin(6)

0 =w

vV



Linear Model

Linear Model
px = Uy
Dy = Uy
Py =X + 1 *cos6O

py =y + 1 *sinb
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Simulink Model
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Simulink Model
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Localization

Color Detection
Depth Calculation

Communication
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Localization — Color Detection
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Localization — Depth Calculation
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Localization — Depth Calculation *

a = (320 — column) * (57/640) = (1t/180)
a is obtained angle
column is the array column number

P.=d
P, = d * tan(a)
d is depth



Localization — Communication

state
ysnd err
Stream sent
Client
rcv
en
new

o

-

Stream Client
"tcpip://remotehost:18000"

state
ysnd err
Stream
sent
Server
rcv
jen
new

-

-

Stream Server
"tcpip://remotehost:18000"



Point Consensus Control Algorithm  *°

uix(t) — kizsij(t) (pjx(t) R pix(t))
j=1

ey (©) = kit ) 50 (pjy© — piy ()
j=1

Communication Topology

1 1 O
s;i(t) = |0
1

1 1
0 1.



Point Consensus

Communication Topology Si; (t) =
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Point Consensus
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Heading Alignment




QBot 2 - Greg
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Object Avoidance

Used Fuzzy Logic
Inputs taken from Xbox 360 Kinect
Outputs are left and right motor velocities
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Object Avoidance

Membership Function Plots

Not Clear

Clear
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Object Avoidance

Membership Function Plots
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Object Avoidance

Membership Function Plots

Stop Slow Medium Fast

0 0.1 0.2 0.3 0.4 0.5 0.6 m/s
Output Variable “Vr”
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Object Avoidance

Membership Function Plots

-Slow Stop Slow Medium Fast

-0.4  -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 m/s
Output Variable “VI”
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Fuzzy Rule Set
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Object Avoidance

VL — k(xd _X) +xd +AVL
Ve = k(yg —y) +yq + AVg
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Object Avoidance
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Object Avoidance
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Formation Control
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Formation Control

Ui (t) = k; z Sij(t)(pjx(t) — ij — Dix(t) + Cix)
=1

u,;y(t) — ki z Sij(t)(pjy(t) — C]y o piy(t) T Ciy)
j=1
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Formation Control
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Formation Control
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IV. Summary & Conclusions
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Problems Encountered

E-puck
CMOS camera

For communication between different platforms,
additional circuity was needed

Kilobot
Kilobot motors need frequent calibration
Small size makes it difficult for QBot 2 to detect
Lack of sensory information

/70



Summary & Conclusions &

Designed cooperative control algorithms for
heterogeneous groups of robots

Implemented algorithms on different robot platforms



Future Work

Cross-platform communication

Implement E-puck camera

Further development of formation algorithms
Complete E-puck to Kilobot communication
Add IR messaging system to QBot 2

Improve QBot 2 algorithm to avoid objects
consistently
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Division of Labor Overview

75

Kilobots Jared
Individual Behavior QBot 2s Ryan/Greg
E-pucks Brittany/Jared
Kilobot - Kilobot Jared
Individual Communication QBot - QBot Ryan/Greg
E-puck - E-puck Brittany/Jared
Kilobot - E-puck Jared/Brittany
Integrated Communication Kilobot - QBot Jared/Ryan/Greg
E-puck - QBot Brittany/Ryan/Greg

Algorithm Design

Linearization Based Model

Jared/Brittany/Ryan/Greg

Integrated Behavior

Formation Control Behavior

Jared/Brittany/Ryan/Greg

Flocking Behavior

Jared/Brittany/Ryan/Greg

Testing

Software Implementation

Jared/Brittany/Ryan/Greg

Hardware Implementation

Jared/Brittany/Ryan/Greg




orithm Test Platforms e

Kilobot
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http://www.k-team.com/mobile-robotics-products/kilobot
https://en.wikipedia.org/wiki/E-puck_mobile_robot
http://www.mathworks.com/products/connections/product_detail/product_101072.html
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Unbricking the E-pucks

Uses the MPLAB ICD 3 In-circuit Debugger
MPLAB IDE v8.30

Erases the Flash memory by powering the E-puck
through the ICD 3

In-Circuit Debugsger

MPLAB®

1CD 3

N

MICROCHIP

http://microchip.wikidot.com/icd3:start
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Changing the Original Timer

E-puck’s clock speed is 8 times faster than the Kilobot

Increased the timer of the E-puck by a factor of 8 to
slow down the rate at which the message was sent to

Kilobot

Change was made to allow Kilobots to sync with E-
puck messaging



Object Avoidance

Inputs taken from Xbox 360 Kinect
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Oscilloscope Screen Captures from  °°

the Infrared Receiver Circuit

Moise Filter Off

leooms — oo0000s|@m So00% 140626 Helosaa |
Increased original timer by

Original timer used in initial
a factor of 8

Kilobot testing

Moise Filter Off

Decreased original timer by
a factor of 8



Advanced Localization: Distributed 3!
Trilateration

Gradient is only a 1D localization
Minimum of 3 fixed agents as reference points
Non-localized agents assume position (0,0)

Determine actual distance to non-localized agent
Calculate assumed distance



Advanced Localization: Distributed 32

Trilateration

Direction Vectors are generated from reference to
unknown

Generate assumed coordinates from Vectors and
measured Distances

New position is determined using assumed position
and previous position



Integrated Communication Set-up

83



Project Platform Costs
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Platform Quantity | Total Price
QBot 2 3 $9,999.00
Kilobot Kit 20 $4,583.00
Epucks 3 $5,093.00




Programming Software Costs
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. Total

Software Quantity Price

Kilobot Controller IDE 1 $0.00
E-puck Programming

Software . $0.00

MATLAB Courseware 1 $0.00




E-puck Object Following Code

e e e e e e e ke e e e e ok e ke e e e o e e o e e e e e e e ke e ke e e e e ke e e e e e e e e e e e e e e e e ke e e e e e e e e e e o e e e e e e

f*=* Motor speed controlled depending on front proximity sensocr wvalues **)

e e e e e e e ke e e e e ok e ke e e e o e e o e e e e e e e ke e ke e e e e ke e e e e e e e e e e e e e e e e ke e e e e e e e e e e o e e e e e e

finclude "p30£f&0142 _h"
#include "e_epuck_ports. h"
finclude "e_init port.h"
finclude "e_ad conv.h"
#include "e_prox.h"
finclude "e_motors.h"

fdefine DELAY¥ 50000
int main
long timer = 0;

ffayatem initialization

e_init porti);
e _init ad scan(ALL RDC); i

while
if (e_get_prox(0)> 500

e_set speed_ left (0);
e_set_speed_right(0):

configure port pins
configure Analog-to-Digital Converter Module

S feacape

else if l(e_get_prox(0)>100) { //follow

e_set_ speed left (400);

e_set speed right(400);
elae

e_set_speed left(0);

e_set speed right(0);

ffwait a little to let the

robot mowve

for (timer = 0; timer < DELA¥; timert++);
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QBot Point Convergence Code

vll = kl*({z21 - =11); 3% Calculate welocity in x direction
vz = k2¥%(z22 — =zl12); 3% Calculate welocity in v direction

mat = [cos(myTheta) -d/2*3in(myTheta); sin(myTheta) d/2*cos (myTheta)]:
myControl = inv(mat)*[vll;wvl1l2]:

% Determine total wvelocity

V = myControl (1) :

% Determine angular wvelocity

omega = myControl (2):

% Determine left and right wheel wve
V1 = (2*V-d*omega) /2;
Vr = (2*V+d*omega) /2;



QBot Obtained Angle Equation

a = (320 — column) * (57/640) = (1t/180)
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HIL Write Block

= S|

u Source Block Parameters: HIL Write

Analog channels:
52000 .
Right Wheel Command
.HI.L PWHK channels:
Wirite:
0 -]
02001
Left W heel Command Digital channels:
HIL Write I E]
(HIL-1) Other channels:
[2000:2001] E]

HIL Write

Writes to a combination of output channelz of a

hardware-in-the-loop card.

Mavigation

Go to HIL blocks using thiz board...

Board name: [HIL-1

Sample time (seconds):
-1

|:| Vector inputs

[ OK H Cancel H

Help




Specify RGB
values

Value threshold

Number of
objects

Find Object Parameters

Function Block Parameters: Find Object

=)

Find Object (mask) (link)

Finds the center-of-mass coordinates (in pixels) of the object

detected in the given image.

Parameters

Detection Mode: | RGE

Pixel format: | RGBS

Number of Objects (1-5):
1

Threshold:

30

Minimum object size (pixels):
16

R:

158

G:

201

B:

124

Sample Time (secs):

-1

OK H Cancel ||

Help
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Overall Simulink Model




Motor Control

hax hpt forvil and VR commands 055 misas
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Localization Equations

C; = \/(xo — x;)% + (Yo — ¥1)*?

Xo—Xi Yo—UYi
Vi — < 0 l’ yO yl >
Ci Ci

n; = (x;, ;) — Dy * V;

(Xo—Nix, Yo—Niy)

(xO) yO) — (XO, yO) o A
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Color Consensus

Kilobots are initialized with a random number
Each number corresponds to a color
Kilobots then begin transmitting value

Kilobots receive messages and keep track of how
many neighbors are what color

Kilobots then change their color to most prevalent
color
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Color and Object Detection >

The E-puck CMOS camera is capable of 640X480
resolution, in color or grayscale

However, the image is too large to process, so
instead we use a 1X120 image

Color uses RGB565, where each pixel has 5 bits for
red, 6 bits for green, and 5 bits for blue



Color and Object Detection %

First step to object detection is edge detection

The image array is searched for two edges, from
both left and right starting positions

Individual pixels are compared to the average of the
previous ten pixels

If the difference is greater than three, that location
is set as an edge

Based on the number of edges found (0,1,2,3,4),
The E-puck calculates where the center of the object
is, and how wide it is.



Color and Object Detection !

After Edge detection is complete, the E-puck moves
on to color comparison

The E-puck computes the average RGB value of the
object

The average is compared to the specified value
within a certain tolerance

If the comparison is acceptable, The E-puck begins
maneuvering to it.



Odometry
A G = (AR;AL)
AS = (AR+AL)

2
)
A y=AS*Sin(€ +@)

x(k+1) =x(k) +A x
y(k+1)=y(k) +Ay

9@+¢)=9+%?

A x=AS*cos(9+
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