
Gregory Bock, Brittany Dhall, Ryan Hendrickson, & Jared Lamkin

Project Advisors: Dr. Jing Wang & Dr. In Soo Ahn

Department of Electrical and Computer Engineering

April 26th, 2016

2Outline

I. Introduction

II. E-puck – Brittany

III. Kilobot - Jared

IV. QBot 2 – Ryan & Greg

V. Summary & Conclusions

3

I. Introduction

4Objectives

 Design and Experimental Validation of Cooperative
Control Algorithms

 Sensing/communication between robots

 Implementation of local flocking control algorithms

 Implementation of local formation control algorithms

5Project Background

 Cooperative systems found in nature

 Flock of birds

 School of fish

 Swarm of insects

http://www.huffingtonpost.com/2013/10/07/plane-hits-bird-ohare_n_4058132.html

6Possible Applications

 Cooperative systems found in engineering

 Smart Grid

 Sensor Network

 Traffic Network

http://www.siemens.com/press/en/events/2012/corp
orate/2012-06-wildpoldsried.php

7Heterogeneous Groups

8Heading Alignment

9Point Consensus

10Following

3

1

11Design Constraints

 Must overcome limited communication among
networked robots

 Must overcome limited sensing capability of robots

 Must overcome system uncertainties

12Test Platform – Kilobot

 Diameter of 3.3 cm

 Two differential vibration motors

 IR transmitter and receiver (7 cm range)

 Ambient light sensor

13Test Platform – E-puck

 Diameter of 7 cm

 IR transmitter and receiver ring (25 cm range)

 On-board CMOS camera

 Bluetooth 2.0

 dsPIC 30F6014A on-board computer

14Test Platform – QBot 2

 Open-architecture autonomous ground robot

 Xbox 360 Kinect

 Kobuki robot base

 Gumstix DouVero Zephyr on-board computer

15

II. E-puck – Brittany

16Work Accomplished

 Software & hardware implementation

 Object detection/following

 Odometry

 Vicsek Model

 Fix battery issues

https://www.cyberbotics.com/item?id=8

17Infrared proximity sensors

 8 infrared proximity sensors

 Composed of two parts -IR emitter & photo-sensor

 Can detect objects within 4 centimeters

IR0
IR1

IR2

IR3

IR7

IR4

IR5

IR6

18Object Detection and Following

 Proximity sensors -> detected distance

 Compare with true specified distance

 Velocity = gain*(specified distance – detected distance)

19Object Detection

20Object Following

21Odometry

 Using odometry the E-puck can compute their position
and orientation

△ 𝑥 =△ 𝑆 ∗ 𝑐𝑜𝑠 𝜃(𝑘) +
△ 𝜃

2

△ 𝑦 =△ 𝑆 ∗ 𝑠𝑖𝑛 𝜃(𝑘) +
△ 𝜃

2

𝜃 𝑘 + 1 = 𝜃(𝑘) +
△ 𝜃

3
 △ 𝑆 – average change in steps of both left and right

motors

 △ 𝜃 – change in the angle of the agents heading

22Vicsek Model

𝜃𝑖 𝑘 + 1 =
𝜃𝑖 𝑘 + 𝑗=1

𝑛 𝜃𝑗 (𝑘)

𝑛 + 1
 𝜃𝑖 𝑘 + 1 - Next heading of agent

 𝜃𝑖 𝑘 - current heading of agent

 𝑗=1
𝑛 𝜃𝑗(𝑘) - sum of all neighboring agents at time k

 n - number of neighboring agents

23Vicsek Model

24E-puck Battery Problem – Solution

Original Design Solution #1 Solution #2

•Resoldered positive
terminal

•Added an addition on
top of E-puck, for better
connection to terminals

•Bad connection
between positive and
negative terminals from
battery to E-puck

25Testing communication between E-
puck and Kilobot

 Tested E-puck communications with infrared receiver
connected to oscilloscope initially, followed by testing
with Kilobot

 Verified E-pucks sent message with correct protocol

 Verification of communication between E-puck and
Kilobot would be accomplished by observing change
in LED from red to green

26Infrared Receiver Circuit

http://www.ebay.com/itm/like/141932065528?lpid=82&chn=ps&ul_noapp=true

38kHz Infrared Receiver
Module

Infrared Receiver Circuit

Used a 5V supply & oscilloscope to
view the signals

5 V
DC SIGNAL

330 Ω

27

III. Kilobot - Jared

28Kilobot

 Atmega 328 (8-bit @ 8 MHz)

 32kB flash, 1kB EEPROM, 2kB SRAM

 2 vibration motors

 IR LED and receiver

 Ambient light sensor

https://lh3.googleusercontent.com/-g2lSChnX4DI/U-1VyxOKwsI/AAAAAAAAL9A/3mi89VoBBfs/s640/kilobot-closeup-
overview.jpg

29How Kilobots Communicate

 Use infrared light

 Measures light intensity to calculate distance

 Messages are sent every 200 milliseconds

https://i.ytimg.com/vi/ISMwLCFwgK4/maxresdefault.jpg

30Color Synchronization Video

31Kilobot Movement: Orbiting

Kilobot

Zone of
Repulsion

Kilobot

Zone of
Orientation

Zone of
Attraction

32Multiple Agent Orbiting

33Simple Localization: Gradient

 Can determine how many agents are displaced from a
specified agent

 Individuals receive gradient values from local agents
until a buffer is full

 Smallest value in buffer is incremented by 1, which
becomes agent’s gradient value

34Gradient

35Advanced Behaviors

 By combining gradient, orbiting, and/or light
detection more advanced behaviors can be achieved
such as:

 Fixed-point consensus: Kilobots converge to a fixed-
point

 Edge following: Kilobots orbit multiple stationary
agents

 Follow-the-leader

36Fixed-Point Consensus

37Edge-Following

38Follow-the-Leader

39

III. QBot 2 – Ryan & Greg

40

QBot 2 - Ryan

41Non-linear Model

 Non-linear Model

 𝑥 = 𝑣𝑐𝑜𝑠 𝜃

 𝑦 = 𝑣𝑠𝑖𝑛 𝜃

 𝜃 = 𝜔

42Linear Model

 Linear Model

 𝑝𝑥 = 𝑢𝑥

 𝑝𝑦 = 𝑢𝑦

 𝑝𝑥 = 𝑥 + 𝑙 ∗ 𝑐𝑜𝑠𝜃

 𝑝𝑦 = 𝑦 + 𝑙 ∗ 𝑠𝑖𝑛𝜃

43Simulink Model

44Simulink Model

45Localization

 Color Detection

 Depth Calculation

 Communication

46Localization – Color Detection

638

639

640

1

2

col

47Localization – Depth Calculation

638

639

640

1

2

col

d

α

48Localization – Depth Calculation

 α = 320 − 𝑐𝑜𝑙𝑢𝑚𝑛 ∗ 57 640 ∗ π/180

 α is obtained angle

 𝑐𝑜𝑙𝑢𝑚𝑛 is the array column number

 𝑃𝑥 = 𝑑

 𝑃𝑦 = 𝑑 ∗ 𝑡𝑎𝑛(𝛼)

 𝑑 is depth

49Localization – Communication

50Point Consensus Control Algorithm

𝑢𝑖𝑥 𝑡 = 𝑘𝑖

𝑗=1

𝑛

𝑠𝑖𝑗 𝑡 𝑝𝑗𝑥 𝑡 − 𝑝𝑖𝑥 𝑡

𝑢𝑖𝑦 𝑡 = 𝑘𝑖

𝑗=1

𝑛

𝑠𝑖𝑗 𝑡 𝑝𝑗𝑦 𝑡 − 𝑝𝑖𝑦 𝑡

 Communication Topology

 𝑠𝑖𝑗 𝑡 =
1 1 0
0 1 1
1 0 1

51Point Consensus

 Communication Topology 𝑠𝑖𝑗 𝑡 =
1 1 0
0 1 1
1 0 1

52Point Consensus

53Point Consensus

X Position (m)

0 0.5 1 1.5 2 2.5

Y
 P

o
si

ti
o

n
 (

m
)

-1.5

-1

-0.5

0

0.5

1

Point Consensus

QBot 49

QBot 50

QBot 51

54Heading Alignment

55

QBot 2 - Greg

56Object Avoidance

 Used Fuzzy Logic

 Inputs taken from Xbox 360 Kinect

 Outputs are left and right motor velocities

0 Left Center Right200 480 680

57Object Avoidance

1

0.5

0
500 1000 1500 2000 2500 3000 3500 4000

Not Clear Clear

Membership Function Plots

Input Variable Right

mm

58Object Avoidance

1

0
500 1000 1500 2000 2500 3000 3500 4000

Close FarMiddle

0.5

Membership Function Plots

Input Variable Center

mm

59Object Avoidance

1

0
0 0.1 0.2 0.3 0.4 0.5 0.6

Stop FastMedium

0.5

Membership Function Plots

Output Variable Vr

Slow

m/s

60Object Avoidance

1

0
-0.4 -0.2 -0.1 0.1 0.3 0.5 0.6

FastMedium

0.5

Membership Function Plots

Output Variable Vl

Stop

0.40.20-0.3

Slow-Slow

m/s

61Fuzzy Rule Set

Input Output

Left Center Right VR VL

- Far - Medium Medium

- Middle - Slow Slow

Not Clear Close Not Clear Slow -Slow

Clear Close Not Clear Slow Stop

Not Clear Close Clear Stop Slow

Clear Close Clear Slow Stop

62Object Avoidance

 𝑉𝐿 = 𝑘 𝑥𝑑 − 𝑥 + 𝑥𝑑 + ∆𝑉𝐿
 𝑉𝑅 = 𝑘 𝑦𝑑 − 𝑦 + 𝑦𝑑 + ∆𝑉𝑅

63Object Avoidance

64Object Avoidance

X Position (m)

0 0.5 1 1.5 2

Y
 P

o
si

ti
o

n
 (

m
)

-1

-0.5

0

0.5

1

Object Avoidance

QBot 49

65Formation Control

66Formation Control

𝑢𝑖𝑥 𝑡 = 𝑘𝑖

𝑗=1

𝑛

𝑠𝑖𝑗 𝑡 𝑝𝑗𝑥 𝑡 − 𝐶𝑗𝑥 − 𝑝𝑖𝑥 𝑡 + 𝐶𝑖𝑥

𝑢𝑖𝑦 𝑡 = 𝑘𝑖

𝑗=1

𝑛

𝑠𝑖𝑗 𝑡 𝑝𝑗𝑦 𝑡 − 𝐶𝑗𝑦 − 𝑝𝑖𝑦 𝑡 + 𝐶𝑖𝑦

67Formation Control

68Formation Control

X Position (m)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Y
 P

o
si

ti
o

n
 (

m
)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Formation Control

QBot 49

QBot 50

QBot 51

69

IV. Summary & Conclusions

70Problems Encountered

 E-puck

 CMOS camera

 For communication between different platforms,
additional circuity was needed

 Kilobot

 Kilobot motors need frequent calibration

 Small size makes it difficult for QBot 2 to detect

 Lack of sensory information

71Summary & Conclusions

 Designed cooperative control algorithms for
heterogeneous groups of robots

 Implemented algorithms on different robot platforms

72Future Work

 Cross-platform communication

 Implement E-puck camera

 Further development of formation algorithms

 Complete E-puck to Kilobot communication

 Add IR messaging system to QBot 2

 Improve QBot 2 algorithm to avoid objects
consistently

73Acknowledgements

 Our group would like to thank Dr. Wang & Dr. Ahn for
their support throughout the project.

 Our group would also like to thank Mr. Mattus and
Mr. Schmidt for their technical support.

Gregory Bock, Brittany Dhall, Ryan Hendrickson, & Jared Lamkin

Project Advisors: Dr. Jing Wang & Dr. In Soo Ahn

Department of Electrical and Computer Engineering

April 26th, 2016

75Division of Labor Overview

Individual Behavior
Kilobots Jared
QBot 2s Ryan/Greg
E-pucks Brittany/Jared

Individual Communication
Kilobot - Kilobot Jared

QBot - QBot Ryan/Greg

E-puck - E-puck Brittany/Jared

Integrated Communication

Kilobot - E-puck Jared/Brittany

Kilobot - QBot Jared/Ryan/Greg
E-puck - QBot Brittany/Ryan/Greg

Algorithm Design Linearization Based Model Jared/Brittany/Ryan/Greg

Integrated Behavior
Formation Control Behavior Jared/Brittany/Ryan/Greg

Flocking Behavior Jared/Brittany/Ryan/Greg

Testing
Software Implementation Jared/Brittany/Ryan/Greg

Hardware Implementation Jared/Brittany/Ryan/Greg

76Algorithm Test Platforms

Kilobot QBot 2E-Puck

http://www.k-team.com/mobile-robotics-products/kilobot
https://en.wikipedia.org/wiki/E-puck_mobile_robot

http://www.mathworks.com/products/connections/product_detail/product_101072.html

77Unbricking the E-pucks

 Uses the MPLAB ICD 3 In-circuit Debugger

 MPLAB IDE v8.30

 Erases the Flash memory by powering the E-puck
through the ICD 3

http://microchip.wikidot.com/icd3:start

78Changing the Original Timer

 E-puck’s clock speed is 8 times faster than the Kilobot

 Increased the timer of the E-puck by a factor of 8 to
slow down the rate at which the message was sent to
Kilobot

 Change was made to allow Kilobots to sync with E-
puck messaging

79Object Avoidance

 Inputs taken from Xbox 360 Kinect

0 Left Center Right200 480 680

80Oscilloscope Screen Captures from
the Infrared Receiver Circuit

Original timer used in initial
Kilobot testing

Increased original timer by
a factor of 8

Decreased original timer by
a factor of 8

81Advanced Localization: Distributed
Trilateration

 Gradient is only a 1D localization

 Minimum of 3 fixed agents as reference points

 Non-localized agents assume position (0,0)

 Determine actual distance to non-localized agent

 Calculate assumed distance

82Advanced Localization: Distributed
Trilateration

 Direction Vectors are generated from reference to
unknown

 Generate assumed coordinates from Vectors and
measured Distances

 New position is determined using assumed position
and previous position

83Integrated Communication Set-up

84Project Platform Costs

Platform Quantity Total Price

QBot 2 3 $9,999.00

Kilobot Kit 20 $4,583.00

Epucks 3 $5,093.00

85Programming Software Costs

Software Quantity
Total

Price

Kilobot Controller IDE 1 $0.00

E-puck Programming

Software
1 $0.00

MATLAB Courseware 1 $0.00

86E-puck Object Following Code

87QBot Point Convergence Code

88QBot Obtained Angle Equation

 α = 320 − 𝑐𝑜𝑙𝑢𝑚𝑛 ∗ 57 640 ∗ π/180

89HIL Write Block

90Find Object Parameters

• Specify RGB
values

• Value threshold

• Number of
objects

91Overall Simulink Model

92Motor Control

93Localization Equations

 𝐶𝑖 = 𝑥0 − 𝑥𝑖
2 + 𝑦0 − 𝑦𝑖

2

 𝑉𝑖 =<
𝑥0−𝑥𝑖

𝐶𝑖
,
𝑦0−𝑦𝑖

𝐶𝑖
>

 𝑛𝑖 = 𝑥𝑖 , 𝑦𝑖 − 𝐷𝑖 ∗ 𝑉𝑖

 𝑥0, 𝑦0 = 𝑥0, 𝑦0 −
(𝑥0−𝑛𝑖𝑥, 𝑦0−𝑛𝑖𝑦)

4

94Color Consensus

 Kilobots are initialized with a random number

 Each number corresponds to a color

 Kilobots then begin transmitting value

 Kilobots receive messages and keep track of how
many neighbors are what color

 Kilobots then change their color to most prevalent
color

95Color and Object Detection

The E-puck CMOS camera is capable of 640X480
resolution, in color or grayscale

However, the image is too large to process, so
instead we use a 1X120 image

Color uses RGB565, where each pixel has 5 bits for
red, 6 bits for green, and 5 bits for blue

96Color and Object Detection

First step to object detection is edge detection
The image array is searched for two edges, from

both left and right starting positions
 Individual pixels are compared to the average of the

previous ten pixels
 If the difference is greater than three, that location

is set as an edge
Based on the number of edges found (0,1,2,3,4),

The E-puck calculates where the center of the object
is, and how wide it is.

97Color and Object Detection

After Edge detection is complete, the E-puck moves
on to color comparison

The E-puck computes the average RGB value of the
object

The average is compared to the specified value
within a certain tolerance

 If the comparison is acceptable, The E-puck begins
maneuvering to it.

98Odometry

 △ 𝜃 =
△𝑅−△𝐿

2

 △ 𝑆 =
△𝑅+△𝐿

2

 △ 𝑥 =△ 𝑆 ∗ 𝑐𝑜𝑠 𝜃 +
△𝜃

2

 △ 𝑦 =△ 𝑆 ∗ 𝑠𝑖𝑛 𝜃 +
△𝜃

2

 𝑥 𝑘 + 1 = 𝑥 𝑘 +△ 𝑥

 𝑦 𝑘 + 1 = 𝑦 𝑘 +△ 𝑦

 𝜃 𝑘 + 1 = 𝜃 +
△𝜃

3

