[BIBRADLEY

University

COOPERATIVE CONTROL OF
HETEROGENEOUS MOBILE
ROBOTS NETWORK

Gregory Bock, Brittany Dhall, Ryan Hendrickson, & Jared Lamkin
Project Advisors: Dr. Jing Wang & Dr. In Soo Ahn

Department of Electrical and Computer Engineering

April 26th, 2016

Outline

Introduction

E-puck — Brittany
Kilobot - Jared

QBot 2 — Ryan & Greg
Summary & Conclusions

|. Introduction

Objectives

Design and Experimental Validation of Cooperative
Control Algorithms

Sensing/communication between robots
Implementation of local flocking control algorithms
Implementation of local formation control algorithms

Project Background

Cooperative systems found in nature
Flock of birds
School of fish
Swarm of insects

-
o O

,‘-
e
e
L“‘

.
»

http://www.huffingtonpost.com/2013/10/07/plane-hits-bird-ohare_n_4058132.html

Possible Applications

© Cooperative systems found in engineering
e Smart Grid
» Sensor Network
» Traffic Network

http://www.siemens.com/press/en/events/2012/corp
orate/2012-06-wildpoldsried.php

Heterogeneous Groups

|
Heading Alignment

Point Consensus

.
Following 0

@,
@ -0~

of

Design Constraints

Must overcome limited communication among
networked robots

Must overcome limited sensing capability of robots
Must overcome system uncertainties

11

Test Platform — Kilobot

Diameter of 3.3 cm
Two differential vibration motors

IR transmitter and receiver (7 cm range)

Ambient light sensor

12

Test Platform — E-puck

Diameter of 7 cm
IR transmitter and receiver ring (25 cm range)
On-board CMOS camera

Bluetooth 2.0

dsPIC 30F6014A on-board computer

13

Test Platform — QBot 2 14

Open-architecture autonomous ground robot
Xbox 360 Kinect

Kobuki robot base

Gumstix DouVero Zephyr on-board computer

Il. E-puck — Brittany

15

Work Accomplished e

Software & hardware implementation
Object detection/following

Odometry

Vicsek Model

Fix battery issues

https://www.cyberbotics.com/item?id=8

Infrared proximity sensors

8 infrared proximity sensors
Composed of two parts -IR emitter & photo-sensor

Can detect objects within 4 centimeters
IR7 IRO

IR6 IR1

IR5 IR2

IR4 IR3

17

Object Detection and Following

Proximity sensors -> detected distance
Compare with true specified distance
Velocity = gain™®(specified distance — detected distance)

Object Detection -

Object Following

Odometry

Using odometry the E-puck can compute their position
and orientation

A6
Ax=AS*cos(9(k)+T>

A6
Ay=AS*sin(9(k)+T)

ok + 1) = (k) +ATH

A S —average change in steps of both left and right
motors

A 6 — change in the angle of the agents heading

21

Vicsek Model

0,(k) + 3, 6; ()
n+1
0;(k + 1) - Next heading of agent

0; (k) - current heading of agent

Hl(k + 1) —

?:1 0; (k) - sum of all neighboring agents at time k

n - number of neighboring agents

22

|Vicsek Model

23

E-puck Battery Problem — Solution

Original Design Solution #1 Solution #2
*Bad connection *Added an addition on *Resoldered positive
between positive and top of E-puck, for better terminal
negative terminals from connection to terminals

battery to E-puck

Testing communication between E-
puck and Kilobot

Tested E-puck communications with infrared receiver
connected to oscilloscope initially, followed by testing
with Kilobot

Verified E-pucks sent message with correct protocol

Verification of communication between E-puck and
Kilobot would be accomplished by observing change
in LED from red to green

26

Infrared Receiver Circuit

38kHz Infrared Receiver Infrared Receiver Circuit
Module

Used a 5V supply & oscilloscope to
view the signals

A%

2

5V /F
el SIGNAL

[

http://www.ebay.com/itm/like/141932065528?|pid=82&chn=ps&u|_nc§pp=true

l1l. Kilobot - Jared

27

Kilobot

Atmega 328 (8-bit @ 8 MHz)

32kB flash, 1kB EEPROM, 2kB SRAM
2 vibration motors

IR LED and receiver

Ambient light sensor

Infrared Receiver Microcontroller

Infrared

ket STh
b a0 8 »“
", o ~
t.. ._.-' —
/ B T .0\‘ : Transmitter Bottom View
/ Reflective Infrared

e
— Communica tion Path Side View

https://Ih3.googleusercontent.com/-g2ISChnX4DI/U-1VyxOKwsl/AAAAAAAALSA/3mi89VoBBfs/s640/kilobot-closeup-
overview.jpg

28

How Kilobots Communicate

Use infrared light
Measures light intensity to calculate distance
Messages are sent every 200 milliseconds

https://i.ytimg.com/vi/ISMwLCFwgK4/maxresdefault.jpg

29

Color Synchronization Video

30

Kilobot Movement: Orbiting

Jtians Zone of IR
L Attraction s

-
" — — <

4 - Zoneof b
R J) . s
s Y Orientation N s

/ - G

/ Zone of “\
/ . :
| Repulsion \ \ ,

31

Multiple Agent Orbiting

32

Simple Localization: Gradient >3

Can determine how many agents are displaced from a
specified agent

Individuals receive gradient values from local agents
until a buffer is full

Smallest value in buffer is incremented by 1, which
becomes agent’s gradient value

Gradient

34

Advanced Behaviors

By combining gradient, orbiting, and/or light
detection more advanced behaviors can be achieved
such as:

. Kilobots converge to a fixed-
point
. Kilobots orbit multiple stationary
agents

35

Fixed-Point Consensus

36

37

ing

Follow

Edge-

Follow-the-Leader

38

I1l. QBot 2 — Ryan & Greg

39

QBot 2 - Ryan

40

Non-linear Model

Non-linear Model
x = vcos(6)
y = vsin(6)

0 =w

vV

Linear Model

Linear Model
px = Uy
Dy = Uy
Py =X + 1 *cos6O

py =y + 1 *sinb

42

Simulink Model

-

AL intmime
2 (pmmE-T)

Minect

Fnact Intmize?

(ST —

Satimags

‘Gt Dugin

CatZams Owa

Sl =N

OsaSow CamSome O Sow Oxs Row OxsSow Ona oo

Mamory Bemay

e T Warka

MaTorg MemoyE Memoyd Memond

[IT—————

-

oy Troatw

43

Communcaton Suszemm

Simulink Model

P T P

Faar gl
Conraler
Wi Ry ar
crGorol
Sulsymem

Mz irpust for WL and W commianas: 065 misec
v

et onrclbgic

g Thets

44

- 3

Froguct!

{2

Wrine 50 M otors:

Localization

Color Detection
Depth Calculation

Communication

45

Localization — Color Detection

1

2
O
@)
O

@)
O
@)

()
Qo

638

639

640

46

Localization — Depth Calculation

e-®
d

2
O
O
0

@)
O
@)

()
Qo

638

639

640

Localization — Depth Calculation *

a = (320 — column) * (57/640) = (1t/180)
a is obtained angle
column is the array column number

P.=d
P, = d * tan(a)
d is depth

Localization — Communication

state
ysnd err
Stream sent
Client
rcv
en
new

o

-

Stream Client
"tcpip://remotehost:18000"

state
ysnd err
Stream
sent
Server
rcv
jen
new

-

-

Stream Server
"tcpip://remotehost:18000"

Point Consensus Control Algorithm *°

uix(t) — kizsij(t) (pjx(t) R pix(t))
j=1

ey (©) = kit) 50 (pjy© — piy ()
j=1

Communication Topology

1 1 O
s;i(t) = |0
1

1 1
0 1.

Point Consensus

Communication Topology Si; (t) =

_ O M

/‘\

\

O R

= =5

51

52

.
Point Consensus

Point Consensus

0.5

o

Y Position (m)

S
(%]

-1.5

Point Consensus

—QBot 49

—QBot 50 ||

—QBot 51

@kq

1
X Position (m)

1.5

2.5

54

Heading Alignment

QBot 2 - Greg

55

Object Avoidance

Used Fuzzy Logic
Inputs taken from Xbox 360 Kinect
Outputs are left and right motor velocities

56

0 Left

200

Center

480

Right

680

Object Avoidance

Membership Function Plots

Not Clear

Clear

57

0.5

0
500 1000 1500 2000 2500
Input Variable “Right”

3000

3500

4000 mm

Object Avoidance

Membership Function Plots

Close Middle

0.5

Far

58

0
500 1000 1500 2000 2500

Input Variable “Center”

3000

3500

4000 mm

59

Object Avoidance

Membership Function Plots

Stop Slow Medium Fast

0 0.1 0.2 0.3 0.4 0.5 0.6 m/s
Output Variable “Vr”

60

Object Avoidance

Membership Function Plots

-Slow Stop Slow Medium Fast

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 m/s
Output Variable “VI”

61

Fuzzy Rule Set

o L comer [V | v

Medium Medium

- I\/Ilddle - Slow Slow
Not Clear Close Not Clear Slow -Slow
Clear Close Not Clear Slow Stop
Not Clear Close Clear Stop Slow
Clear Close Clear Slow Stop

Object Avoidance

VL — k(xd _X) +xd +AVL
Ve = k(yg —y) +yq + AVg

62

63

Object Avoidance

64

Object Avoidance

Object Avoidance
I

—QBot 49

o
n
I

Y Position (m)
o
[

-0.5 [

‘ ‘
0 0'5 1 1.5
X Position (m)

Formation Control

o oo
0/

e

65

Formation Control

Ui (t) = k; z Sij(t)(pjx(t) — ij — Dix(t) + Cix)
=1

u,;y(t) — ki z Sij(t)(pjy(t) — C]y o piy(t) T Ciy)
j=1

66

\
Formation Control

67

Formation Control

Y Position (m)

=
(0

[y

o
)

o

o
v

1
[

=
(¥

'
N

-2.5

Formation Control

[[[[
—QBot 49 H
—QBot 50
—QBot 51 ||
| | | | | | |
0.5 1 1.5 2 2.5 3.5 4 4.5

X Position (m)

68

IV. Summary & Conclusions

69

Problems Encountered

E-puck
CMOS camera

For communication between different platforms,
additional circuity was needed

Kilobot
Kilobot motors need frequent calibration
Small size makes it difficult for QBot 2 to detect
Lack of sensory information

/70

Summary & Conclusions &

Designed cooperative control algorithms for
heterogeneous groups of robots

Implemented algorithms on different robot platforms

Future Work

Cross-platform communication

Implement E-puck camera

Further development of formation algorithms
Complete E-puck to Kilobot communication
Add IR messaging system to QBot 2

Improve QBot 2 algorithm to avoid objects
consistently

72

Acknowledgements 3

Our group would like to thank Dr. Wang & Dr. Ahn for
their support throughout the project.

Our group would also like to thank Mr. Mattus and
Mr. Schmidt for their technical support.

[BIBRADLEY

University

COOPERATIVE CONTROL OF
HETEROGENEOUS MOBILE
ROBOTS NETWORK

Gregory Bock, Brittany Dhall, Ryan Hendrickson, & Jared Lamkin
Project Advisors: Dr. Jing Wang & Dr. In Soo Ahn

Department of Electrical and Computer Engineering

April 26th, 2016

Division of Labor Overview

75

Kilobots Jared
Individual Behavior QBot 2s Ryan/Greg
E-pucks Brittany/Jared
Kilobot - Kilobot Jared
Individual Communication QBot - QBot Ryan/Greg
E-puck - E-puck Brittany/Jared
Kilobot - E-puck Jared/Brittany
Integrated Communication Kilobot - QBot Jared/Ryan/Greg
E-puck - QBot Brittany/Ryan/Greg

Algorithm Design

Linearization Based Model

Jared/Brittany/Ryan/Greg

Integrated Behavior

Formation Control Behavior

Jared/Brittany/Ryan/Greg

Flocking Behavior

Jared/Brittany/Ryan/Greg

Testing

Software Implementation

Jared/Brittany/Ryan/Greg

Hardware Implementation

Jared/Brittany/Ryan/Greg

orithm Test Platforms e

Kilobot

»

y

uANSER

Qe

http://www.k-team.com/mobile-robotics-products/kilobot
https://en.wikipedia.org/wiki/E-puck_mobile_robot
http://www.mathworks.com/products/connections/product_detail/product_101072.html

77

Unbricking the E-pucks

Uses the MPLAB ICD 3 In-circuit Debugger
MPLAB IDE v8.30

Erases the Flash memory by powering the E-puck
through the ICD 3

In-Circuit Debugsger

MPLAB®

1CD 3

N

MICROCHIP

http://microchip.wikidot.com/icd3:start

/8

Changing the Original Timer

E-puck’s clock speed is 8 times faster than the Kilobot

Increased the timer of the E-puck by a factor of 8 to
slow down the rate at which the message was sent to

Kilobot

Change was made to allow Kilobots to sync with E-
puck messaging

Object Avoidance

Inputs taken from Xbox 360 Kinect

/9

0 Left

200

Center

480

Right

680

Oscilloscope Screen Captures from °°

the Infrared Receiver Circuit

Moise Filter Off

leooms — oo0000s|@m So00% 140626 Helosaa |
Increased original timer by

Original timer used in initial
a factor of 8

Kilobot testing

Moise Filter Off

Decreased original timer by
a factor of 8

Advanced Localization: Distributed 3!
Trilateration

Gradient is only a 1D localization
Minimum of 3 fixed agents as reference points
Non-localized agents assume position (0,0)

Determine actual distance to non-localized agent
Calculate assumed distance

Advanced Localization: Distributed 32

Trilateration

Direction Vectors are generated from reference to
unknown

Generate assumed coordinates from Vectors and
measured Distances

New position is determined using assumed position
and previous position

Integrated Communication Set-up

83

Project Platform Costs

84

Platform Quantity | Total Price
QBot 2 3 $9,999.00
Kilobot Kit 20 $4,583.00
Epucks 3 $5,093.00

Programming Software Costs

85

. Total

Software Quantity Price

Kilobot Controller IDE 1 $0.00
E-puck Programming

Software . $0.00

MATLAB Courseware 1 $0.00

E-puck Object Following Code

e e e e e e e ke e e e e ok e ke e e e o e e o e e e e e e e ke e ke e e e e ke e e e e e e e e e e e e e e e e ke e e e e e e e e e e o e e e e e e

f*=* Motor speed controlled depending on front proximity sensocr wvalues **)

e e e e e e e ke e e e e ok e ke e e e o e e o e e e e e e e ke e ke e e e e ke e e e e e e e e e e e e e e e e ke e e e e e e e e e e o e e e e e e

finclude "p30£f&0142 _h"
#include "e_epuck_ports. h"
finclude "e_init port.h"
finclude "e_ad conv.h"
#include "e_prox.h"
finclude "e_motors.h"

fdefine DELAY¥ 50000
int main
long timer = 0;

ffayatem initialization

e_init porti);
e _init ad scan(ALL RDC); i

while
if (e_get_prox(0)> 500

e_set speed_ left (0);
e_set_speed_right(0):

configure port pins
configure Analog-to-Digital Converter Module

S feacape

else if l(e_get_prox(0)>100) { //follow

e_set_ speed left (400);

e_set speed right(400);
elae

e_set_speed left(0);

e_set speed right(0);

ffwait a little to let the

robot mowve

for (timer = 0; timer < DELA¥; timert++);

86

QBot Point Convergence Code

vll = kl*({z21 - =11); 3% Calculate welocity in x direction
vz = k2¥%(z22 — =zl12); 3% Calculate welocity in v direction

mat = [cos(myTheta) -d/2*3in(myTheta); sin(myTheta) d/2*cos (myTheta)]:
myControl = inv(mat)*[vll;wvl1l2]:

% Determine total wvelocity

V = myControl (1) :

% Determine angular wvelocity

omega = myControl (2):

% Determine left and right wheel wve
V1 = (2*V-d*omega) /2;
Vr = (2*V+d*omega) /2;

QBot Obtained Angle Equation

a = (320 — column) * (57/640) = (1t/180)

38

HIL Write Block

= S|

u Source Block Parameters: HIL Write

Analog channels:
52000 .
Right Wheel Command
.HI.L PWHK channels:
Wirite:
0 -]
02001
Left W heel Command Digital channels:
HIL Write I E]
(HIL-1) Other channels:
[2000:2001] E]

HIL Write

Writes to a combination of output channelz of a

hardware-in-the-loop card.

Mavigation

Go to HIL blocks using thiz board...

Board name: [HIL-1

Sample time (seconds):
-1

|:| Vector inputs

[OK H Cancel H

Help

Specify RGB
values

Value threshold

Number of
objects

Find Object Parameters

Function Block Parameters: Find Object

=)

Find Object (mask) (link)

Finds the center-of-mass coordinates (in pixels) of the object

detected in the given image.

Parameters

Detection Mode: | RGE

Pixel format: | RGBS

Number of Objects (1-5):
1

Threshold:

30

Minimum object size (pixels):
16

R:

158

G:

201

B:

124

Sample Time (secs):

-1

OK H Cancel ||

Help

90

Overall Simulink Model

Motor Control

hax hpt forvil and VR commands 055 misas

92

myX

B

myY

Baftery Violiage (v)

Creck Spesd

el Bask

madar conirol gt
u X
myY
W
gl‘ ------ 3 e
fon
ail
@ — D)
z messagel
212 maszagel II—@
2 messaEld
» | ‘ vE
" L (mezsured) omege
Ve [N
Right Encodr {Courts) §{ Encodar it [p
(T A
1 g Wihes! Command mis) 1ty
Vol -| oot [y
Lafs Encoder | Encodar
dis3amos i
L} W
—»|I_I y
s E R ezmr=) —
(1) Qo2 Full Kinemales (Mo Gyrajd
i Lot Wil Command (mis) Gn

Localization Equations

C; = \/(xo — x;)% + (Yo — ¥1)*?

Xo—Xi Yo—UYi
Vi — < 0 l’ yO yl >
Ci Ci

n; = (x;, ;) — Dy * V;

(Xo—Nix, Yo—Niy)

(xO) yO) — (XO, yO) o A

93

Color Consensus

Kilobots are initialized with a random number
Each number corresponds to a color
Kilobots then begin transmitting value

Kilobots receive messages and keep track of how
many neighbors are what color

Kilobots then change their color to most prevalent
color

94

Color and Object Detection >

The E-puck CMOS camera is capable of 640X480
resolution, in color or grayscale

However, the image is too large to process, so
instead we use a 1X120 image

Color uses RGB565, where each pixel has 5 bits for
red, 6 bits for green, and 5 bits for blue

Color and Object Detection %

First step to object detection is edge detection

The image array is searched for two edges, from
both left and right starting positions

Individual pixels are compared to the average of the
previous ten pixels

If the difference is greater than three, that location
is set as an edge

Based on the number of edges found (0,1,2,3,4),
The E-puck calculates where the center of the object
is, and how wide it is.

Color and Object Detection !

After Edge detection is complete, the E-puck moves
on to color comparison

The E-puck computes the average RGB value of the
object

The average is compared to the specified value
within a certain tolerance

If the comparison is acceptable, The E-puck begins
maneuvering to it.

Odometry
A G = (AR;AL)
AS = (AR+AL)

2
)
A y=AS*Sin(€ +@)

x(k+1) =x(k) +A x
y(k+1)=y(k) +Ay

9@+¢)=9+%?

A x=AS*cos(9+

98

