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Abstract

Cooperative control of mobile robots has been a rapidly growing area of research and
development (R&D) for industry and academia during the past years. Such R&D activities
are inspired by cooperative systems found in nature, for example, a flock of birds or a
swarm of insects. In this project, the objective was to design and implement cooperative
control algorithms on different types of robotic platforms. With the proposed cooperative
control structure, several tasks are performed autonomously by a fleet of robot agents,
which include point convergence, trajectory following, formation control, and heading
alignment. The completion of the tasks is based on the consensus of the heterogeneous
robot agents through the exchange of local information. MATLAB was used to conduct
simulations of different control structures, and determine how a large number of robot
agents can interact with one another. Applications of cooperative control strategies are
significant and far reaching. This emerging technology can be used for intelligence,
surveillance and reconnaissance (ISR) in military missions and civilian applications as well.



Acknowledgement

Our sincere gratitude goes to Dr. Jing Wang and Dr. In Soo Ahn for their guidance
throughout the capstone project. Their expertise on dynamic systems analysis has helped
us explore challenging cooperative control problems and implement complex algorithms
on many state-of-the-art robotic platforms, with a lot of fun.

We also would like to thank Mr. Chris Mattus, ECE Lab Director, and Mr. Nick Schmidt,
ECE Assistant Lab Director, for their technical support.

Last, but not least, our thanks go to our parents for the unconditional support they have
given us. Without their support, we could not have come this far.

This work was supported in part by Air Force Research Laboratory under grant
agreements FA8750-13-1-0190 and FA8750-15-1-0143.



Contents

2 ] 0 o= U i
ACKNOWIEAZEMENT ... s s s ii
L0710 1L ) 1L il
BT 0 L0 0T vi
(081 - Y 01 ol T 0000 000 X0 L Ut () o 1
O S ] o] 1T T LT Yol g e d o o H PSPPSR 2
1.2.1 Kinematic MOAEI ....cooiiiieiii ettt ettt et st e s sabe e sbe e e sareenas 2
1.1.2 CONLrOl ProBIEMS...c..eiiieiieieeete ettt st sttt et e b e sae e s e 3

0 A 00T oY oY I DY T o ISR 5
Chapter 2: E-PUCK s ssssssssssssssssssssssssssssssssssssmsssasas s sssssssssssssnsasasasasasssssssssanas 7
2.1 OVEIVIEW OF E-PUCK ... eiiiii ittt et e e e e bte e e e e bt e e e e ebteeeeeabtaeeeenreneesanns 7
2.0 0 HAPAWAIE ceieiiieiiie ettt ettt et s et et e s bt e sttt e s bt e e s abeesabee s be e e s be e e bt e e sabeeebeeesabeenaneean 7
2.0.2 SOTEWAIE ettt ettt st et r e e s saneereen 8

B I N T 0 d BN Y = AU o PP P PP PP PP PPPPPPPPPPPPPPPRE 9

2.2 Design and IMplementation .......c..oiiiciiie ettt e et e e e e ra e e e ebreeaeeans 9
2.2. 1 MOLOF CONEIOL ..ttt ettt st sttt e sbe e bt e s beesateeareeneeens 9
2.2.2 Localization Via OOmMELIY ....cccccuiieiiiieee ettt etee e st e e e s eree s e e srae e s e sabae e e enres 9
2.2.3 Information exchange through communication ..........cccoeciiieiiciiie e, 10

P B 4 o 1T 10 0 1=] ) KPP PP PP PPPPO 11
2.3.1 Heading AlINMENT ...ueiiiiiieeeeeee e e e e e e e e e e e e et a e e e e e e e e e e ansraaees 11
L0811 010 ) i 1) (0] 0 10 13
3.2 0Verview Of KilOBOt ...c..oieiii ettt e 13
IR T o AT Y TSRO P SO PRTTRN 13
312 SOFEWAIE .ttt ettt et sab e s bt b rees 14
N I BN 1T 0 d BN Y= AU o PP PP PP PP P PPPPPPPPPPPPPPPPPRE 16

3.2 Design and IMplementation ...... ... e e 16
3.2.1 MOTOF CONTIOL.. ittt ettt e bt e e s e sbe e e sneeesareeesnneesans 16
3.2.2 Information Exchange through communication ..........cccoccivieieciiie e 18
3.2.3 Localization Via COMMUNICATION .....ooviriiiiieiieieeneenteee e 19

Rl o d o T=T a1 4 1= 1 KPP P PPPPPPPPPPPPPPPPPRE 20
IR T8 B G o [ =] o L TSP PSP PRSP 21



3.3, 2 OFBIING et 22

3.3.3 ASYNCIONOUS CONSENSUS ...vviiiiiriieeiiirieessiteeeesteeeessseeeessseeeessseeeesssseeeesssseeeesssseeeessnns 25
3.3.4 Light FOHOWING....viiiiciieee ettt e e e e e et e e e e ebt e e e s ebtaeessbaeeesenraeeeeanes 26
3.3.5 Sending Messages from an Outside Source / Controllable Node ..........cccceeeevvvenneenee. 28
Chapter 4: QBOT 2. s e e R s 29
4.1 0VErvieW OFf QBOT 2 ...eoiuiiiieeieete ettt s st s s 29

A 1.1 HANOWAIE ..eeiieeeiee ettt ettt et ettt et e sttt e st e s bt e sbee e st e e s beesanbeesabeeenteesateesabeeesabeesanes 29
A.1.2 SOFEWAIE ..ottt ettt ettt e b e e s e e s b e e bt e e s b et e ht e e s abeesbeeesareesanes 30

4.2 Design and IMplementation .........occueeiieiee ettt e rae e e 30
4.2.1 Localization Using KINECE SENSON ......ccccuiiiiecciiieeciiee et e et e e e saae e e e snae e e esaaaeaean 30
4.2.2 Information Exchange Through Communication ...........cccceccveeiiiiiieecciee e, 32
4.2.3 MOLOF CONTIOL.c.uuiiiiiiieiiie ettt ettt e s e st e bt e e s bt e e sateesabeesbaeesareesans 33

O (o T=] T 41T 01 £ PP TP PPPP R 33
4.3.1 RENAEZVOUS CONTIOL...ueiiiiiiiiiiiiiieeieee ettt st sttt e sbe e s 34
4.3.2 FOrmation CONTIOl ...ccueeueeiiiiiiiteeieeee ettt sttt sb e s s 37
4.3.3 Trajectory FOHOWING .....uviii ettt e e e saae e e s eabae e e e naneaee s 39

VI BN @] oY [=Tot f XV o] [ F- o] PSR 40
Chapter 5: Conclusion and Future WorK......sssssssssssss 46
D5 01 0 T 0 VT 47
o1 Tof | Yo [PPSR 47
(60o] [o ) gl =1 =T 1 [ o TP PRSPPI 47
SEANCIDAILC. .ttt e b e st 50
SEANCHDAILIN (et st sttt e 60
FUNDAIFOHOW.Co ettt ettt b e st st st b e b e nbeas 61
FUNDAIFOHOW. N L.ttt 67
VAT =] T o I @ e Lo Y1 0= o VAPPSR 68
Bluetooth COMMUNICATION ...oouiiiiiiieiiie et st sre e e s e e nee s 82
o1 olo]3 o T ol PSSP PR 85
DECOMLN et et s e e s e e s e e s re e e nee e sareeesnneesares 88
W20 01 0 o 10 2 7 89
E-pUCK UNDIICKING GUITE ..eeiiieiiiee ettt sttt e et e e e vre e e e sbae e e e eaaae e e snseneeeenes 89
203 0 =3 1 11 QO 93
(41 o] oo A 6o [PPSO PO PPTOPPTRPRRRPRRRTION 93
LCTr- 1o 170 A TSP P PP USPOPPPRR 93

[0 T o 1 413 V-SSR 98



7= Y ol oo 11 111V T o Y -SSR URSR 104

ASYNCHIONOUS CONSENSUS ...uevvieeiitiieeietieeeestieeesetteeesssteeessseeeessseeeesssseeeesssseeeesssseseesssseeeessns 109
RANAOM ID GENEIALON ..ottt ettt sttt e bt st st et e e b e sneesmee e 127
COlOr CONSENSUS ..ttt ettt ettt et e bt e s he e et e et e e bt e sbeesheesatesabeeabeenbe e bt e sbeesneesanesareens 131
Ambient Light SENSOr Calibration........ccuieiiiiiiiiiciee e srae e e 136
FOIOW LEATEY ...ttt ettt ettt ettt e s b e s e e e sab e e s be e e sabeesabeeesareesanes 139
[T T [T TSP PP PUPPOPPRPRRN 144
Fixed REfErenCe CONSENSUS ....ccuuiiiieiieteentee sttt ettt ettt st ettt sb e b sae e sae e et e e sbeesaeesane e 147

Y IO Lo (AN =T o A @ o1 o [ = U 154
ALMEZAL28 IMESSAZINE ..eeeeeeeriiieeeeeeeeiittee et e e e e sttt e e e s s s ssttbtaeeeeessssssssbtaeeeeessssssssseaaaeeesssnsansne 162
003V o] =T Y2 o 1S PSPPI 167
003Y/ R o] =T V2N o RSP 168
72} 03 0 753 1 1 15 ) 171
T4 =T g T €1 To] o o] 3R 171

2 0] 0 123 1 1 15 172
FIash Kilobot FIrMWarre ......coouiiiiiieeeeeeee ettt st st st sb e s 172

2 0] 013 11 0. 177
Overall SIMUIINK MOEL .......ooiiiiiiieee ettt sttt 177
[WoTor: | =Y d o] o DUNUU O TP PRSPPI 177
COMMUNICALION cveiiiiiiiiiiiiii e e s 179
MOTOT CONEIOL. ittt n e s r e s e e 180
Data ACQUISITION oo, 182

2 0] 0 T3 11 0 190
1Yo 10 o =T ox S USRS 190
KINECE INITIAIIZE ..o et e e s s 192
KINECE GOE IMAEE e nnnnn 193

T =Totf €= A B 1T o 4 TP PSR 195
SEFAM SEIVET ittt e 197
SErEAM CHENT ...eeiieie ettt st e st e e st e s be e e sar e e sareeesareesaneeas 199



Table of Figures

Figure 1.1 A Nonlinear Kinematic MOEl ..........cooovuiiiiieiiiee et 2
Figure 1 2 A Linearized Kinematic MOdel ...........ooovuiiiiiiiiiee ettt 3
Figure 1.3 Heading AlIZNMENT ....cii ittt e s e s s sea e e e s saa e e e snsaeeessnnneee s 4
Figure 1.4 RENAEZVOUS CONTIOl...ccccciiiieiciiiiececitie ettt ett e e et e e e e ara e e e s saea e e e eeataeeeensaeeeennseeen 4
Figure 1.5 FOrmation CONTIOL ......coiciiiiiiiiie ettt et e e e st e e e snaae e e ssanneee s 4
Figure 2.1 An E-PUCK RODOT ......oiiiieie ettt et e e et e e et e e e aaaee e s 7
Figure 2.2 E-puck Infrared SENSOr LOCAtIONS ......cciicuiiiiiiiiiieeciiie et eree s e e e saae e 8
Figure 2.3 Basic Motor FUNCLION Call.......ueiiieciiiecciiee ettt e e e s 9
Figure 2.4 Motor INitialize FUNCHION .....ccuuiii ettt ettt e e e e e eanaeeean 9
Figure 2.5 E-PUCK IMESSAZE StIUCTUIE ..cccuuviiiieiiie ettt ettt et e e e aee e e aree e s s nbe e e e s e 11
Figure 2.6 Vicsek Model FIOWCNAIT ......cc..vviiiiiieececee ettt et 11
Figure 2.7 E-puck Implementation of Vicsek Model ........cccverreiiiiiiniiieiieececce et 12
Figure 3.1 A KilobOt RODOT........uiiiiiiie ettt e s aee e e s nbe e e e nreas 13
Figure 3.2 Kilobot UNAEISIAE ......cii ettt ree e e et e e e e aree e s e ntaee e enneas 14
Figure 3.3 Kilobot Controller WindOW..........couiiiiiiiiiiiecieecccee ettt 15
Figure 3.4 An Example of MOtor CONTIOl .......c.uviieeiiiiieeee et e 17
Figure 3.5 SetMOTION FUNCLION ....uiiiicccc s an 18
Figure 3.6 Motion Type Definition ...t 18
Figure 3.7 Kilobot IR COMMUNICAtION ........uiiiiiiiiieeciiee et et e e e e 19
Figure 3.8 Kilobot Messaging FUNCLION .......cocciiiiiiiiiiiecciiee ettt 19
Figure 3.9 Gradient FIOWChAI........c.uiiiiiiie e s e e e e 21
Figure 3.10 Gradient Implementation..........ccccuueieeiiiiie e e 22
Figure 3.11 Orbiting ZONES .....uviiiieiiie ettt ettt e e e e s e e e st ee e e s abe e e e s abaeeesnreeeesnses 23
Figure 3.12 Orbiting FIOWCNhAIt..........oiiieieee e e et e e e e 24
Figure 3.13 Orbiting IMplementation........cccireceiiiee et 24
Figure 3.14 Asynchronous Consensus FIOWCArT .......ccociiviiiiriiiiinieeniicetecciee st 25
Figure 3.15 Asynchronous Consensus Implementation .......ccccceeevrieiiiniieeninieee e 26
Figure 3.16 Light FOIOWING FIOWCHAIt.......ciiiiiiiiiiiiecciicctcec et 27
Figure 3.17 Light Following Implementation.......ccccuuiiiiiiiiiiiieeceeec e 28
Figure 3.18 MeSSaBIiNG CIFCUIL ....cciiiiiiiiiiiiieiee ettt e e e e et e e e e e e s re e e e e e e e e aneeeeeas 28
Figure 4.1 A QBot 2 at Bradley UNIVErSity .....cccuveieeciieieciiiee ettt evee e s ivee e e 29
Figure 4.2 Overall SImulink MOdEl .........uuviiiiiii e e e re e 30
Figure 4.3 Above-View of QBOt 2 LOCAliZatioN ......ccuuiiiiiiiiieciiiiee et 31
Figure 4.4 Expanded Above-View of QBot 2 Localization ..........ccecuveeieecieeeecciiee e 32
Figure 4.5 Rendezvous Implementation, Ki = 2 ......cceeeeiiiiiecciiiiieee e 34
Figure 4.6 Rendezvous X Position VS TiMe, Ki = 2......ueiiiiiiiiiciieeeecees et 35
Figure 4.7 Rendezvous Y Position VS TIME, Ki = 2 ......ueeeveiiiiciiiiieee ettt e e e 35
Figure 4.8 Rendezvous Implementation, Ki = 6 .......ccceeeiiieeeeiiiiieccieee e 36
Figure 4.9 Rendezvous X Position VS TiMe, Ki = 6.......eiiiiiiiiieiiieee et 36
Figure 4.10 Rendezvous Y Position VS TIME, Ki = 6 .....ceceeiiiecciiiiiiee et 37

Vi



Figure 4.11 Formation Control Implementation ........ccccceoeeeciiiiiiee e 38

Figure 4.12 Formation Control X POSition VS TIME ......cccccieiieiiiiieeciee et e 38
Figure 4.13 Formation Control Y PoSition VS TiME ....ccivciiiiiiiiiiieiiee e esiee et 39
Figure 4.14 Object Avoidance FIOWCHhArt .......cc.ueiiviiiiiiiiieccee e 41
Figure 4.15 Object Avoidance INpUt Variables ........cueeeeiiieeieiiiiieeciee e 41
Figure 4.16 “Left” Input Membership FUNCLION .....c.vviiiiiiiiiiceecces e 42
Figure 4.17 “Center” Input Membership FUNCLION.........cccviiiiiiiiiie e e 42
Figure 4.18 “Right” Input Membership FUNCLION .......coooiiiiiiiieceee e 43
Figure 4.19 “VI” Output Membership FUNCLION .....c..uiiiiiiiiiiciieecceee et 43
Figure 4.20 "Vr" Output Membership FUNCLION .........oiiiiiiiecceee e e e 44
Figure 4.21 Object Avoidance Implementation .........cccocuveeiiiiiiiiinie e 45
Figure B.1 E-puck With TOP REMOVEM........ooiiiiiiiieiiie ettt et e e aae e e e 89
Figure B.2 E-puck Connection Pins for DEDUGEEN ........ccccuieieeiiieee ettt e 90
Figure B.3 Select Programmer WINAOW ........ccuiiiieiiiiieiiiieee et ssiee s ssree e ssvee e e s vee e s snvee e s snnes 90
Figure B.4 Program MemOrY Pane ... s 91
FISUIE B.5 POWET PANE@ oottt ettt ettt e e e s s sttt e e e e e s s st bae e e e e e s e ssnnenaeeas 92
Figure F.1 Overall SImulink MOdel..........c.oueiiiiiiee e e 177
Figure F.2 Localization SUDSYStEM ......ccociiiiiiiie e 178
Figure F.3 Color Detection SUDSYSTEM ......ciiiiiiii it 178
Figure F.4 Determine PoSition SUDSYSTEM.........cooiiiiiiiiie e e 179
Figure F.5 Communication SUDSYSTEM ......ccoiiiiiiiiiei et 179
Figure F.6 Motor Control SUDSYSTEM.........ciiiiiiie ettt ree e e erae e e 180
FIgUre F.7 FUZZY SUDSYSTEM .....ooiiiiiiie ettt eetee e e e ebee e e e eabae e e e abee e e earaeeeennres 181
Figure F.8 Write to Motors SUDSYSTEM......cccociiiiiiciiee et 181
Figure F.9 Data AcqUIsition SUDSYSTEM .....c.cociiiiiiiee et 182
Figure F.10 Write to Workspace SUDSYSLEM ......c.ccviiiiiiiiie et 183
Figure F.11 Get IMage SUDSYSTEM .....ciiiiiiii et ebee e e e erae e e eres 183
Figure F.12 Get Depth SUDSYSTEM .....cciieiiii et e ettt e e rae e e e 184
Figure F. 13 Get Basic Data SUDSYSTEM .....ciiiiiiiiiiiec et 184
Figure F.14 QBOt BasiC SUDSYSTEM ..cccceeeiiiiiicee ettt ettt e e e e estrre e e e e e e e e e ennre e e e e e e e e ennnnes 185
Figure F.15 QBOt 2 BasiC 1O SUDSYSTEM ......uuiiiii i iciiiieee ettt e et e e e e e e e e e e e e e e e eennnes 186
Figure F.16 Encoder to Velocity SUDSYStEM ......ccoiciiiiiiiiiie e 187
Figure F.17 ENCOAEr SUDSYSTEIM ..eciiiiiiieeee ettt ettt e et e e e e e e e e eanre e e e e e e e e eennnes 187
Figure F.18 Encoder to Distance SUBSYStEM ........ccciiiiiiiiii i 187
Figure F.19 QBot 2 Full Kinematics SUDSYStEM ........eeiiiiiiiiiiiee e 188
Figure F.20 QBot 2 Differential Drive Kinematics SUDSYSTEM ........ccceeeeeiiiiiieciiiie e, 188
Figure F.21 QBot 2 Kinematics SUDSYStEM ......uiiiiiiei e 189

Vi



Introduction

Distributed control of multiple mobile robots has received a great deal of attention in
recent years. This growing area of research finds its inspiration from different systems
that exist in nature. There are many examples of such systems, for instance, a flock of
birds or a swarm of insects. Each agent, in these systems, is able to obtain local sensory
information, but together the agents are able to perform complex tasks. Numerous
applications of cooperative control structures exist. This technology can be used in a
variety of military missions such as surveillance and reconnaissance, or search and rescue
[12][15]. Civilian applications exist as well, for example, environmental sensing and
monitoring, or cooperative transportation may utilize this technology.

In general, the design of distributed control of multiple robots relies on local interactions
and information exchange among robots in the group. Through this exchange, the whole
group will be controlled to achieve desired tasks cooperatively. The control design is
challenging because interactions among robots are often local, time-varying, directional
and intermittent due to an individual robots’ sensing and communication capabilities.
Thorough study has been done addressing this challenge by assuming simple linear
models for robots [15][12][2][17]. For instance, formation control of multi-robots was
studied in [4][11] by assuming a fixed sensing and communication structure among
robots. For time varying sensing and communication, the neighboring control rule was
proposed in [18] and rigorously proved in [7]. It was shown that all systems in the group
will converge to the same value if the underlying undirected sensing communication
topologies among systems are connected. More complicated time-varying and directed
sensing and communication topologies were considered in [14][8][17][13][21]. By
explicitly considering robot dynamics, a discontinuous control was proposed in [5] and
stability was analyzed using nonsmooth Lyapunov theory. Time-varying controls were
designed and analyzed using average theory in [9]. A number of experimental results have
been reported in recent literature which deal with multi-robot coordination [10], leader-
follower flocking [6], formation control [1][16], and containment control for multiple
vehicles [3]

The objective of this research is to present simple distributed control designs for multiple
mobile robots. The control designs are constrained through a kinematic model, and are
validated through experimentation on three different mobile robot platforms. In
particular, experiments focus on heading alignment, rendezvous control, and formation
control/Following. Each of these experiments are addressed with the consideration of the
sensing and communication capabilities of each robot platform. The mobile robot
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Chapter 1

platforms used for experimentation are the following: E-puck, Kilobot, and QBot 2. In each
experiment, the mobile robot platforms only utilize local information. For the E-puck and
QBot 2, the position with respect to their local coordinate frame is determined through
wheel encoders. The Kilobot can only determine its position with respect to their local
coordinate frame through communication

The thesis is organized as follows. chapter 1.1 discusses the Kinematic model and the
control problems in detail. Chapter 2 discusses the E-puck mobile robot, chapter 3
provides information on the Kilobot robot, and chapter 4 examines the QBot 2 mobile
robot. In each chapter, the implementation of the robot and its experimental results are
provided.

1.1 Problem Description

1.1.1 Kinematic Model

The E-puck and the QBot 2 are typical differential drive mobile robots. The kinematic
model of the mobile robot can be described using the following nonlinear equations:

J.Ci = V; COS Hi , yi =7; sin Hl-, 01’ = w; (1)
_ VirtViL _ VirR—ViL
i — 2 1 i — d (2)

where i € Q2 {1,-,n}, [*i ¥i]T € 9%denotes the position of the center of the ith
robot, 0; is the orientation, and v; € ¥ is the driving velocity. w; € % is the steering
velocity, d is the distance between wheel centers, and v;z and v;;, are the linear speeds
of the right and left wheel, respectively. Let the robot’s radius be r. The nonlinear
kinematic model is shown in the figure below.

y

Vi

|\

0 X;

Figure 1.1 A Nonlinear Kinematic Model
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The control design is based on the linearized model of robots.

Define the front end of the

robot as a reference point p; = [Pix Piy]T, that is, it is the point along the sagittal axis

of the robot at a distance r from the center of the robot i, and it follows:

Dix = X; + 1 cos b, p;y, = y; +1sinb; (3)

This creates a linearized kinematic model, shown in Figure 1 2. It follows the definition of

the reference point p; in (3) that its time derivative is.

Dix] _ [cos@; —rsin Bi] v;
ziiy] N [sin 0; rcosob; [a)l] (4)
Using the following input transformation
Vi1 [ coséb; sin 6; ] Uiq
wl] B [— sin6;/r cos@;/r [uiz] (5)
Equation (9) can be converted into the form
Dix = Uiz
: 6
{piy = Uz (6)
y
Py|---------—- Lo
r 0
Yi
K/
0 Xi Pix *

Figure 1 2 A Linearized Kinematic Model

1.1.2 Control Problems

In this research, we designed cooperative control algorithms to solve several coordination

tasks, which are listed below.



Chapter 1 Introduction

Problem 1: Heading alignment.

®” 4 ¢ g
Q

As shown in Figure 1.3, the heading alignment task is to design local control for each robot
such that starting with different headings, all robots will eventually move towards the
same direction. All robots will eventually move towards the same direction.
Mathematically, it can be described using the following.

lim 6;(t) — 8;(D)| = 0, Vi,j (7

Problem 2: Rendezvous control.

Q/’g
0 & ; o ©

In the Rendezvous Control, all robots will be controlled to move to a common location.
As shown in Figure 1.4, initially, robots are located at different planes, and move until
they reach position consensus. This problem is also known as point consensus, and can
be described by the following equation.

lim||pi(6) = p;(D)|| = 0,¥i,j ®)

Problem 3: Formation control/Following.

Q
o~ e-0->0-

¢

Figure 1.5 Formation Control
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In Figure 1.5, shown above, agents move into a formation and continue on a desired
trajectory. Formation control/Following is described by the following equations.

, _ Cix — ij .
tim[pi®) —p, 0] = [~ 7] vig ©)
lim||pi(t) — d, (O] = 0,V j (10)

where [Cix  Ciy]T is an offset vector for agent i. The offset vector specifies the relative
position of the agent in a desired formation shape. In (10), d,, (t) is a desired trajectory
point at time t.

1.2 Control Design

In this section, we present the desired cooperative control algorithms for solving the
problems listed in section 1.1.2 Control Problems. The design is based on local information
exchange among robot agents. The connections between robots are determined through
a communication matrix S(t).

(11)

where sij(t) > 0 if robot j is within the sensing/communication range of robot i at time
instant t, otherwise, s;;(t) = 0.

To solve problem 1, the distributed control is of the form

n

0,k +1) = (12)

where 6;(k) is the current heading of the robot, 6;(k + 1) is the next heading of the
robot, n is the total number of neighboring robots, and 6; (k) is the current heading of a

neighboring robot.

To solve problem 2, the distributed control is of the form
n
@ =k Y sy® (p(® - pu(®) (13
j=1

ua® =k Y sy(® (py(® ~py (®) (14)
j=1

where k; > 0 is the control gain, and sl-j(t) is the value in the current

sensing/communication matrix S(t).

To solve problem 3, the distributed control is of the form
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uil(t) = ki Zn Sij (t)(dpx(t) - ij - pix(t) + Cix) (15)
j=1

W (®) =iy, 5(O(dpy(6) — Gy = piy(©) + Ciy) (16)
-

where k; > 0 is the control gain, and [Cix  Ciy]" defines the formation shape.



E-puck

This chapter provides the implementation of cooperative control algorithms using the E-
puck. An E-puck robot is shown in Figure 2.1. E-pucks were developed at the Ecole
Polytechnique Fédérale de Lausanne, to be used for educational purposes.

Figure 2.1 An E-puck Robot

2.1 Overview of E-puck

2.1.1 Hardware

The E-puck uses a dsPIC 30F6014A, a 16-bit microcontroller with a DSP core. The dsPIC
contains 8 kB of RAM, 144 kB of flash, and a 64 MHz internal clock. The 144 kB of flash is
used to store user programs, as well as the bootloader. The 64 MHz is scaled down to 30
MHZ for user programs.

The E-puck is a differential-drive wheeled robot with a maximum speed of 15 cm/s. The
motors are permanent magnet stepper motors with a gearbox having a reduction ratio of
1/50. The motors have a step angle of 0.36 degrees. This results in the motors having a
resolution of 1000 steps/rev with no load. The additional load of the E-puck body and
wheels, gives the motors a resolution of 1300 steps/rev. A wheel is attached to each
motor, and has a diameter of 41 mm and a circumference of 128.8 mm. The distance
between the wheels is 53 mm.

Eight infrared sensors are mounted onto the E-puck. The infrared sensor locations can be
seen in Figure 2.2
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IR5 IR2

IR4 IR3

Figure 2.2 E-puck Infrared Sensor Locations

The infrared sensors can be used as proximity sensors, or can be used for communication
purposes. In proximity mode, the infrared sensors have a range of 4 cm. In communication
mode, the infrared sensors have a range of 25 cm. Communication is achieved through
the infrared sensors acting as emitters and receivers to send messages. Proximity
information can be obtained while the infrared sensors are in communication mode.

Communication can also be achieved through the use of a Bluetooth module on the E-
puck. The Bluetooth module can connect to other E-pucks, as well as a computer. User
programs can be uploaded onto the E-puck using a Bluetooth link with a computer.

Three independent microphones, one speaker, ten LEDs, a 3D accelerometer, and a CMOS
camera are also built onto the E-puck. The CMOS camera has a pixel resolution of
640x480, and can be configured to operate in either color or gray-scale mode. Although
the camera has a resolution of 640x480, the on board microcontroller does not have
enough processing power or memory to operate on a picture of that size. However, the
camera can be configured to lower resolutions, that way images can be processed in a
timely manner.

2.1.2 Software

To create projects for the E-pucks, the MPLAB X IDE version 3.25 was used. All programs
were written in the C programming language and used various libraries that were
provided with the E-pucks, which can be found in Appendix A. Once a project is
completed, a HEX file is generated, which will be uploaded to the E-puck. To upload a
program to an E-puck, the ICD-3 programmer from Microchip is used, and using MPLAB X
the ICD-3 uploads the hex file to the connected E-puck.

On occasion, an E-puck may no longer perform the program stored in its memory, and
will also not be able to receive new programs. To fix this, The ICD-3 must be connected to
the E-puck, and using MPLAB X, erase the flash memory and reset the fuses. A detailed
guide on how to fix the E-pucks can be found in Appendix B.
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2.1.3 System Setup

In all experiments, 1 to 3 E-pucks are used. On the computer, a program is developed to
perform a desired behavior or task and a HEX file is generated from it. The Hex file is then
bootloaded onto the E-pucks using the ICD-3 programming cable.

2.2 Design and Implementation
This section provides information on how controls are implemented using the E-puck.

2.2.1 Motor Control

The stepper motors can be controlled individually by two function,
e set speed left(int x) ande set speed right (int x), which canbe
found in Appendix A. The function takes a value ranging from -1000 to 1000, where each
value has a unit of steps/s. This gives the E-puck a maximum speed of 1000 steps/s, or 15
cm/s. When using the motors, it is important to temporarily pause all other interrupts. A
delay before calling the motor functions, and another delay after the motor function calls
must be included. This can be seen in Figure 2.3. In the code example, a delay of 400 ms
is applied before and after the motors are called. Before a speed is applied to the motors,
the step count for both the left and right motors are reset to zero. In this example, the
motors are set to a speed of 200 steps/s. To stop the motors, a value of 0 steps/s need to
be applied to the set speed functions.

myWait (400) ;

e set steps left (0);
e set steps right(0);
e set speed left (200);

e set speed right (200);

myWait (400) ;

Figure 2.3 Basic Motor Function Call

Before any value can be applied to the motors, the motor initialize function must be called.
This function can be seen in Figure 2.4, and is called at the beginning of the main program.

init motors();

Figure 2.4 Motor Initialize Function

2.2.2 Localization via Odometry
The E-pucks continuously update how many steps the stepper motors have traveled since
initialization. By intermediately using the change in steps from two points in time, the E-
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puck can compute its position and orientation. The odemetetry algorithms are given

below.
_ (AR-AL)
A = == (17)
As = L2 (18)
Ax = AS * cos (9 + (Az—e)) (29)
_ . (16)
Ay = AS * sin (0 + T) (20)
x(k+1) =x(k) + Ax (21)
y(k+1) =y(k) + Ay (22)
Bk +1) =6+ (23)

A@ is the change in orientation of the E-puck and is calculated by taking the average of
the difference of the change in the step count of the right, AR, and left, AL, motors (17).
The average change in step count of both motors, AS (18), is used to calculate the changes
in the E-puck’s change in x direction, Ax, and y direction, Ay (19)(20). The change in x and
y directions are then added to the previous known values of x and y to update its current
position (21) (22). The orientation is updated by taking the sum of the previous known
orientation and A@ divided by three. A8 is divided by three to convert it from steps to
degrees (23).

2.2.3 Information exchange through communication

The E-puck's infrared proximity sensors can be configured to act as an infrared messaging
system, while still retaining its ability to act as a proximity sensor. The provided libraries
for IR communication allow for a 4-byte message to be sent, the bytes must be combined
into a long integer data type. The proximity sensors when configured to messaging mode,
are set to receive messages if the receiver is activated by an incoming signal. Incoming
messages are checked at a sample rate of 100 us. Received messages are stored in a data
structure called IrcomMessage, which can be seen in Figure 2.5. The data structure holds
the value of the message, the distance to the sender, the angle the message was received
at, a value corresponding to the sensor that received the message, and an error check.

typedef struct
{

long int wvalue;
float distance;

float direction;

10
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6 int receivingSensor;
7 int error;

¥ } IrcomMessage;

Figure 2.5 E-Puck Message Structure

Messages are then stored in a stack, with the oldest messages on the bottom, and the
newest message on the top. The data structure and functions related to infrared
messaging can be found in Appendix A.

2.3 Experiments

2.3.1 Heading Alignment

In this section, we present the experimental implementation of the heading alignment
algorithm, using the so called Vicsek model Agents share their heading information with
neighboring agents, and determine common heading.

Initialize
Epuck

TYGS

Send IR

Adjust
heading

message

Figure 2.6 Vicsek Model Flowchart

In this experiment each E-puck is given an initial orientation at start up, and then transmit
its orientation to nearby agents and also receive the neighboring agents' orientations.

11
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Received messages are checked for any errors, and if none are found, the received
orientation is stored into a buffer, when the buffer is full, the E-puck can begin to compute
its new heading.

Once the buffer has been filled, the sum of the stored values is determined, and added to
the agent's current orientation. The new value is then divided by the size of the buffer,
giving the new heading. The difference between the new heading and the previous
heading is then calculated, and the E-puck rotates by that amount. Once the E-puck has
rotated, it then drives forward a small distance and the process begins again.

The corresponding snapshots with time stamps from the video is shown in Figure 2.7. It
can be seen that two E-pucks find a common heading, and move together.

Figure 2.7 E-puck Implementation of Vicsek Model

12



Kilobot

In this chapter, we describe the implementation of cooperative control algorithms using
the Kilobot. A Kilobot is shown in Figure 3.1. The Kilobot was developed by Harvard
University as a low-cost platform for swarm robotics research. A Kilobot is 34 mm in
height (including the legs), and has a diameter of 33 mm.

Figure 3.1 A Kilobot Robot

3.1 Overview of Kilobot
This section provides a brief overview of the Kilobot’s hardware and software, as well as
the system set up for experimentation.

3.1.1 Hardware

An 8-bit Atmega328p microcontroller is employed by the Kilobot, and contains 32kB of
program memory, 1kB of EEPROM, and operates at a frequency of 8 MHz. The 32kB of
program memory is used to store a user program as well as the bootloader. The 1kB of
EEPROM is used to store important non-volatile data such as the motor calibration values.

The Kilobot robot uses two differential vibration motors for movement, and is capable of
a maximum speed of 1 cm/s. The differential vibration motors are independently
controllable, with 255 different power levels. For optimum performance, the differential
vibration motors must be frequently calibrated.

An infrared receiver and an infrared LED is located on the underside of the Kilobot body.
The underside of the Kilobot can be seen in Figure 3.2. The infrared LED is used to transmit
messages to neighboring agents, while the infrared receiver is used to accept messages
from neighboring agents

13
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Infrared
Transmitter

Infrared
Receiver

Figure 3.2 Kilobot Underside

Messages are sent at a rate of 32 kb/s, and are composed of 3 bytes (24 bits), but the
least significant bit is reserved as a new message flag. Kilobots receiving a message can
determine the distance to the sender based on the strength of the infrared signal. When
a signal is below a threshold strength, the message will not be accepted. The rated
communication distance is up to 7 cm, but under ideal conditions the maximum distance
has been observed to be up to 12 cm.

Each Kilobot is also equipped with a RGB LED and a light intensity sensor. The RGB LED is
capable of displaying 64 different colors, with each of the three colors having 4 different
possible values. The light intensity sensor returns a value in the range 0 to 1000. The
greater the value, the more intense the light.

The small legs of the Kilobots are easy to get stuck on the surface they are traversing. This
can sometimes be overcome by having the motors briefly pulse to maximum power, but
only in an ideal environment.

3.1.2 Software

AVR Studio 4 software is used to edit and build Kilobot projects. All programs are written
in the C programming language and use the standard libraries provided with the Kilobots,
which can be found in Appendix C. Once a project is built, a hex file is generated by AVR
Studio 4 which is then used by a program called Kilobot Controller. The window for the
Kilobot Controller can be seen in Figure 3.3. The Kilobot Controller software is used to
upload hex files onto the overhead controller.

14
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+% Kilobot Controller - X
File  Advanced Help
Programming
Program file {C:"-.PQIobotControlIer"xProgram hex 1 Program Flash
Bootload Sleep Pause Run Battery voltage
Bootloader msg Wakeup Reset Charge Toggle LEDs
Stop

No port available Disconneted

Figure 3.3 Kilobot Controller Window

The Kilobot Controller has a number of other commands, such as sleep, pause, and check

battery voltage. Table 3.1 describes each command for the Kilobot Controller software.

Command
Program
Flash

Bootload

Sleep
Pause
Run

Battery
Voltage

Bootloader

Table 3.1 Kilobot Controller Commands

Description

Browse through projects to choose a hex file to be uploaded onto the
Kilobots.

Programs the OHC (Overhead controller) with the selected hex file. A
black window will briefly appear, showing the progress of the
programming.

Flashes Kilobots with program stored on the OHC. Kilobots will quickly
flash red, green, and then blue to show they have entered programming
mode, and will then pulse blue until programming is completed.
Continuous function.

Sets Kilobots to sleep mode. Kilobots will periodically flash white while
in sleep mode. Continuous function.

Sets Kilobots to pause mode. Kilobots will frequently flash yellow while
in pause mode.

Runs the current program on the Kilobots.

Kilobot's LED displays a color dependent on current battery charge.
Green: battery voltage over 4 V

Blue: battery voltage over 3.75 V

Yellow: battery voltage over 3.5 V

Red: battery voltage less than 3.5 V

Sends a message to the Kilobots to exit current program.
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msg

Wake-up (While in sleep mode) Sets Kilobots to pause mode. Continuous
function.

Reset Restarts current program on Kilobots

Charge Sets Kilobots to charge mode. While in charge mode, the Kilobot's LED

will blink red while charging, otherwise the LED will be off.

Toggle LEDs Toggles LEDs on OHC.

Stop Stops whatever the OHC is currently doing. Used to end continuous
functions.

On occasion, a Kilobot may need to have its firmware re-flashed onto the Atmega328p.
The need to re-flash can be caused by a faulty program being flashed onto them by the
user, a static discharge, a low battery while using the motors set at higher power levels,
or failing to follow proper procedure when flashing a new program onto the Kilobots.

To re-flash the firmware, the Kilobot must be connected to the debugging cable, and using
AVR studio, flash the Kilobot firmware hex file. This proved to be problematic as the
provided materials were missing crucial steps in the process. The correct procedure was
documented and is now available to the general public, and is included in Appendix E.

3.1.3 System Setup

Experiments were set up on a sleek surface. This ensures correct movements with the
Kilobots. The surface was also reflective, allowing for maximum communication distance.
The experiment area can be seen in the figure below.

In all experiments, 1 to 20 Kilobots are used. On the computer, a program is developed to
perform a desired behavior or task and a HEX file is generated from it. The Hex file is then
bootloaded onto the Kilobot controller and then flashed onto the awaiting Kilobots.

3.2 Design and Implementation
This section provides information on how controls are implemented using the Kilobot
robot.

3.2.1 Motor Control

The Kilobots use two differential motors that cause vibrations in the robot's legs allowing
them to move. The motors are controlled by the standard function set motor (char
L, char R), with arange of input values from 0 to 255. The motors must be spun up
before the desired input value can be applied. This can be seen in Figure 3.4. A value of
0xAO must be applied to the motor(s) for 15 ms before the desired power level can be
set.
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set motor (0xAQ0, 0xAQ) ;
_delay ms(15);

set motor(cw in straight,ccw in straight);

Figure 3.4 An Example of Motor Control

Although the motors can be set to custom power levels, there are four constant values
defined in the EEPROM that can be used to ensure a desired action. The four values are
as follows:

e cw_in_place

e ccw_in_place

e cw._in_straight

e ccw_in_straight
Combinations of these four values can be applied to the motors to allow the Kilobot to
move in a forward, counter clockwise, or clockwise motion. The numerical value of the
above constants is determined through calibration of the motors. It is important to note
that the motors need to be calibrated frequently to insure proper behavior.

To allow for the easy use of the defined constants, a set motion function was created. The
setMotion function will set the Kilobot’s motors to perform one of the following: stop,
forward, left, or right. The function setMotion can be seen in Figure 3.5.

vold SetMotion (motion newMotion)
{
if (currentMotion != newMotion)
{
currentMotion = newMotion;
switch (currentMotion)
{
case stop:
set motor (0,0);
break;
case forward:
set motor (0xA0, 0xAO) ;
_delay ms(15);

set motor(cw in straight,ccw in str
aight) ;

17
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break;

case left:
set motor (0, 0xAQ) ;
_delay ms(15);
set motor (0,ccw _in place);
break;

case right:
set motor (0xA0,0) ;
_delay ms(15);
set motor(cw_in place,0);
break;

default:
set motor (0,0);

break;

Figure 3.5 setMotion Function

For ease of use, an enumerated datatype (motion) was created as the input for the
setMotion function. Figure 3.6 shows the code for the motion type definition.

I typedef enum {stop = 0, forward = 1, left = 2, right = 3}
motion;

Figure 3.6 Motion Type Definition
More on the set motor function and its implementation can be found in the appendix.

3.2.2 Information Exchange through communication
The Kilobots utilize infrared light for communication. The infrared light is bounced off the
ground and is received by any nearby Kilobot. This can be seen in Figure 3.7.

18
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F

Figure 3.7 Kilobot IR Communication

The Kilobot firmware allows for 23 bits to be transmitted as a single message. This is
equivalent to sending three 8-bit characters. Where the last character has an even value.
The messaging function call can be seen in Figure 3.8 below.

message out (0,0,0);

enable tx =1;

Figure 3.8 Kilobot Messaging Function

Messages are transmitted every 200 ms, and messages are received when the IR receiver
detects an incoming signal. Before a message can be sent, a series of operations must be
performed on the data. First a fourth byte, which serves as a checksum, is appended to
the data. The fourth byte has a value equal to the sum of the three data bytes and 128.
Each of the four bytes are then operated on at the bit level. Once completed, the message
is ready to be transmitted. At the start of each transmission, the IR LED is turned on for a
period of 0.75 ps and then turned off for 92.25 ps. The 32b that make up the message
processed, a value of 1 turns the IR LED on, while a 0 sets the IR LED off. Between each
bit the IR LED is set low for 13.875 microseconds. The total time to transmit a message,
from the initial IR LED flash to the last bit, is 537 microseconds.

3.2.3 Localization Via Communication

The Kilobots lack a means of observing the surrounding environment, and do not know
their own orientation. The only be possible way to determine local information is via
communication. Equation (1) shows the method for Kilobot localization. This method of
localization is known as the gradient. G; is the gradient value of the current agent.

G; = min(messages) + 1 (24)
By designating a single Kilobot as a leader, any other Kilobot can determine the number
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of Kilobots away from the leader. The leader is also known as a root node. The root node
transmits a value of zero, while non-root Kilobots search for the minimum value in the
messages they receive. When the minimum value is found, the non-root Kilobot
increments the value by one. The value of G; corresponds to the number of Kilobots away
from the root node.

Another more advanced method of localization, employs a distributed method of
trilateration. Unlike the gradient method, this method requires a minimum of three
Kilobots to be configured as fixed reference points for the remaining agents to calculate
their current location. The remaining agents are given the coordinates (0,0) as their initial

position.
C; = \/(xl — xj)z + (v — yj)z (25)
v = (B2, 22 (26)
N; = (x; = Dyj * Vx;,y; — Dyj = Vy;) (27)
(6,y) = (- E5Ey, - 0) (28)

After initialization, every reference agent transmits their coordinates to all non-localized
agentsin range, from these message the distance D; ;, can be calculated based on the light
intensity of the message. Non-localized agents store the received information and
calculated distance until three unique reference points are detected. Once three unique
points of reference are found, the non-localized agent calculates the distance from its
alleged current position to the reference points [2]. Unit direction vectors, V;, are then
generated, with the tails located at the reference points and the heads at the current
position of the non-localized agent (26). By taking the difference of the reference agents
and the product of the measured distances, D;;, and the unit direction vectors, V;,a new
set of coordinates is generated that represent where the agent believes it is, N;, with
reference to each individual reference point (27). Finally, the non-localized agents
position is updated by taking the difference of its previous position with that of the a
fourth of the difference of previous position and N; (28). By iteratively performing these
steps, the non-localized agent coordinates quickly converge to the correct values.

3.3 Experiments

In this section, the experimental results for the Kilobot are presented. Each subsection
contains a flowchart describing the method of implementation, as well as photos
captured during runtime. The photos are timestamped with the variable t, in seconds.
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3.3.1 Gradient

As mentioned in section 3.2.3 Localization Via Communication, the Gradient is a one

dimensional method of localization that allows for a Kilobot to determine how many

Kilobots away it is from a root node. A Kilobot was predetermined to be the root node.

The other Kilobots generated their own ID by using a random number generator, and

would then proceed to perform the gradient algorithm as shown in Figure 3.9.

Send
Message

R

Fasej
Trueié False

Add Message To Setito0
List

Set gradient to
Increment i min(List) + 1

Send
Gradient
Message

— End 4—‘

Figure 3.9 Gradient Flowchart

Figure 3.10 shows snapshots from a video taken during implementation of the gradient

function. It can be seen that the gradient value cascades through the Kilobots until

localization is achieved. In this experiment, the total run time was 12 seconds, but the

amount of time it takes for localization to be achieved increases as the number of Kilobots

increases.
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Figure 3.10 Gradient Implementation

3.3.2 Orbiting

As mentioned in section 3.1.1 Hardware, the Kilobots determine the distance from one
another based on the strength of incoming messages. Using the distance information, and
a simple set of rules, a Kilobot can perform an orbiting motion around another Kilobot.
The rules for orbiting are determined from three zones.

A zone is an area of space that an orbiting Kilobot may or may not occupy. The area for a
zone is defined by a distance to the stationary Kilobot from a point in space. The three
zones are the following: zone of repulsion, zone of orientation, and zone of attraction.
Figure 3.11 shows the three zones.

When a Kilobot is in the zone of repulsion, the orbiting Kilobot is notified that it is too
close to the stationary Kilobot. The orbiting Kilobot will then move away from the
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stationary Kilobot. When a Kilobot is in the zone of orientation, the orbiting Kilobot is
notified that it can move in a forward motion. When a Kilobot is in the zone of attraction,
the orbiting Kilobot is notified that it is too far from the stationary Kilobot. The orbiting
Kilobot will then move towards the stationary Kilobot.

Zone of
Attraction

Zone of
Repulsion

Kilobot

Figure 3.11 Orbiting Zones

Figure 3.12 shows the control flow diagram that was implemented on the Kilobots. If the
identification number given to the Kilobot is zero, then messages will only be sent out by
the Kilobot. The Kilobot with this identification number is known as a root.

The root sends messages to allow any non-root Kilobot to determine its distance to the
root. A non-root Kilobot will compare the computed distance with the distance defining
the zone of repulsion. If the Kilobot’s calculated distance is less than the zone of repulsion
distance, then the Kilobot will turn right. If the Kilobot’s calculated distance is greater than
the zone of repulsion distance, then the Kilobot will compare its distance to the zone of
orientation distance. If the Kilobot’s distance is greater than the zone of orientation
distance, then the Kilobot will turn left. If this comparison is false, then the Kilobot will
move in a straight line.
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Figure 3.12 Orbiting Flowchart

A video of the orbiting implementation was taken. Snapshots are shown in Figure 3.13.
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Figure 3.13 Orbiting Implementation
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3.3.3 Asynchronous Consensus

By combining the gradient and orbiting algorithms, it is possible to have the Kilobots
converge to a signal fixed location. An agent is designated as a root node, which is placed
in a desired location. This location will be the convergence point for the other agents. A
flowchart for asynchronous consensus can be seen in Figure 3.14. First the gradient
algorithm is performed until a timer flag is thrown. Then the agents perform orbiting, but
the radii of the three zones decreases at specified time intervals. Over time, the decaying
orbit causes the agents to converge at the root node. The converging agents are
constantly aware of the gradient vales directly above and below them, and only perform
any orbiting movement if the Kilobot with a gradient value above their own is within

?
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Figure 3.14 Asynchronous Consensus Flowchart

Figure 3.15 shows four photos captured during an implementation of asynchronous
consensus. In this experiment the root agent is displaying the color red. At the first time
stamp, all three agents are dispersed, and the gradient algorithm has been completed by
each Kilobot. The next time stamp (t =13), shows that the blue agent has moved next to
the green agent. This signals the green agent to start moving. The third image shows that
the green agent has moved to the root, with the blue agent is following behind the green
agent. The final image shows all agents at the desired location.
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Figure 3.15 Asynchronous Consensus Implementation

3.3.4 Light Following
Using values from the Kilobot's ambient light sensor, the Kilobots can be made to follow

a light source. A control flow diagram for the implementation of light following is shown
in Figure 3.16. Multiple readings from the ambient light sensor are taken, and then the
average of the readings is calculated. This average is compared against two threshold
values. The threshold values were determined by testing the light sensor in different
lighting conditions. Sensor values were measured in a room with natural lighting, a light
directly on the sensor, and inside a sealed box. If the average value is less than or equal
to the lower threshold, then the Kilobot turns to the left. If the average value is greater
than or equal to the higher threshold, then the Kilobot turns right. As the Kilobot turns
left or right, the light sensor attempts to center the light source. This constant centering
makes the agent move towards the light source.
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Figure 3.16 Light Following Flowchart

Figure 3.17, shows four Kilobots moving to the light source, which is situated directly

behind the camera.
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Figure 3.17 Light Following Implementation

3.3.5 Sending Messages from an Outside Source / Controllable Node

As mentioned in section 3.1.2 Software, the Kilobot Controller software allows users to
perform several different tasks, but it lacks the ability to send user generated messages
to the Kilobots. By using an Atmegal28, an infrared LED, a 330 Q resistor, and Atmel
Studio 6.1, a program was written that mimics how the Kilobots send messages. The
Atmegal28’s system clock was configured to 8 MHz to match the speed of the Kilobots.
The program used a timer based interrupt that triggered every 200 ms and performed the
same messaging protocol as the Kilobots.

The messaging program was verified by using a Kilobot that was programmed to perform
specific actions depending on the values contained in the message being sent. For
example, setting the Kilobot to a root mode, moving in a given direction, or performing
light following. Because the Kilobot’s behaviors can be changed on the fly, it is known as
a controllable node.

AC
Atmegal28 —@—'II

330Q

Figure 3.18 Messaging Circuit
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In this chapter, we describe the implementation of cooperative control algorithms using
the QBot 2. A figure showing a QBot 2 is shown below.

Figure 4.1 A QBot 2 at Bradley University

4.1 Overview of QBot 2

4.1.1 Hardware

A QBot 2 is composed of a Kobuki robot base by Yujin Robot, a Microsoft Kinect RGB
camera and depth sensor, and a Quanser DAQ with a wireless embedded target
computer. The Kobuki robot platform has two differential drive wheels, with a maximum
speed of 0.7 m/s. The differential drive wheels contain built in encoders. The height of
the Kobuki platform, including the Kinect sensor, is 27 cm, and the diameter is 35 cm.
Three digital bump sensors, three digital wheel drop sensors, three analog and digital cliff
sensors, and a 3-axis gyroscope are also part of the Kobuki platform.

The Microsoft Kinect sensor is mounted on top of the Kobuki robot, allowing for different
viewing orientations. The minimum viewing angle is 21.5 downwards. The Kinect has a
horizontal field of view limited to 57°, and a vertical field of view limited to 43- data can
be captured and processed, as well as 11-bit depth. RGB image data. The RGB image has
a minimum resolution of 640x480 pixels and a maximum resolution of 1280x1024 pixels.
The depth image has a resolution of 640 x 480 pixels, and has a range of 0.5 to 6 meters.

The embedded target computer uses the Gumstix DuoVero computer which contains 1
GB of RAM, and uses a Texas Instruments CPU with a base clock speed of 1 GHz. The
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Gumstix DuoVero computer runs a real-time control software, known as QUARC to
interface with QBot 2 data acquisition card (DAQ) for all sensor data processing. QUARC
also supports additional |0 configurations, allowing users to customize the QBot 2.
Additional 10 includes: four PWM outputs, four analog inputs, eight reconfigurable digital
I/0, one UART, one SPI, and one 12C.

4.1.2 Software

MATLAB/Simulink software integrated with QUARC is used to interface the target
computer. A Simulink model can be seen in Figure 4.2. Controllers are developed in
Simulink with QUARC on the host computer, and then code can be generated and
downloaded to the target computer wirelessly. Several main QUARC blocks used to
communicate with the QBot 2 include Hardware in the Loop (HIL) initialize block, which
configures the drivers and hardware interface for QBot 2; HIL Read/Write, which are used
to read sensory data and drive motors; Kinect Initialize; Kinect Get Image; and Kinect Get
Depth.

| Duanc: — — — — — —
i

Data Store Data Store Data Store Data Store Data Store Data Store

HIL Initialize Memory Memoryl MemoryS Memory2 Memory4 Memory3

hil-2 (ghet2-0)
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Localization

2
Data Acquisition 211
12 message 03|
211

smessageQ2 ‘  wTheta
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Motor Control

Figure 4.2 Overall Simulink Model

Communication Subsyetem

4.2 Design and Implementation

4.2.1 Localization Using Kinect Sensor

At start up, the QBot 2 is initialized to a local reference frame, with the origin at the center
of the QBot 2. The local reference frame initializing becomes a problem when multiple
QBot 2s are being used. To overcome this issue, two of the three QBot 2s positions are
determined with reference to the remaining QBot. These two locations are then used to
translate the two QBot 2s reference frames to the other QBot 2s local reference frame,
creating a global coordinate system. The Kinect sensor of a QBot 2 can be used to
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determine the coordinates of an object. This means that a QBot 2 that is within the global
reference frame can determine the coordinates of another QBot 2 with reference to the
global frame.

Before the Kinect sensor can calculate the position of a QBot 2, it must first identify it.
Identification is possible through the use of a QUARC Simulink block called Find Object. A
description of the Find Object block can be found in Appendix G. Objects are determined
by adjusting the RGB values in the parameter window. The threshold parameter gives an
allowable error for acceptable RGB values. The Find Object block also has a minimum size
parameter, which estimates the minimum size of the desired object in number of pixels.
From Figure 4.1, it can be seen that the standard QBot 2 is a black color.

This presents a problem; the QBot 2 blends into the background when color identification
is trying to be completed. To overcome this issue, the QBot was outfitted with colored
construction paper. An example of this can be seen in Figure 4.3 below. The Find Object
block outputs the center of mass of the desired object. The center of mass is given as two
outputs, an x value (the image matrix’s column value) and a y value (the image matrix’s
row value). These values can be used in conjunction with a depth image to determine the
distance to the object.
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640

Figure 4.3 Above-View of QBot 2 Localization

The QUARC Simulink library provides a block, called Kinect Get Depth, which captures a
640 x 480 depth image. The depth image contains a distance value, in mm, that can be
used with the previously calculated center of mass values to determine the distance in
the x direction to a desired object. The distance in the y direction must be determined by
calculating the angle of the object relative to the center of the image. The angles needed
are determined from equation (29).
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. 57 ®w

a = (320 — pixel) w20 150 (29)
Where the number 320 refers to the center of the captured image (640 x 480), 57 refers
to the Kinects field of view, and dividing the field of view by 640 gives an angle value per
pixel. Pixel refers to a current pixel in the range of 1 to 640. By doing this an angle is
determined for each individual pixel with regards to the center of the image. Because the
pixel variable ranges from 1 to 640, a is returned as an array, with units of radians. A
visualization of a can be found in Figure 4.4. These angles are calculated in the model
properties of Simulink as a post load function. The calculated angles, the depth image,
the center of mass of the object, and the gyroscope value are then used to determine the
coordinates in the global reference frame, which will be transmitted to the other QBot 2s
for the implementation of distributed controls.

OOOéOOON [
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639

640

Figure 4.4 Expanded Above-View of QBot 2 Localization

4.2.2 Information Exchange Through Communication

The QBot 2 utilizes IEEE 802.11 b/g/n protocol for communication. The QUARC Simulink
library for communication provides basic, intermediate, and advanced blocks. This allows
for a number of different communication topologies. The simplest way to set up
communication between QBots is by utilizing QUARCs basic communication blocks. The
basic communication blocks are the stream server block and the stream client block.

QUARC allows for easy implementation of different communication protocols, where
each are specified by the URI parameter. In this case, the protocol being utilized is TCP/IP,
and each QBot is given a unique IP address to be identified with. The stream server block
sends its input to the stream client block, as well as receives output from the stream client
block. The input and output values are a single value or an array, where the length of the
data is determined by the default output value in both parameter windows.
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The stream client block works much like the stream server block, but the URI parameter
is set to the same value that is used in the stream server block. This notifies the stream
client block that it should search and connect to a host with that URI. In the experiments,
we adopt the time-varying communication topologies following a time sequence
{tr, k=0,1,..}as

1 1 0

S1(0) = [0 1 1] ot € [taptons1) (30)
1 0 1
1 0 O

5:(t) = [0 1 0] ,t € [tarrtagern)) (31)
0 0 1

That is, for time intervals [ta, tok+1), the communication topology Si(t) is strongly
connected, and messages that are sent between the QBots contain information about
their coordinates values xi, yi, pix and pi. For time intervals [ta1, t2(+1)), there is no
information sent among QBot 2s. Nonetheless, the overall communication pattern
consisting of Si(t) and Sy(t) is still strongly connected, and satisfies the network
connectivity condition for coordination of multiple dynamical systems [13].

4.2.3 Motor Control

The basis for the motor control is the HIL Read and HIL Write blocks. These blocks allow
Simulink to access the input and output ports of the QBot 2. The port numbers for the left
and right motors are 2000 and 2001 respectively. The HIL write block is used to write to
the motors, but can also be used to write to different outputs such as the PWMs. The HIL
read block is used to read the encoders, gyroscope, bumper sensors, and any other sensor
inputs for the QBot 2. The encoder values for the QBots are used to calculate the left and
right wheel velocities, then these velocities are used to calculate the QBots current x and
y positions, as well as its angle. All this information along with the received
communication information is sent to a distributed control module which is designed
based on the algorithms in (13) (14) and (15)-(16).

4.3 Experiments

In this section, we report the experimental testing results for solving problem 2 and
problem 3 using distributed controls. Three QBot 2s are used in the experiments, and
their IP addresses are 192.168.2.49, 192.168.2.50, and 192.168.2.51, respectively. In the
results presented below, the robot trajectory data from the real run were recorded and
plotted using MATLAB. In the plots, a blue line represents the first QBot 2 to be activated.
A green line represents the second QBot 2, which is identified by the first QBot 2 for
localization. A red line represents the third QBot 2, which is identified by the second QBot
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2 for localization. Each QBot 2 is also numbered by the last two digits of their IP address
in the legend. Squares on plots represent the starting position of a QBot 2, and a circle
represents the QBot 2 final location.

4.3.1 Rendezvous Control

Different control gains ki were used to test the control algorithms in (13)-(14). Figure
4.5,Figure 4.6, and Figure 4.7 depict the phase plot and individual trajectories for robots
for the case of ki = 2. The corresponding snapshots with time stamps from the video clip
are shown in figure 8. It can be seen that rendezvous is achieved. With the control gain k;
=6, the results are illustrated in Figure 4.8, Figure 4.9, and Figure 4.10. It can be seen that
convergence can be reached quickly at about t = 20s.

I
— QBot 49
QBot 50
— QBot 51

Distance {m)
= S
T T
| |

4 | | | | | | | | |
-1 0.5 0 05 1 15 2 25 3 35 4

Distan.ce (m)

Figure 4.5 Rendezvous Implementation, ki = 2

34



Chapter4 QBot 2

Distance (m)

Distance {m)

QBot 49
QBot 50
QBot 51
251 —
. i
15 —
i i
05 —
5 i
05 —
A | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
time (s)
Figure 4.6 Rendezvous X Position vs Time, ki = 2
3 T T T T
QBot 49
QBot 50
QBot 51
251 —
oL _
15 —
h _
051 —
) il
051 —
A | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

time (s)

Figure 4.7 Rendezvous Y Position vs Time, ki = 2
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Figure 4.9 Rendezvous X Position vs Time, ki = 6
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Figure 4.10 Rendezvous Y Position vs Time, ki = 6

4.3.2 Formation Control

The formation algorithm was tested by giving the QBot 2s a shape to move into. In this
case, the QBot 2s were controlled to form a triangle. Figure 4.11, Figure 4.12, and Figure
4.13 show the phase plot and system responses. The snapshots are illustrated in figure
15. It can be seen that robots converge to the desired right triangle formation.
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Figure 4.13 Formation Control Y Position vs Time

4.3.3 Trajectory Following

70

80

100

Trajectory following is tracking a specific route based on the corresponding equations.

Any path is realizable if the shape can be modeled by equations. The equations generate

a continuously updating point to which the QBots try to move. If the point moves too
quickly for the QBot, the path of the QBot will deviate from the desired path. If the point

moves very slowly, the QBot will move very slowly as well.

The first shape attempted to trace was a sine wave. The equations used to model a sine

wave were as follows, where w is angular velocity, tis time, and x; and y, are the desired

x and y position.
X= w
Xqg = wt
Yy = wCoSXy
Yq = Sinxg
vy = —k(zy — xq) + %

v, = —k(z;— ya) +y

(32)
(33)
(34)
(35)
(36)
(37)
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The first tests for the sine wave trajectory following resulted in an increasingly flattened
sine wave as the QBot moved. The sine wave became more and more damped because
the desired point was moving much faster than the QBot. The QBot did not have to turn
much to face the distant desired point. Therefore, the QBot moved in a slightly curvy line.

Another trajectory following experiment used the equations for a circle. The
corresponding equations were as follows, where (a,b) is the center of the circle on a
coordinate plane, r is the radius of the circle, t is time, n is the time scaler, x; and y, are
the desired x and y position, and k is a constant.

Xg=a+r cos(t/n) (38)
Ya=b+r sin(t/n) (39)
Zyy = Upq (40)
Z12 = V12 (41)
Vi1 = —k(z11 — xg) + %Xq (42)
Viz = —k(z12 = Ya) + Ya (43)

When the time scaler n and the radius r were both one, the QBot moved in a circle, but
its radius was not one meter. In fact, the radius was about one-third of a meter. Like the
sine wave experiment, the desired point moved too quickly for the QBot. When n was
changed to 16, the radius was much closer to the desired one meter. As n increases, the
closer the QBot will trace the desired shape. However, a larger n will also result in a slower
velocity. It is crucial to balance a fast velocity with the accuracy of the tracking.

Even after increasing n to 16, the radius of the circle did not quite reach a full meter. The
QBot is not told to match the equation point for point. It tries to move to the desired
point at each time instance. Therefore, the QBot makes little “shortcuts” to the desired
point at every time instant instead of connecting the desired points together. This
phenomenon is similar to how a semi-truck turns. The back wheels of the truck follow the
cab when moving straight. However, when the truck turns, the rear wheels do not track
perfectly with the front wheels. The back of the truck will be inside of the cab’s turn.
Consequently, the QBots will never perfectly trace the equations’ curves.

4.3.4 Object Avoidance

Object avoidance is key when using autonomous systems. The agents need to account for
unforeseen objects and other agents that may block their way. Fuzzy logic was
implemented to improve the QBots’ object avoidance algorithm.

Fuzzy logic takes the inputs, and based on their values, assigns output values. Instead of
hard cutoffs in the logic, fuzzy logic uses transitions for input and output definitions. This
will result in smooth transitions from state to state. Abrupt changes in QBot speed and
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turning are unwanted, so using a fuzzy logic block is preferred. A flowchart detailing the
object avoidance in located in Figure 4.14.

True—— <@ RIEE(

Fuzzy Logic
Controller

Cooperative

Controller

Figure 4.14 Object Avoidance Flowchart

The fuzzy logic block contained three inputs: left side, center, and right side, as shown in
Figure 4.15. Each input is the distance (in millimeters) to the closest object in that third of
the Kinect image. The left and right inputs are divided into two states: clear (more than
2000mm) and not clear (less than 700mm), which can be seen in Figure 4.16 and Figure
4.18. The center input is divided into three states: close (less than 600mm), middle
(600mm to 3000mm), and far (more than 3000mm), as shown in Figure 4.17 “Center” Input
Membership Function. The block had two outputs: left motor and right motor speeds. The
output membership functions are divided into five states: stop (0 m/s), slow (0.2 m/s),
medium (0.4 m/s), fast (0.6 m/s), and negative slow (-0.2 m/s), which can be seen in Figure
4.19 “VI” Output Membership Function and Figure 4.20 "Vr" Output Membership Function.

0 Left 200 Center 480 Right 680

Figure 4.15 Object Avoidance Input Variables
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Membership Function Plots
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Figure 4.17 “Center” Input Membership Function
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Membership Function Plots
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Figure 4.18 “Right” Input Membership Function
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Figure 4.19 “VI” Output Membership Function
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Membership Function Plots
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Figure 4.20 "Vr" Output Membership Function

The distance values were taken from the center horizontal line of the Kinect image. Using
the center line ignores any object above and the ground directly below the QBot. If an
object is located on the center line and the QBot drives to it, the QBot is guaranteed to
collide with it. Because the Kinect Get Distance block erroneously reads zero at times, all
zero values were disregarded. The smallest nonzero value for each third of the Kinect
image was used as the inputs to the fuzzy logic block.

The rules within the fuzzy logic block were the decision-making portion of the object
avoidance algorithm. The input-output logic used is displayed in Table 4.1 below.

Table 4.1 Fuzzy Logic Rules

Input Output
Left Side Middle Right Side Vr Vi
Far Far Far Medium Medium
Far Middle Far Slow Slow
Close Close Close Negative Slow Slow
Middle Close Close Stop Slow
Close Close Middle Slow Stop
Middle Close Middle Stop Slow

Because fuzzy logic uses transitions instead of hard values, the final outputs the block
calculates is the centroid of the possible outputs. For example, if the center distance
reading is located in the transition between the middle and far distances, and the left and
right inputs are far, then the first two rules in the table above apply. The fuzzy logic block
will assign the centroid of the resulting triangles for each output as the actual block
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outputs. In this case, the motor speeds will be between medium and slow. The closer the
input fits a rule, the more the block will favor its matching outputs.

To test the object avoidance, a QBot was programmed to follow a counter-clockwise
circular trajectory, as shown in Figure 4.21. After a complete revolution, a trashcan was
placed in the path of the QBot. Upon approach, the QBot turned left to avoid the trashcan.
Once the trashcan was out of frame, the QBot resumed the circular trajectory. Despite
the trashcan never moving, the QBot started its avoidance behavior at a different position
for every loop around the circle. The inconsistency is due to the relatively slow refresh
rate of two hertz of the object avoidance flag. The flag changes to logic high when an
object is within 600mm and shifts the logic to the object avoidance algorithm. When the
object is out of frame, the flag switches back to logic low, and the QBot resumes trajectory
following.

Object Avoidance
T

—QBot 49

1k E

Y Position (m)

-0.5 7

1 ! ! ! !
0 0.5 1 1.5 2

X Position (m)

Figure 4.21 Object Avoidance Implementation
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Conclusion and
Future Work

In this project, cooperative control algorithms were designed and implemented on a
network of mobile robots so that the robots can converge to maintain the same heading,
rendezvous in an area, or form maneuvering patterns like filing, toroidal motions,
flocking, and swarming. Control algorithms were obtained by linearizing robot models
with the assumption of local information exchange through sensing and communication
among neighboring robots. Experimental results validated the effectiveness and
robustness of the proposed cooperative controls.

This is a multi-year project, and as such, there are many areas of research. For example,
future work will include the study of target tracking problem by a network of
heterogeneous robots, when communication capabilities of some neighboring robots are
impaired. Future work may also include the improvement of existing features
implemented on the robots, such as object avoidance, color detection, and
communication capabilities. Communication capabilities may be improved to allow for
the sending of data between the different robot platforms.
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E-puck Code

Color Detection
#include <p30f6014A.h>

#include <stdlib.h>//for random numbers

#include "stdio.h"
#include "string.h"
#include "math.h"

#include "e_poxxxx.h"
#include "e_epuck_ports.h"
#include "e_init_port.h"
#include "e_motors.h"
#include "utility.h"
#include "e_led.h"
#include "e_prox.h"
#include "e_ad_conv.h"
#include "e_uart_char.h"
#include "e_randb.h"
#include "btcom.h"
#include "e_remote_control.h"
#include "e_agenda.h"
#include "searchball.h"

#include "runfollowball.h"

void indicateDirectionLED(double bearing);//turns on
corresponding to bearing bearing

the

LED
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char debugMessage[80];//this is some data to store screen-bound debug
messages

int seeSomething;//boolean for forward facing prox sensors

int main(void)
{
char buffer[240];
int selector;
unsigned char *tab_start = buffer;
e_init_port();
e_init_uartl();
e_init motors();

selector = getselector();

if (selector == 1)

{
e_poxxxx_init_cam();
select_cam_mode(1);
e_poxxxx_launch_capture((char *)tab_start);
while (!e_poxxxx_is_img _ready());
LED1 = 1;

}

else if (selector == 2)

{
//run_follow_ball();
e_set_speed_left(500);
e_set_speed_right(500);

}

else if (selector == 3)

{
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//run_follow_ball green();

}
else
{

//LEDO =1;
}
while (1);
return(0);
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searchball.c
//search ball library

#include <p30f6014a.h>
#include <stdlib.h>
#include "searchball.h"

#include "e_motors.h"

#define PIC_SIZE_MIN 3

static float ui_lin = 0.9;

int get_average(unsigned char arr[], int start, int end);

int calc_peak_left(int *width_L, int *center_L, unsigned char buffer[],
int nb_val);

int calc_peak_right(int *width_R, int *center_R, unsigned char buffer[],
int nb_val);

void epuck_init(Epuck *epuck);
int calc_lin_speed(int distance, int gain);
int calc_angle_speed(int pos_pic, int gain);

void ARW();

void e_set_speed(int linear_ speed, int angular_ speed)

{

if (abs(linear_speed) + abs(angular_speed) > 1000)

return;
else
{
e_set_speed_left(linear_speed - angular_speed);
e_set_speed_right(linear_speed + angular_speed);
}
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//this function calculates the average of an array from a given start
point, to a given end point

int get_average(unsigned char arr[], int start, int end)
{
int i;

int avg = 0;

if (start == end) //if one element average just return the
element. duh!
{
return(arr[start]);
}
for (i = start; i<end; i++) // find the sum of the elements
{
avg += arr[i];
}

if (avg == @) // if the sum was @ just return @
{

return(0);

}

return(avg / (end - start)); //return the average

int calc_peak_left(int *width L, int *center_ L, unsigned char buffer[],
int nb_val)

{
static int nb_avg = 10;
int picl, pic2;

int difference;

picl = nb_avg + 1;

difference = 0;
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while (picl < nb_val - 1)

{

difference = get_average(buffer, picl - nb_avg - 1, picl -
1) - ((int)buffer[picl] + (int)buffer[picl + 1]) / 2;

if (difference > PIC_SIZE_MIN)

{

break;

picl++;
}

//check to see if we have an edge that is within expected
parameters

if (picl >= nb val || difference <= PIC_SIZE_MIN)

{

return(PIC_NOT_FOUND);

pic2 = picl + 1;

difference = 9;

while (pic2 < nb_val)

{
difference = ((int)buffer[pic2] + (int)buffer[pic2]) / 2 -
get_average(buffer, picl, pic2);
if (difference > PIC_SIZE_MIN)
{
break;
}
pic2++;
}
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*width_L = pic2 - picil;

//calculate the center of the object

if (pic2 >= nb_val)

{
*center_L = nb_val / 2;
}
else
{
*center L = picl + (pic2 - picl) / 2 - nb val / 2;
}

return(PIC_FOUND);

int calc_peak_right(int *width R, int *center_ R, unsigned char buffer[],
int nb_val)

101 W

static int nb_avg = 10;

int picl, pic2;

int difference;

picl = nb_val - (nb_avg + 1);

difference = 0;

while (picl >0)

{

difference = get_average(buffer, picl + 1, picl + nb_avg +
1) - ((int)buffer[picl] + (int)buffer[picl - 1]) / 2;

if (difference > PIC_SIZE_MIN)

{

break;
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picl--;

if (picl == @ || difference <= PIC_SIZE_MIN)

{

return(PIC_NOT_FOUND);

pic2 = picl - 1;

difference = 0;

while (pic2 >0)

{

difference = ((int)buffer[pic2] + (int)buffer[pic2 - 1]) /
2 - get_average(buffer, pic2 + 1, picl);

if (difference > PIC_SIZE_MIN)

{

break;

pic2--;

*width R = picl - pic2;

if (pic2 <= 0)

{
*center_R = -nb_val / 2;
}
else
{
*center R = pic2 + (picl - pic2) / 2 - nb_val / 2;
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}

return(PIC_FOUND);

void epuck_init(Epuck *epuck)

{
epuck->state = IS_SEARCHING_BALL;
epuck->dist_ball = -1;
epuck->angle ball = -1;
epuck->1in_speed = 0;

epuck->angle_speed = 300;

void normalize(unsigned char buffer[], int nb_val)
{
int avg = get_average(buffer, 0, nb_val);

int i;

if (avg == 0)

return;
for (i = @; i<nb_val; i++)
{

buffer[i] = (10 * buffer[i]) / avg;

int search_ball(Epuck *epuck, unsigned char buffer[], int nb_val)
{
int center_L, center_R;

int width_L, width_R;
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char pic_found_1, pic_found_r;

pic_found_1 = calc_peak_left(&width_L, &center_L, buffer, nb_val);

pic_found_r = calc_peak_right(&width_R, &center_R, buffer,
nb_val);

if (pic_found_1 == PIC_NOT_FOUND && pic_found_r == PIC_NOT_FOUND)

return PIC_NOT_FOUND;

else if (pic_found_1 == PIC_FOUND && pic_found_r == PIC_NOT_FOUND)

{
epuck->dist_ball = width_L;
epuck->angle_ball = center_L;
return PIC_FOUND;
}
else if (pic_found_1 == PIC_NOT_FOUND && pic_found_r == PIC_FOUND)
{
epuck->dist_ball = width_R;
epuck->angle_ball = center_R;
return PIC_FOUND;
}
else
{
epuck->dist_ball = (width_L + width_R) / 2;
epuck->angle_ball = (center_L + center_R) / 2;
return PIC_FOUND;
}

void goto_ball(Epuck *epuck)
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203

int lin_speed = 0;
int angle_speed = 0;
int gain_lin = 35;

int gain_angle = 6;

lin_speed = calc_lin_speed(epuck->dist_ball, gain_lin);

angle_speed = calc_angle_ speed(epuck->angle ball, gain_angle);

epuck->1in_speed = lin_speed;
epuck->angle_speed = angle_speed;

e_set_speed(lin_speed, angle_speed);

int calc_lin_speed(int distance, int gain)
{

int consigne = 50;

float h = 0.1;

int ti = 3;

int ecart = consigne - distance;

int lin_speed;

ui_lin = ui_lin + h * ecart / ti;

lin_speed = (ecart + ui_lin) * gain;

if (lin_speed >= 1000)

{
ui_lin = 999 / gain - ecart;
if (ui_lin > 60)

ui_lin = 60.0;
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lin_speed = 999;

}

else if (lin_speed <= -1000)

{
ui_lin = -999 / gain + ecart;
if (ui_lin < -10)

ui_lin = -10.9;

lin_speed = -999;

}

return lin_speed;

int calc_angle_speed(int pos_pic, int gain)
{

int consigne = 0;

int angle_speed = 0;

int ecart = consigne - pos_pic;

angle_speed = ecart*gain;

if (angle_speed >= 1000)

angle_speed = 999;

else if (angle_speed <= -1000)

angle_speed = -999;

return angle_speed;

void ARW()

{
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263 ui_lin = 0.9;

pI 7N }
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searchball.h
#define PIC_FOUND 1

#define PIC_NOT_FOUND -1
#define IS_SEARCHING_BALL ©

#define IS_FOLLOWING_BALL 1

#ifndef Epuck

typedef struct

{
char state;
int dist_ball;
int angle_ball;
int lin_speed;
int angle_speed;
} Epuck;
#endif

void epuck_init(Epuck *epuck);

void normalize(unsigned char buffer[], int nb_val);

int search_ball(Epuck *epuck, unsigned char buffer[], int nb_val);
void goto_ball(Epuck *epuck);

void ARW();
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runballfollow.c
#include "searchball.h"

#include "e_epuck_ports.h"
#include "e_init_port.h"
#include "e_uart_char.h"
#include "e_agenda.h"
#include "e_motors.h"

#include "e_poxxxx.h"

#define NB_VAL 240

#define VIT_ROT_search 300

unsigned char buffer[NB_VAL];
int line_thickness_cam = 4;

int pos_linel = ARRAY_WIDTH/2 - 4/2;

void run_follow_ball red(void);

void execute(unsigned char *buffer_execute, Epuck *epuck);
void follow_red(unsigned char *buf, int size);

void select_cam_mode(int mode);

void follow_green(unsigned char *buf, int size);

void run_follow_ball(void);

void run_follow_ball green(void);

void run_follow_ball red(void);

void select_cam_mode(int mode)

e_poxxxx_config cam(pos_linel, @, line_thickness_cam,
ARRAY_HEIGHT, 4, 4, mode);

e_poxxxx_set_mirror(1, 1);
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e_poxxxx_write_cam_registers();

void execute(unsigned char *buffer execute, Epuck *epuck)

{

char pic_found;

normalize(buffer execute, NB_VAL / 2);

pic_found = search_ball(epuck, buffer_execute, NB_VAL / 2);

if (pic_found == PIC_FOUND)

{
if (epuck->state == IS_SEARCHING_BALL) {
ARW() ;
}
epuck->state = IS_FOLLOWING_BALL;
BODY_LED = 1;
goto_ball(epuck);
}
else
{

ARW();
epuck->state = IS_SEARCHING_BALL;
BODY_LED = ©;

epuck->1in_speed = 0;

if (epuck->angle_ball > @)
{
e_set_speed_left(VIT_ROT search);

e_set_speed_right(-VIT_ROT_search);
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}
else
{
e_set_speed_left(-VIT_ROT_search);
e_set_speed_right(VIT_ROT_search);
}

void follow_red(unsigned char *buf, int size)

{
int i;
unsigned char green;
for (i = @; i<size / 2; i++)
{

green = (((buf[2 * i] & @x@7) << 5) | ((buf[2 * i + 1] &
OXEQ) >> 3));

//blue = ((buf[2*i+1] & @x1F) << 3)

buf[i] green;

void follow_green(unsigned char *buf, int size)
{
int i;
unsigned char red;
for (i = @; i<size / 2; i++)
{
red = (buf[2 * i] & OxF8);

//blue = ((buf[2*i+1] & Ox1F) << 3);
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{

buf[i] = red;

void run_follow_ball(void)

unsigned char *tab_start = buffer;

unsigned char *tab_middle = buffer + NB_VAL / 2;

Epuck epuck;

epuck_init(&epuck);

e_init_port(); // configure port pins
e_start_agendas_processing();

e_init_motors();

e_init_uartl(); // initialize UART to 115200 Kbaud
e_poxxxx_init_cam();

select_cam_mode(GREY_SCALE_MODE);

while (1)

{
e_poxxxx_launch_capture((char *)tab_start);
execute(tab_middle, &epuck);
while (!e_poxxxx_is_img_ready());
e_poxxxx_launch_capture((char *)tab_middle);
execute(tab_start, &epuck);

while (!e_poxxxx_is_img_ready());
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iz void run_follow _ball green(void)

119 Bt

unsigned char *tab_start = buffer;

// unsigned char *tab_middle = buffer + NB_VAL/2;

Epuck epuck;

epuck_init(&epuck);

e_init_port(); // configure port pins
e_start_agendas_processing();

e_init_motors();

e_init_uartl(); // initialize UART to 115200 Kbaud
e_poxxxx_init_cam();

select_cam_mode(RGB_565_MODE);

while (1)
{
LEDO = 1;
e_poxxxx_launch_capture((char *)tab_start);
LED2 = 1;
while (le_poxxxx_is_img_ready());
LED4 = 1;
follow_green(tab_start, NB_VAL);
LED6 = 1;

execute(tab_start, &epuck);

(4150 void run_follow_ball red(void)

iyl {
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unsigned char *tab_start = buffer;

// unsigned char *tab_middle = buffer + NB_VAL/2;

Epuck epuck;

epuck_init(&epuck);

e_init_port(); // configure port pins
e_start_agendas_processing();

e_init_motors();

e_init_uartl(); // initialize UART to 115200 Kbaud
e_poxxxx_init_cam();

select_cam_mode(RGB_565_MODE);

while (1)

{
e_poxxxx_launch_capture((char *)tab_start);
while (!e_poxxxx_is_img_ready());
follow_red(tab_start, NB_VAL);

execute(tab_start, &epuck);
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runballfollow.h
#ifndef _FOLLOW_BALL

#define _FOLLOW_BALL
void run_follow_ball(void);
void run_follow_ball green(void);

void run_follow_ball red(void);

#endif
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Vicsek and Odometry
#include <p30f6014A.h>

#include <stdlib.h>//for random
#tinclude "stdio.h"
#include "string.h"

#include "math.h"

//#include "e_poxxxx.h"

#include "e_epuck_ports.h"
#include "e_init_port.h"
#include "e_motors.h"
#include "utility.h"
#include "e_led.h"
#include "e_prox.h"
#include "e_ad_conv.h"
#include "e_uart_char.h"
#include "e_randb.h"
#include "btcom.h"
#include "e_remote_control.h"

#include "e_agenda.h"

#include <ircom.h>

struct p

{

numbers
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int x;
int y;
int theta;

%

//the epuck wheels have a diameter of 41mm

//the distance between wheels is approx 53mm (important for kinematics)

//max speed is 1000 steps/sec

//one revolution is equal to 128 mm

// 1000 steps = 1 revolution

#define PI 3.14159

static int prevStepL = @, prevStepR = 0, steplL, stepR;

static int deltatheta, deltalL, deltaR, deltaS, dx, dy;

static float uilin = 0.9;

//this function calculates the epucks current position and orientation
based on

//information from the wheel encoders

void reset()

void updateposition(struct p *old)
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{

stepL = e_get_steps_left(); //get our steps

stepR = e_get_steps_right();

deltal = stepL - prevStepL; //calculate change

prevStepL = stepl; // update info

deltaR = stepR - prevStepR;

prevStepR = stepR;

deltatheta = (deltaR - deltal) / 2;

deltaS = (deltaR + deltal) / 2;

dx = deltaS + cos(old->theta + deltatheta / 2);

deltaS + sin(old->theta + deltatheta / 2);

dy

old->x = old->x + dx;

old->y = old->y + dy;

old->theta = old->theta + (deltatheta / 3);

void turntoangle2(int angle, struct p *epuck)

int ¢ = 0;
int state = 0;

int turnangle = 0;

int theta = angle;// - epuck->theta;
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angle*1000/360, but with wheel slippage a slight gain is

int oldright = e_get_steps_right();

int oldleft = e_get steps_left();

//LED@ =1;
while (c == )
{
// LED2 =1;
switch (state)
{
case 0:
e_set_steps_left(0);
e_set_steps_right(0);
e_set_speed_left(-200);
e_set_speed_right(200);
state = 1;
break;
case 1:
turnangle = e_get_steps_left();
if (turnangle < -theta)
{
e_set_speed_left(0);
e_set_speed_right(0);

state = 0;

theta = (theta * 3) + 60; /// actually susposed to be

required
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}

//LED®O =1;
e_set_steps_left(oldleft);
e_set_steps_right(oldright);

//epuck->theta =

void turntonegativeangle(int angle, struct p *epuck)
{

int ¢ = 0;

int state = 0;

int turnangle = 0;

int theta = angle;// - epuck->theta;

theta = (theta * 3) + 60; /// actually susposed to be
angle*1000/360, but with wheel slippage a slight gain is required

int oldright = e_get_steps_right();

int oldleft = e_get _steps_left();

//LED@ =1;
while (c == )
{
// LED2 =1;
switch (state)
{
case 0:
e_set_steps_left(0);
e_set_steps_right(0);

e_set_speed_left(200);

72



Appendix A E-puck Code

{

e_set_speed_right(-200);
state = 1;
break;

case 1:

turnangle = e_get steps_right(); //right

if (turnangle < -theta) //changed to negative

{
e_set_speed_left(0);
e_set_speed_right(0);
state = 9;
c=1;

}

break;

e_set_steps_left(oldleft);

e_set_steps_right(oldright);

void drive_distance(long int d) //d is in mm

long int steps = d / 128; // distance (mm) * (1 step/
int ¢ = 9;

int state = 0;

int oldL = e_get_steps_left();

int oldR = e_get_steps_right();

int stepsdone = 0;

128mm)
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while (c == )

{
switch (state)
{
case 0: e_set_steps_left(0);
e_set_steps_right(0);
e_set_speed_left(200);
e_set_speed_right(200);
state = 1;
break;
case 1:
stepsdone = e_get_steps_right();
if (stepsdone >= steps)
{
e_set_speed_left(0);
e_set_speed_right(0);
state = 0;
c=1;
}
break;
}
}

e_set_steps_left(oldL);

e_set_steps_right(oldR);

double calculatedistance(struct p *current, struct p *goal)

{

double distance = 9;
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distance = ((goal->x - current->x)*(goal->x - current->x)) +
((goal->y - current->y)*(goal->y - current->y));

distance = sqrt(distance);

return(distance);

int calculateangle(struct p *current, struct p *goal)

{

double deltay = goal->y - current->y;

double deltax

goal->x - current->x;

double angleindegrees = atan2(deltay, deltax) * 180 / PI;

return((int)angleindegrees);

int calculatelinearvelocity(double distance, int gain)
{

int cosine = 50;

float h = 0.1;

int ti = 3;

int gap = cosine - distance;

int linspeed;

uilin = uilin + h * gap / ti;

linspeed = (gap + uilin)*gain;

if (linspeed >= 1000)

{

uilin = 999 / gain - gap;
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if (uilin >60)
{
uilin = 60.0;

}

linspeed = 999;

}
else if (linspeed <= -1000)
{
uilin = -999 / gain + gap;
if (uilin < -10)
{
uilin = -10.0;
}
linspeed = -999;
}
return(linspeed);

int calculateangularvelocity(int angle, int gain, struct p *epuck)
{

// int cosine = @;

int angle_velocity = 0;

int gap = (angle - epuck->theta);

angle_velocity = gap*gain;
if (angle_velocity >= 1000)
{

angle_velocity = 999;
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{

{

else if (angle_velocity <= -1000)

{

angle_velocity = -999;

}

return(angle_velocity);

void e_set speed(int linear_speed, int angular_speed)

if (abs(linear_ speed) + abs(angular speed) > 1000)

return;
else
{
e_set_speed_left(linear_speed - angular_speed);
e_set_speed_right(linear_speed + angular_speed);
}

static int init = 9;

int main(void)

int selector;

e_init_port();

e_init_motors();

e_init_ad_scan();

e_start_agendas_processing();

ircomStart();
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ircomEnableContinuousListening();

ircomListen();

if (RCONbits.POR) //Reset if Power on (some problem for few
robots)

{

RCONbits.POR = 0;

__asm__ volatile ("reset");
}
//selector = getselector();
struct p epuck;

0;

epuck.x

epuck.y = 0;

epuck.theta = 0;

int i = 0;

int j;

int k;

int state = 0;

int angle;

int diffangle = 0;

int buffer[3]; //was 5

int sumtheta = 0;

epuck.theta = 0;

IrcomMessage imsg;

for (53)
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if (state == 0)
{
updateposition(&epuck);

ircomSend(epuck.theta); //send out our
current heading

while (ircomSendDone() == ©); //wait until done
sending

state = 1;

LEDO

1;

LED2

9;

}
else if (state == 1)
{
LEDO = O;
LED2 = 1;

ircomPopMessage(&imsg); // pop message off of stack
to be processed

if (imsg.error == @) //check to see if message was
recieved correctly

// LED@=1;

if (i <1) // lets fill a buffer of angles

{
buffer[i] = (int)imsg.value; //fill
buffer
i++; //increment count
}
else //if the buffer is full
{

i = @; //reset count
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// LED6=1;

sumtheta = buffer[@];// + buffer[1l] +
buffer[2];//+buffer[3] +buffer[4]; //summation of all recieved angles

angle = (epuck.theta + sumtheta) / 2;
// current angle plus the sum of theta divided by number of angles +1

diffangle = angle - epuck.theta;
//how much do we really have to turn?

if (diffangle <@) //what direction?

{

ircomPause(1); //stop
communication, causes issues with motors

//
for(k=0;k<200;k++) asm("nop");

myWait (400);
turn(diffangle, 100);

//for(k=0;k<2000;k++)
asm("nop");

myWait(409);
ircomPause(90);

}

else if (diffangle>0) {
ircomPause(1);

//for(k=0;k<200;k++)
asm("nop");

myWait(409);
turn(diffangle, 100);

//for(k=0;k<2000;k++)
asm("nop");

myWait(409);
ircomPause(9);
}
else
{
}
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state = 9;

}

myWait(300); //400

}

return(0);

epuck.theta = angle;

ircomPause(1);

// for(k=0;k<200;k++) asm("nop");
myWait(409);

move (50, 100);
//for(k=0;k<2000;k++) asm("nop");
myWait (400);

ircomPause(90);

state = 0;

//for(j=0;j<20000;j++) asm("nop");

//need a long delay between states roughly 20000

// LED4=0;
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Bluetooth Communication
#include <p30f6014A.h>

#include <stdlib.h>//for random numbers
#tinclude "stdio.h"
#include "string.h"

#include "math.h"

#include "e_poxxxx.h"

#include "e_epuck_ports.h"
#include "e_init_port.h"
#include "e_motors.h"
#include "utility.h"
#include "e_led.h"
#include "e_prox.h"
#include "e_ad_conv.h"
#include "e_uart_char.h"
#include "e_randb.h"
#include "btcom.h"
#include "e_remote_control.h"
#include "e_agenda.h"

#include "e_bluetooth.h"

void indicateDirectionLED(double bearing);//turns on the LED
corresponding to bearing bearing

char debugMessage[80];//this is some data to store screen-bound debug
messages

int seeSomething;//boolean for forward facing prox sensors
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int main(void)

{

char buffer[100] = { 0 };
int selector; //switch
char error = 1;

int masterdone = 9;

int i;

e_init_port();
e_start_agendas_processing();
e_init_uartl();

e_init_uart2();

selector = getselector();

if (selector == 1) //master role
{
while (1)
{
if (masterdone == 9)
{

masterdone = 1;

i=1;

i = e_bt_find_epuck();

} while (i !'= 9);
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do

{
LED® = 1;
error = e_bt_connect_epuck;
LEDG = O;

} while (error != 0);

}

e _bt_send_SPP_data("12", 2);

}
}
else { //slave role
while (1)
{
//memset (buffer,0,100);
buffer[0] = 0;
buffer[1] = 0;

e_bt_recv_SPP_data(buffer);
if (buffer[@] == '1' && buffer[1l] == '2");
{

LEDG = 1;

//LED1=1;

//LED2=1;

//LED4=1;

//LED5=1;

//LED6=1;
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}

return(9);

btcom.c
#ifndef BTCOM C

#define BTCOM_C

#include "btcom.h"
#include "e_uart_char.h"
#include <stdio.h>
#include <string.h>

#tinclude <stdlib.h>

// Don't forget to initialize hardware before using it when debugging.
Library to use on the e-puck

// maximum size of messages is set to 255 bytes

void btcomSendStringStatic(char* buffer)

{

e_send_uartl_char(buffer, sizeof(*buffer) - 1);

while (e_uartl_sending());

void btcomSendString(char* buffer)
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e_send_uartl_char(buffer, strlen(buffer));

while (e_uartl_sending());

void btcomSendInt(long int x)

{
char msg[BTCOM_MAX_MESSAGE_LENGTH];
sprintf(msg, "%1d", x);

btcomSendString(msg);

void btcomSendFloat(double x)

{
char msg[BTCOM_MAX_MESSAGE_LENGTH];
sprintf(msg, "%1f", x);

btcomSendString(msg);

void btcomSendChar(char c)

{
e_send_uartl_char(&c, 1);

while (e_uartl_sending());

void btcomWaitForCommand(char trigger)
{
char msg;

do

{
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e_getchar_uartl(&msg);

} while (msg != trigger);

// sleep a bit
long int count;
for (count = @; count < 1000000; count++)

asm("nop");

// BTCOM C

#endif
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btcom.h

void
void
void
void
void

void

#ifndef BTCOM_H

#define BTCOM_H

#define BTCOM_MAX_MESSAGE_LENGTH 256

btcomSendStringStatic(char* buffer);
btcomSendString(char* buffer);
btcomSendInt(long int x);
btcomSendFloat(double x);
btcomSendChar(char c);

btcomWaitForCommand(char trigger);

// BTCOM_H

#tendif
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E-puck Unbricking Guide

Note: When Unbricking an E-puck, it should be powered off.
1. Open MPLAB IDE v8.30

2. Remove the top portion of the E-puck

Figure B.1 E-puck with Top Removed
3. Connect the ICD 3 in-circuit debugger to the computer

4. Connect the ICD 3 in-circuit debugger to the E-puck
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Figure B.2 E-puck Connection Pins for Debugger
5. In MPLAB IDE v8.30, go to Programmer > Select Programmer

6. Select MPLABICD 3

Fovenen N N

File Edit View Project De er  Programmer Tools Configure  Window Help
D& EIYLIX 1 [
5] Output o @R

Buid | Version Contiol | Find in Files| MPLAB ICD 3

MPLAB ICD 3 detected
Connecting to MPLAB ICD 3
Running self test

Self test passed

Firmware Suite Version..... 01.41.06

Firmware type dsPIC30F
MPLAE ICD 3 Connecte
ICD3EM0045:; You must connect to a target device to use

MPLAB ICD 3

Figure B.3 Select Programmer Window
7. Go to Programmer > Settings
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8. In the Settings window, click the Program Memory tab. Select the “Manually select
memories and ranges” checkbox. Then select the checkboxes below.

"] Program after successtul build

Run after successful program

ﬁCD 3 Settings l - ‘[EIE—-W
Program Memory ‘ Configuration | Status | Power|
|}
) Allow ICD 3 to select memories and ranges
I @ Manually select memories and ranges I
emanes Program Options
Program Erase all before Program
Configuration [T Preserve EEPROM on Program
EEPROM [7] Preserve Program Memory Range
D [hex)
Boot Flash Start |0
Program Memory Range
(hex] End |0
Start
End 17k
Full Range
Automatically

[ ok |[ cancel || opy

Figure B.4 Program Memory Pane
9. Click the Full Range button

Proaram Memory Range

(hex] End 0
Stat

End 17

Full Range

10. Click Apply

11. In the Settings window, select the Power tab.

12. Set Voltage to 5.5

13. Select Power target circuit from MPLAB ICD 3 checkbox
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HCD 3 Settings T

]

| Program Memory | Configuration | Status | Power |

Power target circuit from MPLAB ICD 3

Voltage

0=

Figure B.5 Power Pane

14. Click Apply, then click OK

16. Go to Programmer > click Erase Flash Device

17. The Output window will display erasing status. When erasing is complete,
disconnect and power on the E-puck.

i Output

| Build [ Version Contial | Findin Files| MPLAE ICD 3

MPLAE ICD 3 detected

Firmware type ...
MPLAE ICD 3 Connected.

Connecting to MPLAB ICD 3...
Firmware Suite Version..... 01.41.06

dsPIC30F

Erasing...
Erase device complete

Note: If the E-puck is still bricked, repeat steps 1-15
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Kilobot Code

Gradient
#include "libKilobot.h" // include Kilobot library file

#tdefine MAX (70)
#tdefine MSIZE (5)
#tdefine ASIZE (3)

#define MAXGRADIENT (10)

uint8_t ID = 0;

uint8_t message_buffer[5] {0},

uint8_t average buffer[3] = { 0 };

uint8_t gradient = MAXGRADIENT;
uint8_t avg_gradient = 0;
uint8_t min = 0;

uint8_t i, k = 0;

-+
=
=
=
1}

uint8_t 9;

uint8_t init

]
IRy
-

// user program function
void user_program(void)
{

if (init)

{
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data

random sensor

int randseed = 0;

// generate random seed (must be placed AFTER init_robot()

for (int i = 0; i<30; i++)

randseed += get_ambient_light();//generate some
data

srand(randseed);//seed random variable with some sensor

// generate robot id
ID = rand() & 255;

//ID

9;

init = 0;

I
I
()
~

message _out(0, @, 0);
enable_tx = 1;

set_color(3, 0, 0);

get_message();
if (message_rx[5] == 1)
{
if (message_rx[3] < MAX)
{
if (i < MSIZE)

{
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message_buffer[i] = message_rx[1];

i++;
}
else
{
i=0;

min = message_buffer[0];

for (int j = 1; j < MSIZE; j++)

{
if (message_buffer[j] < min)
{
min =
message_buffer[j];
}
}
average_buffer[k] = min;
k++;
if (k >= ASIZE)
{
k = 0;
avg_gradient = 0;
for (int avg = @; avg < ASIZE;
avg++)
{
avg_gradient +=
average_buffer[avg];
}
avg_gradient = avg_gradient /
ASIZE,
gradient = avg_gradient + 1;
}
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enable_tx = 1;

switch (gradient)

{

case 0: set_color(3,
break;

case 1: set_color(9,
break;

case 2: set_color(0,
break;

case 3: set_color(3,
break;

case 4: set_color(0,
break;

case 5: set_color(3,
break;

case 6: set_color(1,
break;

case 7: set_color(o,
break;

default: set_color(e,

break;

message_out(gradient, gradient, gradient);

0);

0);

3);

0);

3);

3);

0);

1);

0);
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b
// main
int mai
{

129

n(void)

// no instruction should be placed before init_robot();

// because nothing is already initialised !!

// initialise the robot

init_robot();

// loop and run each time the user program

main_program_loop(user_program);
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Orbiting
#include "libKilobot.h" // include Kilobot library file

#tdefine ROOT (9)
#tdefine STOP (0)
#tdefine FORWARD (1)
#tdefine LEFT (2)
#tdefine RIGHT (3)
#tdefine NORMAL (1)
#define LOWERBOUND (94)
#tdefine UPPERBOUND  (95)

#define D (40)

static int init = 1;

static int robot_id = 0;

static int currentMotion = 0;
static int currentDistance = 9;

static int distance = 0;

void SetMotion(int newMotion);

void CheckBounds(void);

// user program function
void user_program(void)

{

IITTTTILTT I 7T 7770777777777 777777777177771717711177711177
I1T177177777177111177
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//user program code goes here. this code needs to exit in a
resonable amount of time

//so the special message controller can also run

IITTTTITTTT LI I 7777001777777 77777777777777711717711717
I1I1117177771711717717

// if the first time the loop is called, initialise the robot id
if (init)
{

int randseed = 0;

// generate random seed (must be placed AFTER init_robot()

for (int i = @; i<30; i++)

randseed += get_ambient_light();//generate some
random sensor data

srand(randseed);//seed random variable with some sensor
data

// generate robot id
robot_id = rand() & 255;
init = 0;

//robot_id = ©;

if (robot_id != ROOT)

{

message_out(robot_id, 3, 9);

enable_tx = 1;
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get_message();

if (message_rx[5] == 1)

{
if (message_rx[@] == ROOT)
{
currentDistance = message rx[3];
CheckBounds();
}
else
{
distance = message_rx[3];
}
}
else if (currentDistance == 0)
{
return;
}
}
else
{
message_out(robot_id, 5, 9);
enable_tx = 1;
set_color(3, 9, 0);
}
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// main
int main(void)
{
// no instruction should be placed before init_robot();

// because nothing is already initialised !!

// initialise the robot

init_robot();

// loop and run each time the user program

main_program_loop(user_program);

void SetMotion(int newMotion)

{

if (currentMotion != newMotion)

{

currentMotion = newMotion;

switch (currentMotion)

{

case STOP: // Stop
set_motor(e, 0);
set_color(e, 0, 0);
break;

case FORWARD: // Forward
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set_motor(0xAQ, OxAQ);

_delay _ms(15);

set_motor(cw_in_straight, ccw_in_straight);
set_color(e, 3, 0);

break;

case LEFT: /] Left
set_motor(0, OxA®0);
_delay_ms(15);
set_motor(0®, ccw_in_place);
set_color(3, 9, 0);

break;

case RIGHT: // Right
set_motor(0xAe, 0);
_delay_ms(15);
set_motor(cw_in_place, 0);
set_color(0, 0, 3);

break;

default:
set_motor(0, 0);
set_color(e, 0, 0);

break;
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148 Bt

void CheckBounds()

if (currentDistance < LOWERBOUND)

{
SetMotion(RIGHT);
}
else if (currentDistance > UPPERBOUND)
{
SetMotion(LEFT);
}
else
{
SetMotion(FORWARD);
}
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Light Following
#include "libKilobot.h" // include Kilobot library file

//#include "myLibrary.h"

#define THRESH_LO 500
#define THRESH_HI 700

#define THRESH_STOP 700

#define STOP ©
#define FORWARD 1
#define LEFT 2

#define RIGHT 3

int current_motion = STOP;
int current_light = 0;

uint8_t prev = LEFT;

uint8_t ID = @;

uint8_t init = 1;

void set_motion(int new_motion)

{
// Only take an action if the motion is being changed.
if (current_motion != new motion)
{
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current_motion = new _motion;

if (current_motion == STOP)

{
set_motor(e, 0);
}
else if (current_motion == FORWARD)
{
set_motor(255, 255);
_delay_ms(75);
set_motor(ccw_in_straight, cw_in_straight);
}
else if (current_motion == LEFT)
{
set_motor(255, 0);
_delay_ms(75);
set_motor(ccw_in_place, 90);
}
else if (current_motion == RIGHT)
{
set_motor(@, 255);
_delay_ms(75);
set_motor(@, cw_in_place);
}

void sample_light()
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// The ambient light sensor gives noisy readings. To mitigate
this,

// we take the average of 300 samples in quick succession.

int number_of_samples = 0;

int sum = ©;

// while (number_of_samples < 300)

{
int sample = get_ambient_light();
// -1 indicates a failed sample, which should be
discarded.
if (sample != -1)
{
// sum = sum + sample;
// number_of_samples = number_of_samples + 1;
current_light = sample;
}
}

// Compute the average.

//current_light = sum / number_of_samples;

// user program function

void user_program(void)
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if (init)
{
int randseed = 0;

// generate random seed (must be placed AFTER init_robot()

for (int i = ©; i<30; i++)

randseed += get_ambient_light();//generate some
random sensor data

srand(randseed);//seed random variable with some sensor
data

// generate robot id

ID = rand() & 255;

//ID = ©;
init = 0;
// set_motion(LEFT);

sample_light(); //hail the sunshine! let the sunshine in!
if (current_light <= THRESH_LO)
{
set_motion(LEFT);
set_color(3, 9, 0);
}
else if (current_light >= THRESH_HI)
{
set_motion(RIGHT);

set_color(@, 3, 0);
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}//else if(current_light >= THRESH_STOP)

// {
// set_motion(STOP);
// set_color(3,0,3);
!/ }

}

// main

int main(void)
{
// no instruction should be placed before init_robot();

// because nothing is already initialised !!

// initialise the robot

init_robot();

// loop and run each time the user program

main_program_loop(user_program);

137
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Asynchronous Consensus
#include "libKilobot.h" // include Kilobot library file

typedef enum { false = @, true = 1 } bool;

typedef enum { stop = @, forward = 1, left = 2, right = 3 } motion;

typedef enum { done = @, start = 2, wait = 4 } state;

#tdefine ROOT (9)
#tdefine MAX (100)
#define UNDEFINED (-1)
#define MINDISTANCE (37)
#define MAXDISTANCE (50)
#define BOUNDRANGE (1)
#tdefine SEC (32)
#define HALFSEC (16)
#tdefine QUARTSEC (8)

/* MYDATA */

int8_t myGradient = MAX;
int8_t myID = 1;

state myState = wait;

state myLastState = start;

/* NEIGHBORDATA */

int8_t nextDistance = MAX; //UNDEFINED // distance to next kilobot

int8_t prevDistance = UNDEFINED; // distance to previous
kilobot

int8_t nextID = UNDEFINED; // ID of next kilobot
int8_t prevID = UNDEFINED; // ID of previous

kilobot

109



Appendix C Kilobot Code

state nextState = wait; // state of next
kilobot

state prevState = wait; // state of
previous kilobot

int8_t nextGradient = MAX;

int8_t prevGradient = MAX;

uint8_t lowerBound = 94; //static

uint8_t upperBound = 95; //static

/* Gradient Variables */

uint8_t recGrad = MAX; //static
static int init = 1;

motion currentMotion = @; //static

//static intl6_t
currentDistance = 0;

/* Delay Variables */
uint32_t lastChanged = @; //static
uint32_t lastTime = 0; //static

/* FLAGS */

bool initGrad

false; //static

bool initData = false; //static
bool initNext = false; //static
bool initPrev = false; //static

bool timeOut = false; //static

bool initBound

false; //static

bool avoidFlag = false;
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/* Functions */

void SetMotion(motion newMotion);
void CheckBounds(void);

void InitGrad(void);

void Grad(void);

void SetGradColor(void);
void InitData(void);

void InitTimeOut(void);

void UpdateData(void);

void InitBound(void);

void CheckState(void);

void StateMachine(state currentState);
void MyTimer(void);

void ReduceBounds(void);
void ChangeBounds(void);
//void Avoid(void);

void RootStateMachine(void);
motion RandMotion(void);

// user program function
void user_program(void)

{

IITTTTLLTTIT I 7T 7707777777777 777777771777777771777771177
I1I1177177777177111177

//user program code goes here. this code needs to exit in a
resonable amount of time

//so the special message controller can also run

IITTITITLLTT LI LI 7710000707777 07777 7777777117177117177
I1117777117771171177

// if the first time the loop is called, initialise the robot id

if (init)
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int randseed = 0;

// generate random seed (must be placed AFTER init_robot()

for (int i = 0; i<30; i++)

randseed += get_ambient_light();//generate some
random sensor data

srand(randseed);//seed random variable with some sensor
data

// generate robot id

myID = (rand() & 127);
myID = O;

//myGradient = 0;
//myState = wait;

while (myID <= @)

{
myID = (rand() & 127);
}
init = 0;
lastChanged = kilotick;

lastTime = kilotick;

message_out(myGradient, myID, myState);

enable_tx = 1;

if (!timeOut)

{
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InitTimeOut();
}
else
{
MyTimer();
}

get_message();

if (myGradient == 9)

{

initGrad = true;

if (message_rx[5] == 1)

{
if (!timeOut)
{
InitGrad(); // initialize gradient
InitData(); // initialize distance, state, and
neighbor IDs
}
else
{

UpdateData();

if (myID != ROOT)

{

InitBound();

if (myLastState == wait || myLastState ==
done)
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{

ChangeBounds () ;
}
CheckState();

StateMachine(myState);

//Avoid();
//CheckBounds();
}
else
{
CheckState();
set_color(3, 0, 0);
RootStateMachine();
}
}
}
}
// main

int main(void)
{
// no instruction should be placed before init_robot();

// because nothing is already initialised !!

// initialise the robot

init_robot();
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// loop and run each time the user program

main_program_loop(user_program);

void SetMotion(motion newMotion)
{
if (currentMotion != newMotion)
{
currentMotion = newMotion;
switch (currentMotion)
{
case stop: // Stop
set_motor(0, 0);

break;

case forward: // Forward
set_motor(0xAQ, OxAQ);
_delay_ms(15);
set_motor(cw_in_straight, ccw_in_straight);

break;

case left: // Left
set_motor(e, 0OxAQ);
_delay_ms(15);
set_motor(@, ccw_in_place);

break;

case right: // Right
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set_motor(0xA0, 0);
_delay_ms(15);
set_motor(cw_in_place, 9);

break;

default:

set_motor(e, 9);

break;

void CheckBounds()

{
if (nextDistance < lowerBound)
{
SetMotion(right);
}
else if (nextDistance > upperBound)
{
SetMotion(left);
}
else
{
SetMotion(forward);
}
}

void Grad()
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PRV {

recGrad = message_rx[0];

if (myGradient > recGrad + 1)

{
myGradient = recGrad + 1;
SetGradColor();
initGrad = true;

}

void SetGradColor()

{
if (myGradient == 1)
{
set_color(e, 3, 0);
}

else if (myGradient == 2)

{

set_color(e, 0, 3);
}
else if (myGradient == 3)
{

set_color(0, 3, 3);
}
else if (myGradient == 4)
{

set_color(3, 9, 3);
}

else if (myGradient == 5)
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{

set_color(3, 3, 0);
}
else if (myGradient == 6)
{

set_color(o, 3, 1);
}
else if (myGradient == 7)
{

set_color(3, 1, 1);
}
else
{

set_color(3, 3, 3);
}

void InitGrad()

{
if (linitGrad)
{
Grad();
}

void InitData()
{
if (!initData && initGrad)

{
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if (!initNext && ((myGradient - 1) ==
(int8_t)message _rx[0]))

{
nextGradient = (int8_t)message rx[0];
nextID = (int8_t)message rx[1];
nextState = message rx[2];
nextDistance = message_rx[3];
initNext = true;

}

else if (!initPrev && ((myGradient + 1) ==
(int8_t)message_rx[0]))

{
prevGradient = (int8_t)message_rx[0];
prevID = (int8_ t)message rx[1];
prevState = message_rx[2];
prevDistance = message_rx[3];
initPrev = true;

}

if (initNext && initPrev)

{

initData = true;

void InitTimeOut()

{

if (kilotick > lastChanged + 2 * SEC)

{

timeOut = true;
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if (!initNext)

{
nextGradient = UNDEFINED;
nextID = UNDEFINED;
nextState = wait;
nextDistance = UNDEFINED;
}

if (!initPrev)

{
prevGradient = UNDEFINED;
prevID = UNDEFINED;
prevState = done;
prevDistance = UNDEFINED;
}

void UpdateData()
{
if (nextID == (int8_t)message rx[1])

{

nextState = message rx[2];

nextDistance = message_rx[3];

if (prevID == (int8_t)message rx[1])
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{
prevState = message_rx[2];
prevDistance = message_rx[3];
}
kprinti(myID);
kprinti(nextID);
kprinti(nextState);

kprinti(nextDistance);
kprinti(previD);
kprinti(prevState);
kprinti(prevDistance);

kprints(" ")

void InitBound()

{
if (!initBound)
{
lowerBound = nextDistance - BOUNDRANGE;
upperBound = nextDistance + BOUNDRANGE;
initBound = true;
}
}

void CheckState()

{

myLastState = myState;

if (prevDistance > MAXDISTANCE)
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{
myState = wait;
//set_color(0,0,3);
}
else
{
if (nextDistance <= MINDISTANCE && nextDistance !=
UNDEFINED)
{
myState = done;
//set_color(9,3,3);
}

else if ((nextState == wait && prevState == done) ||
(nextState == done && prevState == done && nextDistance > MINDISTANCE))

{

myState = start;

//set_color(e,3,0);

void StateMachine(state currentState)
{
switch (currentState)
{
case done:
SetMotion(stop);
//set_color(e,3,3);

break;

case start:
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CheckBounds();
//set_color(9,3,0);

break;

case wait:
SetMotion(stop);
//set_color(0,0,3);

break;

default:
SetMotion(stop);
//set_color(3,3,3);

break;

}

void MyTimer()

{
if (kilotick > lastTime + QUARTSEC)
{
lastTime = kilotick;
ReduceBounds();
}
}

void ReduceBounds()

{

if (lowerBound > MINDISTANCE)

{
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lowerBound -= 1;

upperBound -= 1;

}
else
{
if (nextDistance > MINDISTANCE)
{
ChangeBounds () ;
}
}

void ChangeBounds()

{

lowerBound = nextDistance - BOUNDRANGE;

upperBound = nextDistance + BOUNDRANGE;

/*void Avoid()

static int8_t currentDistance;

static int8_t prevCurrentDistance;

if(nextID != (int8_t)message rx[1])

{

currentDistance = message_rx[3];

if(lavoidFlag)

{
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if(currentDistance <= MINDISTANCE)

{
SetMotion(right);
avoidFlag = true;

prevCurrentDistance = currentDistance;

}
}

else if(currentDistance <= MINDISTANCE)

{

if(currentDistance < prevCurrentDistance)

{

SetMotion(left);

SetMotion(right);

}

prevCurrentDistance = currentDistance;

avoidFlag = false;
SetMotion(forward);
}
}

P/

void RootStateMachine()
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501

if (myState == start)

{
SetMotion(forward);//SetMotion(RandMotion());
}
else
{
SetMotion(stop);
}

motion RandMotion()

{
motion myMotion;
do
{
myMotion = rand() & 3;

} while (myMotion != stop);
return(myMotion);

523 W
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Random ID Generator
#include "libKilobot.h" // include Kilobot library file

#include "myLibrary.h"

#tdefine FALSE (9)

#tdefine TRUE (1)

static int init = 1;

//static int robot_id=0;

//uint8_t generatedID = 0;

void idGenerator(int ID);

// user program function

void user_program(void)

{

IITTITILLLTT LI LI 7710007707777 777777777117177117177
I1177177777117717177

//user program code goes here. this code needs to exit in a
resonable amount of time

//so the special message controller can also run

IITTTTIITTTT I 7077777770777 77077 7777777777177771711777711117
I1117710777771171117177

// if the first time the loop is called, initialise the robot id
if (init)
{

int randseed = 0;
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data

// generate random seed (must be placed AFTER init_robot()

for (int i = 0; i<30; i++)

randseed += get_ambient_light();//generate some
random sensor data

srand(randseed);//seed random variable with some sensor

// generate robot id

//robot_id
//robot_id
robot_id = 0;

init = 0;

if (robot_id == 7)

{

robot_id = 0;

robot_id += 1;

send(robot_id, @, 0);

//get_message();
//if(message_rx[5]==1)

//{
//idGenerator(message_rx[0]);

/1%

rand() & 255;

rand() & 7;
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switch (robot_id)

{

case 0: set_color(3, 0, 9);
break;

case 1: set_color(3, 3, 0);
break;

case 2: set_color(@, 3, 9);
break;

case 3: set_color(e, 3, 3);
break;

case 4: set_color(e, 0, 3);
break;

case 5: set_color(3, 9, 3);
break;

case 6: set_color(1, 3, 9);
break;

case 7: set_color(3, 3, 3);
break;

default: set_color(o, 0, 0);

}

_delay_ms(500);

// main
int main(void)
{
// no instruction should be placed before init_robot();

// because nothing is already initialised !!
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// initialise the robot

init_robot();

// loop and run each time the user program

main_program_loop(user_program);

void idGenerator(int ID)

{
if (generatedID == FALSE)
{
robot_id = rand() & 7;
generatedID = TRUE;
}
else
{
if (robot_id == ID)
{
generatedID = FALSE;
}
}
}
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Color Consensus
#include "libKilobot.h" // include Kilobot library file

//#include "myLibrary.h"

void color_calc();

void color_change();

#tdefine bsize (20)

uint8_t color = 0;

uint8_t buffer[20] = { 0 };
uint8_t i = o;

uint8_t full = 0;

uint8 t r, g, b;

uint8_t init = 1;

// user program function
void user_program(void)
{
if (init == 1)
{
int randseed = 9;

// generate random seed (must be placed AFTER init_robot()

for (int i = ©; i<30; i++)

randseed += get_ambient_light();//generate some
random sensor data
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srand(randseed);//seed random variable with some sensor
data

color = (rand() & 3); //gnerate a random start color
between @ and 3

if (color > 2)

{

color = 2;

if (color < 9)

{
color = 0;
}
color_change(); //set color of led

_delay_ms(5000);

init = 0;

message_out(color, @, ©); //broadcast my color

enable_tx = 1;

//_delay ms(500);

get _message(); //listen for other colors

if (message_rx[5] == 1)

{
buffer[i] = message_rx[@]; //store the colors i can see
i++;
if (i >= bsize) // restart buffer from the begining

{
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i=20;

full = 1; //begin to new calc

if (full == 1)

{
color_calc(); //figure out most common color
color_change(); //change my color
// full =0;
}
}
// main

int main(void)

{

// no instruction should be placed before init_robot();

// because nothing is already initialised !!

// initialise the robot

init_robot();

// loop and run each time the user program

main_program_loop(user_program);

void color_calc()

{
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b))

g))

for (int k = @; k < bsize; k++) //take the values in buffer and
tally them up

{

}

else if ((g > r && g >b) || (g »>=

}

else if ((b > r & b >g) || (b >=

switch (buffer[k])

{

case 0: r++;
break;

case 1: g++;
break;

case 2: b++;
break;

default: break;

>g& r>b) || (r>=g& r>b) || (r>g& r >= b))

color = 0;

color = 1;

color = 2;

r& g >b) || (g > r && g >=

r& b >g) || (b>r &b >=
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//color = 0;
}
r =0;
g =0;
b = 0;

void color_change() // change led to corresponding color

{

switch (color)

{

case 0: set_color(3, 9, 9);
break;

case 1: set_color(@, 3, 9);
break;

case 2: set_color(@, 0, 3);
break;

default: set_color(@, 0, 9);

break;

135



Appendix C Kilobot Code

Ambient Light Sensor Calibration
#include "libKilobot.h" // include Kilobot library file

//#include "myLibrary.h"

#define MAX (70)
#define MSIZE (5)
#define ASIZE (3)

#define MAXGRADIENT (10)

uint8 t ID = 0;
uint8_t message_buffer[5] {90},

{0}

uint8_t average_buffer[3]

uint8_t gradient = MAXGRADIENT;
uint8_ t avg_gradient = 0;
uint8_t min = ©;

uint8_t i, k = 0;

-+
<
i}
=
L}

uint8_t 0;

uint8_t init

I
=
e

int light = 0;
// user program function
void user_program(void)
{

if (init)

{

int randseed = 0;
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// generate random seed (must be placed AFTER init_robot()

for (int i = ©; i<30; i++)

randseed += get_ambient_light();//generate some
random sensor data

srand(randseed);//seed random variable with some sensor data

// generate robot id

ID = rand() & 255;

//ID = @;

init = 0;

set_color(3, 3, 0);
light = get_ambient_light();
kprinti(light);

_delay_ms(500);

// main
int main(void)
{
// no instruction should be placed before init_robot();

// because nothing is already initialised !!

// initialise the robot

init_robot();
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58

59

60

61

// loop and run each time the user program

main_program_loop(user_program);
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Follow Leader
#include "libKilobot.h" // include Kilobot library file

#include "myLibrary.h"

#tdefine root (0)
#tdefine goalDistance (40)
#define TOOFAR (60)
#tdefine STOP (9)
#define FORWARD (1)
#tdefine TURN (2)

static int init = 1;

static int robot_id = 0;

static uint8_t previousState = STOP;

static uint8_t state = FORWARD;

static uint8_t prevDistance = 2;

static uint8_t Distance = 1;

static uint8_t start = 1;

static uint32_t messageBuffer = 0;

void stateSpinUp()

{

if (start == 1)
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spinUp();

start = 0;

void updateDistance()

{
if (message_rx[5] == 1)
{
message_rx[5] = 1;
prevDistance = Distance;
Distance = message_rx[3];
}
}

// user program function

void user_program(void)

{

if (init)
{

int randseed = 0;

random sensor data

// if the first time the loop is called, initialise the robot id

// generate random seed (must be placed AFTER init_robot()

for (int i = @; i<30; i++)

randseed += get_ambient_light(); //generate some
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srand(randseed); //seed
random variable with some sensor data

// generate robot id

//robot_id = rand() & 255;

robot_id = root;

//set_motor(0xA0,0xAQ) ;

init = @;

send(robot_id, 0, 0);

if (robot_id != root)
{
get_message();

if (message_rx[5] == 1)

{
prevDistance = Distance;
Distance = message_rx[3];
messageBuffer = 0;

}

else

{
if (messageBuffer != 3000)
{

messageBuffer++;

}

}
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if (Distance < goalDistance)

{
stop();
state = STOP;

}

else if (messageBuffer == 3000)

{
turnAround();
updateDistance();
start = 1;
stop();
_delay ms(50);
forward();
_delay_ms(4000);
state = TURN;

}

else //if( (prevDistance >= Distance) && (Distance >=
goalDistance) )

{
forward();
state = FORWARD;
}
if (previousState != state)
{

start = 1;
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previousState = state;

// main
int main(void)
{
// no instruction should be placed before init_robot();

// because nothing is already initialised !!

// initialise the robot

init_robot();

// loop and run each time the user program

main_program_loop(user_program);
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Leader
#include "libKilobot.h" // include Kilobot library file

//#include "myLibrary.h"

uint8_t ID = 0;

uint8_t i = 0;

uint8_t k

0;

uint8_t init = 1;

// user program function
void user_program(void)
{
if (init)
{
int randseed = 0;

// generate random seed (must be placed AFTER init_robot()

for (int i = 0; i<30; i++)

randseed += get_ambient_light();//generate some
random sensor data

srand(randseed);//seed random variable with some sensor
data

// generate robot id

ID = rand() & 255;
ID = 0;
init = 0;
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set_color(3, 0, 0);
enable_tx = 1;
message_out(0, 1, 0);

get_message();

if (message_rx[5] == 1)

{
if (message_rx[@] == 1)
{
if (message _rx[3] <= 60)
{
set_motor(60, 60);
}
else
{
set_motor(0, 9);
}
}
}
else
{
set_color(0, 3, 0);
set_motor(60, 60);
}
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// main
int main(void)
{
// no instruction should be placed before init_robot();

// because nothing is already initialised !!

// initialise the robot

init_robot();

// loop and run each time the user program

main_program_loop(user_program);
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Fixed Reference Consensus
include "libKilobot.h" // include Kilobot library file

#tdefine ROOT (9)
#tdefine STOP (0)
#tdefine FORWARD (1)
#tdefine LEFT (2)
#tdefine RIGHT (3)
#tdefine NORMAL (1)

int LOWERBOUND = 94;

int UPPERBOUND

95;

static int init = 1;

static uint8_t initBound = 1;
static int robot_id = 0;
static int currentMotion = 0;

static int currentDistance = 9;

uint32_t lastChanged = ©;

static int stopFlag = ©;

void SetMotion(int newMotion);

void CheckBounds(void);

// user program function

void user_program(void)
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LITT1TTTLTTIT TP T LTI 7707777777777 777777 777777771777717177
I111177717717717117

//user program code goes here. this code needs to exit in a
resonable amount of time

//so the special message controller can also run

IITTTTITTTTTT LT IT 0007077777777 7777777 1777771771171711777
I1I111777177177171177

// if the first time the loop is called, initialise the robot id
if (init)
{

int randseed = 0;

// generate random seed (must be placed AFTER init_robot()

for (int i = @; i<30; i++)

randseed += get_ambient_light();//generate some
random sensor data

srand(randseed);//seed random variable with some sensor
data

// generate robot id
robot_id = rand() & 255;
init = ©;
//robot_id = ©;

lastChanged = kilotick;

if (robot_id != ROOT)
{

if (kilotick > (lastChanged + 8))

{
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lastChanged = kilotick;

if (LOWERBOUND > 32)

{
LOWERBOUND -= 1;
UPPERBOUND -= 1;
}
else
{
stopFlag = 1;
}

get_message();

if (message_rx[5] == 1)

{

if (message_rx[@] == ROOT)

{

currentDistance = message_rx[3];

if (initBound == 1)

{
LOWERBOUND = currentDistance - 1;
UPPERBOUND = currentDistance + 1;
initBound = 0;

}

if (currentDistance <= 33)

{
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SetMotion(STOP);

stopFlag = 1;

}
else if (stopFlag == 1 & currentDistance >
33)
{
LOWERBOUND = currentDistance - 1;
UPPERBOUND = currentDistance + 1;
stopFlag = 0;
}
else
{
CheckBounds();
}
}
}
else if (currentDistance == 0)
{
return;
}
}
else
{
message_out(robot_id, 5, 9);
enable_tx = 1;
set_color(3, 9, 0);
}
}

150



Appendix C Kilobot Code

izl // main

int main(void)

120 [t

// no instruction should be placed before init_robot();

// because nothing is already initialised !!

// initialise the robot

init_robot();

// loop and run each time the user program

main_program_loop(user_program);

void SetMotion(int newMotion)

{

if (currentMotion != newMotion)

{

currentMotion = newMotion;

switch (currentMotion)

{

case STOP: // Stop
set_motor(e, 0);
set_color(e, 0, 0);
break;

case FORWARD: // Forward
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set_motor(0xAQ, OxAQ);

_delay _ms(15);

set_motor(cw_in_straight, ccw_in_straight);
set_color(e, 3, 0);

break;

case LEFT: /] Left
set_motor(0, OxA®0);
_delay_ms(15);
set_motor(0®, ccw_in_place);
set_color(3, 9, 0);

break;

case RIGHT: // Right
set_motor(0xAe, 0);
_delay_ms(15);
set_motor(cw_in_place, 0);
set_color(0, 0, 3);

break;

default:
set_motor(0, 0);
set_color(e, 0, 0);

break;
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178 Bt

void CheckBounds()

if (currentDistance < LOWERBOUND)

{
SetMotion(RIGHT);
}
else if (currentDistance > UPPERBOUND)
{
SetMotion(LEFT);
}
else
{
SetMotion(FORWARD);
}
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Multiple Agent Orbiting
#include "libKilobot.h" // include Kilobot library file

#tdefine ROOT (9)
#tdefine STOP (0)
#define FORWARD (1)
#tdefine LEFT (2)
#tdefine RIGHT (3)
#tdefine NORMAL (1)
#define LOWERBOUND (54)
#tdefine UPPERBOUND  (55)

#tdefine RANGE (40)

static int init = 1;
static int flag = ©;

static int go = 0;

static int robot_id = 0;

static int currentMotion = 0;
static int currentDistance = 9;
static int previousDistance = 0;
void SetMotion(int newMotion);

void CheckBounds(void);

// user program function

void user_program(void)

{

154



Appendix C Kilobot Code

IITTTTIITLTT I 7007777770777 7707 7777777777 717777171177177117117
I1T17117777117717177

//user program code goes here. this code needs to exit in a
resonable amount of time

//so the special message controller can also run

IITTTTITTLTTTEL I 7771007770777 7777777777777711717711717
I1117717177711717177

// if the first time the loop is called, initialise the robot id
if (init)
{

int randseed = 0;

// generate random seed (must be placed AFTER init_robot()

for (int i = @; i<30; i++)

randseed += get_ambient_light();//generate some
random sensor data

srand(randseed);//seed random variable with some sensor

data
// generate robot id

while (robot_id == @) //make sure the blasted thing is
never 0

{

robot_id = rand() & 255;

}

init = 0;

//robot_id = ©;

}

if (robot_id != ROOT)
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message_out(robot_id, go, @); // broadcast my id and go
wether the other guy can go

enable_tx = 1;

get_message();

if (message_rx[5] == 1)

{

if (message_rx[@] == 1) //check if it ok to move

{

flag = @; //ok to move

go = ©0;

if (flag == @) //we're ok to move

{
CheckBounds(); //standard orbiting
proecedure
}
else if (flag != 2) // not ok to move
{
SetMotion(STOP); //stop
}
if (message_rx[@] == ROOT) //if the message is from
root

currentDistance = message_rx[3]; //update
distance from root
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else

if (message_rx[3] < RANGE && flag == 0)
//are we too close to another bot?

{
previousDistance = message_rx[3];
//store this distance
flag = 1; //update flag
go = @; //make sure other bit is not
moving
if (robot_id < message_rx[0]) // am i
the lower bot?
{
flag = 2; // if i am, movement
is allowed
}
}
else if (flag == 2) //if im the lower id, i
can move

CheckBounds();

if (previousDistance >= message_rx[4]
+ 5) //check to see if ive gotten closer, with in a tolerance

{
flag = 1; // o no!, 1 have!, i
better stop
go = 1; // better tell the
other guy to move though
}
else
{
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flag = @; // ok my distanc eis
increasing, i can move freely

go = 1; //tell the other guy
its ok now

}

else // my range is greater than the range,
i can move

{
flag = 0;
go = 1;
}
}
}
else if (currentDistance == 0)
{
return;
}
}
else
{
message_out(robot_id, 0, 9);
enable_tx = 1;
set_color(3, 9, 0);
}
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137

// main
int main(void)

{

// because nothing is already initialised !!

// initialise the robot

init_robot();

// loop and run each time the user program

main_program_loop(user_program);

void SetMotion(int newMotion)

{

if (currentMotion != newMotion)
{
currentMotion = newMotion;
switch (currentMotion)
{
case STOP:
set_motor(e, 0);
set_color(e, 0, 0);

break;

// no instruction should be placed before init_robot();

// Stop
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case FORWARD: // Forward
set_motor(0xAQ, OxAQ);
_delay_ms(15);
set_motor(cw_in_straight, ccw_in_straight);
set_color(e, 3, 0);

break;

case LEFT: /] Left
set_motor(0, OxA®0);
_delay _ms(15);
set_motor(0®, ccw_in_place);
set_color(3, 0, 0);

break;

case RIGHT: // Right
set_motor(0xAQ, 0);
_delay_ms(15);
set_motor(cw_in_place, 0);
set_color(e, 0, 3);

break;

default:
set_motor(0, 0);
set_color(@, 0, 0);

break;
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void CheckBounds()

{
if (currentDistance < LOWERBOUND)
{
SetMotion(RIGHT);
}
else if (currentDistance > UPPERBOUND)
{
SetMotion(LEFT);
}
else
{
SetMotion(FORWARD);
}
213
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Atmegal28 Messaging

* kilobot_message_send.c

* Created: 10/15/2015 9:37:19 AM
* Author: jlamkin

*/

#define F_CPU (8000000L)
#include <avr/io.h>
#include <avr/interrupt.h>

#include <avr/delay.h>

static uint8_t tx mask = 1; //0

int send_message(int a, int b, int c);

int main(void)

{

//XDIV

0x00;

//XDIV

0x10;

// 1 means output, © input
//1 means high © low

DDRB = 1;

PORTB = 0;

while (1)

{

//PORTB = 0x01;
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send_message (100, 0, 0);
//_delay ms(200);

//PORTB "= 0x01;

int send_message(int a, int b, int c)

{

sei();

//any messages already being received

uintle_t data_out[4];

uint8_t data_to_send[4] = { a,b,c,255 };

//prepare data checksum to send

data_to_send[3] = data_to_send[2] + data_to_send[1] +
data_to_send[0] + 128;

//prepare data to send

for (int i = 0; i<4; i++)
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data_out[i] = (data_to_send[i] & (1 << @)) * 128 +
(data_to_send[i] & (1 << 1)) * 32 +
(data_to_send[i] & (1 << 2)) * 8 +
(data_to_send[i] & (1 << 3)) * 2 +
(data_to_send[i] & (1 << 4)) / 2 +
(data_to_send[i] & (1 << 5)) / 8 +
(data_to_send[i] & (1 << 6)) / 32 +

(data_to_send[i] & (1 << 7)) / 128;

data_out[i] = data_out[i] << 1;

data_out[i]++;

uint8_t collision_detected = 9;

cli();//start critical

//send start pulse
DDRB = 1; //DDRB |= tx_mask;
PORTB = 1; //PORTB |= tx_mask;
asm volatile("nop\n\t");
asm volatile("nop\n\t");

PORTB = 0; //PORTB&= ~tx_mask;

//wait for own signal to die down
for (int k = @; k<53; k++) //53

asm volatile("nop\n\t");
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//check for collision
for (int k = @; k<193; k++)

{

if (collision_detected == 0)
for (int byte_sending = @; byte_sending<4; byte_sending++)
{
int i = 8;
while (i >= 9)

{

if (data_out[byte_sending] & 1)

{
PORTB = 1; //PORTB |= tx_mask; 1
asm volatile("nop\n\t");
asm volatile("nop\n\t");

}

else

{
PORTB = @;//PORTB &= ~tx_mask; ©
asm volatile("nop\n\t");
asm volatile("nop\n\t");

}
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PORTB = ©; //PORTB &= ~tx_mask;
for (int k = @; k<35; k++) //3500

{

asm volatile("nop\n\t");

data_out[byte_sending] =
data_out[byte_sending] >> 1;

i--5

}//end of safe

//ensure led is off
PORTB = 0;//PORTB &= ~tx_mask;
DDRB = 0;//DDRB &= ~tx_mask;
sei();//end critical

return(0);
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mylLibrary.h
#ifndef _ myLibrary_

#define _ mylLibrary_

//*****************************************

// Variables
//*****************************************
#tdefine FALSE (9)

#define TRUE (1)

static int robot_id;

uint8_t generatedID;

//*****************************************

// Functions

[/ KRk sk s ok sk ok sk ok sk ok ks ok sk ok ok ok sk ok sk ok ko ok o ok ok ok ok o ko ok
void spinUp(void);

void stop(void);

void forward(void);

void left(void);

void right(void);

void send(uint8 t, uint8_t, uint8_t);

void turnAround(void);

void clockDelay(uint32_t);

void idGenerator(int ID);

#endif
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mylLibrary.c
// mylLibrary.c

//***************************************************************

// I'm gonna make my own library with blackjack and hookers

//***************************************************************

#include "libKilobot.h"

#include "myLibrary.h"

#tdefine FALSE (9)

#define TRUE (1)

static int robot_id

I
(]
e

uint8_t generatedID

I
[
e

void spinUp()
{
set_motor(0xA@, OxAQ);

_delay ms(15);

void stop()

{

set_motor(o, 9);

void forward()

{
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spinUp();

set_motor(cw_in_straight, ccw_in_straight);

void left()

{
spinUp();

set_motor(cw_in_place, 9);

void right()
{
spinUp();

set_motor(@, ccw_in_place);

void send(uint8_ t a, uint8_t b, uint8_t c)

{
message_out(a, b, c);

enable_tx = 1;

void turnAround()

{
right();

clockDelay(6400);

void clockDelay(uint32_t duration)
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{
int time = clock + duration;
while (clock <= time)
{
get_message();
if (message_rx[5] == 1)
{
break;
}
}
}

void idGenerator(int ID)

{
if (generatedID == FALSE)
{
robot_id = rand() & 7;
generatedID = TRUE;
}
else
{
if (robot_id == ID)
{
generatedID = FALSE;
}
}
}
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Program Kilobots

O N A WNPRE

[
N P O

13.
14.
15.
16.
17.
18.
19.

Remove Kilobots from box

Open "Kilobot controller" shortcut is on desktop

Connect Kilobot controller to PC

Click "..." and select a hex file to download onto the Kilobots

Previous experiments are located in C:\KilobotController\Experiments
Select the project you want, then double click the "default" folder

Select the HEX file in the folder.

Click Open

Click Wake Up in the Kilobot controller GUI. The Kilobots should flash yellow

. Click Pause. The Kilobots should still flash yellow
. Click Program Flash. A command window will open, wait until it closes
. Click Boatload. The Kilobots will flash red, green, and blue for a second, and then

continue to flash blue

Wait until the Kilobots are done flashing blue

Click Stop

Click Run to start the Kilobots

To stop the Kilobots: click Pause

To put away the Kilobots: click Pause, once they flash yellow, click Sleep

The Kilobots will now flash white very slowly, signifying they are in sleep mode
The Kilobots can then be put away

Note: for Gradient and Orbiting programs, a root is needed. So program a Kilobot or two with

the root project.

Note: Kilobots must be in pause mode when uploading a program.
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1. Connect controller to pc

2. Hook firmware cable to controller
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3. In AVR Studio, go to Tools > Program AVR > Connect...

Debug  Help.

AVE PrOg.. PR BN R\ T ER SN T  s JC N § W - = TRy W e o |

1CE50 Upgrade.. CeSTETTTY

ICESO Selftest... = S

%G8 Com_matuptest (defaut] | /TAGICE Mkl Uparade...
(- 124 Source Files QT800 Upgrade... N
a3 Header Files AVR ONE| Upgrade... _.JD!:; conveR
/4 External Dependanciel 1> ANALOG _CO|
{4 Other Files

AVR QNE! Selftest,.,
AVRISP mkll Upgrade
AVR Dragon Upgrade
STK600 Upgrade

Customize,.,

Optians

Show Key Assignments 189 TIMER_COU

PlUg-In Manager.. 4 B TIMER_COU
m AVR Connect.., U TIMER.COU _

FLIPS T n Auta Connect !

[ 3
AVR Wireless Studio Write Flash
AVR Battery Studic Wite EEPROM Name Ad
AVR QTouch Studio Read EEPROM
AvRE2Studio Start Auto
Loaded plugin STK500
gee plug-in: No AVR Teelchain installation found. The AVR GEC plug-in can still be used if you set up your awn build tools.
Loaded plugin AVR GEC
Loaded partfile: C:\Program Files T i Tregadz xmi
< " >
(D suild | @ Message | 5 Find in Files | Breakpoints and Tracepoints 4 |m 3
ATmega3ze JTAGICE mkIl Auto - CAP NUM OVR

Select AVRISP MKII

Click USB

Click Connect

In the Main tab, select ATmega328p
Atmega328 for OHC

. Set ISP frequency to 125 KHz

O ® N O U A

Project mbg Help
= R R T S VY. )
i [TaceDisabled  -| % % 0 e TG OBIEE[ME 4 owm
AVR GCC - x > .
-4 Com_matrix_test (defoult) Disconnected Mode - Op

View

123 Source Files N
Header Files " lame ~
P ain | Program | Fuses | LockBis | Advanced | HW Sattings [ HW Info | Auto | +/T)AD_CONVEF,
ernal Dependencies
/23 Other Files Device and Signature Bytes igégcms;ﬁ
[ATmega328p - [ Erase Deviee | -+ EYEEPROM
§ 4 S EXTERNAL | =
Signature not read Read Signature =2 FORTB
) 22 PORTC
I ZBPORTD
Programming Mode and Target Seltings B8Pl

48 TIMER_COU

ISP mode > [_semngs._]

ISP Frequency:

Name A

< (g
Message
Loaded plugin STK500
gec plug-in: No AVR Toolchain installation found. The AVR 6€C plug-in dfy|
Loaded plugin AVR GEC
Loaded partfile: C:\Program Files (86)\Atmel AVR Tools\PartDescriptionF{ |

< | w

<[] »

Auto L] CAP NUM OVR

Elsuila Iﬂ Message J% Find in Files | (g Breakpoints and Tracepoints

ATmega328  JTAGICE mkll

10. Click Fuses tab

11. In Fuses pane, set fuses to:
e EXTENDED: OxFF
e HIGH: 0xD1
e LOW: OxE2
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‘ File Project Build View Tools Debug Help

NS A 0 g apadg C R e

=% Com_miatrix_test (defautt)
423 Source Files
/23 Header Files
/24 External Dependencies

Name ~
4 YAD_CONVEF,
+/TYANALOG_CO)

Fuse

/23 Other Files e =1
RSTDISBL O ) E)EEPROM
DWEN O '+ SHEXTERNAL | =
SPIEN | 2 E2PORTB
WDTON O E ) =2 PORTC
EESAVE O I FPORTD
BOOTSZ Boot Flash size=256 words start address=$3F00 HESPI
BOOTRST m| |
CKDIVB 0
crouT 0

EXTENDED

Ad
HIGH FF
Low OFF
[ Ao read A Fuses not read
mart wamings
Loaded plugin STK500 Verdy after programming "3’ ‘““
gec plugein: No AVR Toelchain installation found. The AVR GCC plug-in dfy|
Loaded plugin AVR GEC N
Loaded partfile: C:\Program Files IVAVR Tools\PartD:
< | m - S
ElBuild lﬂ MessageJ%Fmd in Files | @ Breakpoints and Tracepoints 4 \il 3
ATmega328 JTAGICE mkIl Auto . CAP NUM OVR

12. Select Program tab
13. In Program pane, select “Input HEX File” checkbox
14. Include firmware.hex

© File Project Build View Tools Debug Help

PN A0 g Ba gt e

igEw War @b oa =l oo B P S I I N | GalE|

=3 Com_matrix_test (defautt)
/23 Source Files
(/53 Header Files
12 Extemal Dependencies
/23 Other Files

Name ~
+/T ¥ AD_CONVEF,
Y ANALOG_CD|
= [
-+ B)EEPROM
4 SHEXTERNAL_| =
42 PORTB B
# 2 PORTC
4/ =2 PORTD
=+ 2SPI

&)

m|m|mm|uwm|nwm|m;. l

Device

Erase device before flash programming

Verify device after programming

Flash

Use Current Simultor/Emulstor FLASH Memory
@ Input HEX File  C:\KilobetController\KilobotFirstFimware hex.

[pogem ] [ el ] [ Red ]

EEPROM

Use Currert Simulator/Emulztor EEPROM Memory
@ Input HEX File = ™
ELF Production Fi Format
nput ELF Fie:
Save From: [¥] FLASH /] EEPROM (] FUSES [C]LOCKBITS Fuses and lockbits settings
must be specified before
[ Pogem | [ sawe ] savingfo ELF
Loaded plugin STKS00
gec plugrin: No AVR Toelchain installation found. The AVR GCC plug-in dfy|
Loaded plugin AVR GCC ~
Loaded partfile: C:\Program Files ILAVR Tools)\PartD:
< m - »
Hsuid | @ MessageEFmd in Files | @ Breakpoints and Tracepoints 4 \il 3
ATmega328 JTAGICE mkIl Auto . CAP NUM OVR

15. Connect a powered on kilobot to the firmware cable. Cable should be held at a slight
angle to ensure the pins are touching the connection points.
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17. Click the Program button in the Program pane under Flash
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AVR St

File Project Bulld View Tools Debug Help
DS A w0 gl t 2% %%
Trace Disabled vl % ok T oipm

5% Com_matrix_test (default) Disconnected Mode - Open Connection ;ialﬁio AHQ\ECJ I
F23 Source Files ——

129 Header Files

Sy Mo @b @ E e

Name

A
&3 trtarmal Dependencies Fuses | LockBts | Advanced | HW Settings | HW Info | Ao | AT AD_CONVER

Device +] ANALOG_CO|
/23 Other Files 4D -
=
) EYEEPROM
Erase devics before flash programming Verfy device after programming 1+ SHEXTERNAL | =
) Z2PORTB
Flash ] 2 PORTC
Use Curent Simulator/Emulator FLASH Memory 22 PORTD
® Input HEX Fle  C:\KilobotCortraller\KilobotFirstFimware hex I §SPI
Progem | [ vedy | (
EEPROM
Use Curent: Simulator/Emulator EEPROM Memory
@ hput HEX Fie Nome |
Progem | Verfy
ELF Production Fie Format
Input ELF File: D
< \ 1! \ r Save From: (7] FLASH [¥] EEPROM [C]FUSES [C1LOCKEITS Fyuses and lockbits settings
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18. Remove the Kilobot
19. Set controller pin back
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QBot 2 Simulink Model

This section provides information on a Simulink model used during experimentation with
the QBot 2.

Overall Simulink Model

Figure F.1 shows the overall Simulink model for the QBots. It is comprised of the HIL
Initialize block, global variables, and four subsystems: Localization, Communication,
Motor Control, and Data Acquisition.

| Duanc: — — — — — —
i

Data Store Data Store Data Store Data Store Data Store Data Store

HIL Initialize Memory Memoryl MemoryS Memory2 Memory4 Memory3

hil-2 (ghot2-0)

alpha

Py Py message Q2

ag ‘Server

z11
212 messageQ3
211,

*messageQ2 ‘

messag=Q3
myThetal ———————————————
Motor Control

Figure F.1 Overall Simulink Model

Data Acquisition Localization

———————myTheta

Communication Subsyetem

Localization

The following Simulink blocks are located in the localization subsystem block shown in the
figure above.

Localization Subsystem

The localization subsystem is divided into two distinct parts, color detection and
determine position. This can be seen in Figure F.2.The localization subsystem outputs the
calculated xy- coordinates, the angle from the Kinect sensor, and a flag. If the flag is high,
then the localization process has been completed.
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Px > 2 )
X » X Px
By »( 3)
Py

aphal—»(_ 1)

v >y alpha
RAag > 4 )
flag

Color detection determine position

Figure F.2 Localization Subsystem

Color Detection Subsystem

The color detection subsystem can be seen in the figure below, and utilizes the Quanser
Simulink Find Object block. This block will output the row and column number of a
detected objects center of mass. The inputs used are an image taken from the Kinect
sensor, and a flag. This flag controls when the block is active. If the flag is low, then the
image will be processed. If the flag is high, then no processing will occur. In this model the
block is active for the first three seconds of runtime. For more information on the Find
Object block see Appendix G.

image x—@
X

Constant Data Store
Read

Time >3 »flag yv—»2)
¥
Switch Find
Time Object
Yres pish
Constart1
Jyest np

Find Object

Figure F.3 Color Detection Subsystem

Determine Position Subsystem

The determine position subsystem performs the calculations mentioned in section 4.2
through the use of a MATLAB function. The inputs to the MATLAB function are the
obtained angles (a), gyroscope readings, a depth image from the Kinect sensor, and the
center of mass of the identified object. The outputs are the new xy-coordinates, the angle
from the Kinect sensor, and the flag described in the section Localization Subsystem.
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al

Flag
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Figure F.4 Determine Position Subsystem

The following Simulink blocks are located in the communication subsystem block seen in

Figure F.1

Communication Subsystem
The communication subsystem establishes a server connection and a client connection
with other QBots. Data is put into an array in the message convert MATLAB function block.
Messages are sent, or received, through a Stream Server Simulink block and Stream Client
Simulink block. The Stream Server and Stream Client Simulink blocks are described in

Appendix G.

my'Y’
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Stream senth
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rev — D)
1 en messageQ3
Delay1
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P

new

Stream Client
“tcpip://192.168.2.51:18000"

Display

Figure F.5 Communication Subsystem

Display!
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Motor Control
The following Simulink blocks are located in the motor control subsystem block seen in
Figure F.1

Motor Control Subsystem

The Motor Control subsystem contains all control logic for a QBot 2. Inputs to the MATLAB
function block, motor logic control, include the QBot’s position and orientation
information, messages received from other QBots, and time. The constant value blocks
were used to specify trajectory information. Outputs of the MATLAB function block
include the left and right wheel motor velocities, and the linearized position information
of the QBot 2. The motor velocities are connected to a switch. The switch also takes the
fuzzy logic control output. The value of a control signal outputted by a fuzzy subsystem
will determine which value to send to the motors.

X

Data Store
Fuzzyhput
q Read
Gain =]
Fuzzy Logic Y
- U’,

Contraller Data St
with Ruleviewer SwitchControl Reast

= motor control logic Read!
myX —
Fuzzy v
myY] Data Store
[ Read?
vr myTheta
Switch w messageQ2 f¢——— ()
messageQ2
Goto Delay 211 4@ messageQ3 D
H messageQl3
fon (]
212 | Time 075
1 z12
z . Corsan
Goto1 Delay1 myTheta1 b Constant3

myTheta

Constantd

Max input for vL and vR commands: 0.65 misec
WR

m Right Wheel Mator

Praduct1

-

vL

. LeﬂWhee\ Mator

Product?

Write to Motors

Figure F.6 Motor Control Subsystem

Fuzzy Subsystem

The fuzzy subsystem contains two MATLAB function blocks. Each block takes a depth
image as an input. The Depf finder function outputs either one or zero based on the range
of objects in the depth image. The Partition function takes the depth image and separates
it into three separate sections. The function then outputs the minimum non-zero value
found in each section.
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Depth plu .l flag
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Data Store
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Leftimage
——Pp|u ‘ll. Centerlmage
fen Fuzzylnput
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Partition

Figure F.7 Fuzzy Subsystem

Write to Motors Subsystem
The write to motors subsystem contains the HIL Write Simulink block. The HIL Write block
takes The right and left wheel velocities as inputs.

1) » 02000

Right Wheel Motor

HIL
Write
(2 ) p{02001
Left Wheel Motor
HIL Write
(hil-2)

Figure F.8 Write to Motors Subsystem
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Data Acquisition
The following Simulink blocks are located in the data acquisition subsystem block seen in
Figure F.1.

Data Acquisition Subsystem

The Data Acquisition Subsystem collects all data information for a QBot 2. This
information includes the Kinect image and depth data, as well the QBot’s current position
and orientation data.

et L ]

Initialize

Kinect Initialize1

Write To Workspace
Computation
putation 7o [ ]
Computation Time
Frame Rate » I:l
Get Image
Frame Rate > I:I
Frame Rate?
Get Depth
Battery Voltage (v) > l:l

Get Basic Data

Figure F.9 Data Acquisition Subsystem
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To Workspace Subsystem
This subsystem collects the QBot’s position information as well as simulation time and
saves the data into a file. The file type can be specified in the block parameters.

X

Data Store
Read

Y

To Host File

Data Store data49.mat
Read1

Figure F.10 Write to Workspace Subsystem

Get Image Subsystem
The get image subsystem accesses the Kinect camera and resizes the image data acquired.
This data is sent to a global variable called image.

Resize
_ 0
img Moy » u 4 y|—» Image
fcn m [m fen
= Rate Transition2 Permutation Data Store
Kinect t X Write
Get Image d U]]]i h]]]] q —>®
-
- — Frame Rate
Rate Transition3goc 4 Divide1
time —»3

Kinect Get Image1

Figure F.11 Get Image Subsystem

Get Depth Subsystem

The get depth subsystem accesses the Kinect depth sensor and sends this data to a global
variable called depth.
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Kinect
Get Depth

depth

time

Kinect Get Depth

Get Basic Data Subsystem

Figure F.12 Get Depth Subsystem

éT pDepth
[ Rate Transition1 Dot Store
> I 1 Write
— L
— <
Rate Transitiond : N 1
Clock2  Divide2 Frame Rate

This subsystem acquires all basic data, such as the QBot’s position and orientation

information.
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Data Store
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Figure F. 13 Get Basic Data Subsystem

Write2

The QBot basic subsystem acquires the right and left wheel encoder data, as well as the

gyroscope data.
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Right Encoder » 1 )

Right Encoder (Counts)

Left Encoder

Left Encoder

Bias XXbias
Gyro % Removal )él:;:: _ X —@
Gyro (rad)
Bias Removal Product
Right Bumper
Central Bumper
Left Bumper
Battery Voltage

Battery Voltage (v)

QBot2 Basic 10

Figure F.14 QBot Basic Subsystem

Basic 10 Subsystem
The basic 10 subsystem utilizes the HIL Read Simulink block to acquire sensor data.
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a
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coder
HIL
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Right Bumper
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o
Gyro
HIL Read1
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Figure F.15 QBot 2 Basic 10 Subsystem

Encoder to Velocity Subsystem
The following blocks are contained in the encoder to velocity subsystem. A figure of the
subsystem can be seen below.
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Velocity {1 )
Encoder T Right Velocity
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Right Encoder

Left Velocity
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Encoder
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Figure F.16 Encoder to Velocity Subsystem

Encoder Subsystem
The encoder subsystem takes the encoder count of the right or left wheel, and transforms

the data into a wheel distance. This distance is sent through a low-pass filter to obtain
velocity information.

| y F—»=
Encoder Counts  Wheel Distance (m) t | |, Second-Order
Ll Lt .
Tt Low-Pass Filter
Encoder [ [ yd
Encoder to Distance Rate Transition2 Velocity
distance

Figure F.17 Encoder Subsystem

Encoder to Distance Subsystem
The encoder to distance subsystem converts the encoder count into distance information.

1140.503
Encoder Counts Wheel Distance (m)

ticks to encoder rotation encoder rotation to wheel rotation (gear ratio) wheel radious (mm) mm to m

Figure F.18 Encoder to Distance Subsystem

Full Kinematics Subsystem
This subsystem contains all the blocks that calculate the QBot’s current position and
orientation. The map theta MATLAB function bounds the orientation data in the range

of [—m, m].
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Figure F.19 QBot 2 Full Kinematics Subsystem

Differential Drive Kinematics Subsystem
This subsystem calculates the radial and angular velocity of the QBot 2.
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Figure F.20 QBot 2 Differential Drive Kinematics Subsystem

QBot 2 Kinematics Subsystem
This subsystem calculates the current xy-coordinates and orientation of the QBot 2.
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Quanser Simulink Blocks

This section presents information on the inputs and outputs of select Quanser Simulink
blocks. A picture of each block and its parameter window is shown, when applicable.

Find Object
Function Block Parameters: Find Object X3
Find Object (mask) (link)
Finds the center-of-mass coordinates (in pixels) of the object
detected in the given image.
Parameters
Detection Mode: [RGB v
Pixel format: ’RGBS ']
Yimage xh Number of Objects (1-5):
1
Threshold:
Hfl=g ¥p
40
Fi!‘ld
Dbisst Minimum object size (pixels):
Wxeest pis pr s00
R:
Ayest np 210
G:
Find Object
85
B:
42
Sample Time (secs):
-1
oK ] l Cancel ] ’ Help Apply
Input Description
image Matrix of type uint8 that represents a source image to be searched. Three
dimensions for color image (3x640x480), two dimensions for greyscale (640x480).
flag Enabling signal. 1 enables, others disable
xest (Optional) Vector of type double that corresponds to the estimate x coordinate for
each object
yest (Optional) Vector of type double that corresponds to the estimate y coordinate for

each object
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Output Description

X Vector of type double containing the x-axis coordinates of the center-of-mass of the
objects found matching the searched criteria.

y Vector of type double containing the y-axis coordinates of the center-of-mass of the
objects found matching the searched criteria.

pts Matrix of type uint8 that is a filtered version of the source image based on the
block parameters. Matching pixels are black, and all others are white.

n Vector of type double that contains the number of pixels of each found object. The
length of the vector equals the number of objects specified in the Number of
Objects parameter.

Parameter Description

Detection Mode
Pixel format
Number of

objects
Threshold

Minimum object
size

R

G

B

Sample time

Determines if block is to search for white, black, or colored objects. The
R,G, and B parameters are only enabled when the mode is set to RGB.
The format of the source image. Use RGB8 and BGR8 formats for color
images depending on the correct order. Greyscale is used for black and
white images.

Scaler integer from one to five defining the number of objects to find.
The block will stop looking for images after all desired objects are found.
Scaler value for tuning luminosity (greyscale) or RGB values (color).
Any pixel within the threshold amount from the defined luminosity/RGB
value (inclusive) will constitute as a matching pixel.

Minimum number of grouped pixels that constitute an object. Groups
with less than this amount of pixels are not considered an object. Used to
filter out color noise.

Desired red value of pixels to search for; ignored if Detection Mode is
not set to RGB.

Desired green value of pixels to search for; ignored if Detection Mode is
not set to RGB.

Desired blue value of pixels to search for; ignored if Detection Mode is
not set to RGB.

Sample time of the block. Zero means continuous, positive indicates
discrete block with given sample time, and negative one designates
inherited sample time.

191



Appendix G

Kinect Initialize

Kinect b
Initialize

Kinect Iniialze

Input Description

- N/A

Output Description
status Status code of type int32 indicating current status of the Kinect sensor. Status
codes can be found on Quanser’s website

Parameter
Kinect name

Kinect type

Kinect identifier

Sample time

Active during
normal
simulation

Description

Name to identify this Kinect sensor. Other Kinect blocks will use this
name to refer to this sensor.

Selects the type of Kinect sensor. Only used to control which features are
enabled.

Identifies which Kinect sensor to use if there are multiple Kinect sensors
committed to system. If the identifier is an integer, then it designates the
number of the Kinect, starting from zero. If the identifier is a string, then
the string corresponds to the identifier of the Kinect sensor itself.

Sample time of the block. Zero means continuous, positive indicates
discrete block with given sample time, and negative one designates
inherited sample time. Because this is a source block, it can only inherit a
sample time if the block is within a conditionally executed subsystem.
Indicates if this block should communicate during normal simulation.
Unless checked, other Host blocks in the model that are associated with
this connection will not do anything.

192



Appendix G Quanser Simulink Blocks

Kinect Get Image

u Source Block Parameters: Kinect Get Image EI_IéJ

Kinect Get Image
Getz the latest RGB image from the Kinect sensor.

Navigation
Go to Kinect blocks using this Kinect sensor
img [ Main Exposure Color
Kinect name: |unassigned v:
Kinect sh Image sensor type: |color v:
Get Image
Image resolution: |540 x 480 =
Output format: |MATLAB RGB (HxWx3) vj
time Output data type: |uintd ':
Backlight compensation: |average brightness

Kinect Get Image
Flicker reduction: |none

Frame interval (seconds):
0

Sample time (geconds):
qc_get_step_size * ceil{0.033 / qc_get_step_size)

oK ] [ Cancel ] [ Help Apply

Input Description
- N/A

Output Description

img Data type depends on Output data type parameter. If the Output format is set to
MATLAB RGB, the output is a three-dimensional MxNx3 matrix. It contains the
RGB values for each pixel. If the Output format is set to MATLAB Greyscale, the
output is a two-dimensional MxN matrix. In each case, M is the image height, and
N is the image width. Note: You will need to perform a permutation between
this block and the Find Object block because the matrix formats do not line
up correctly. The Find Object block wants 3xNxM or NxM.

# The frame number of the current frame.

time Timestamp associated with current frame. May not be related to the start time of
the model.

Parameter Description

Kinect name Name to identify this Kinect sensor. Must be associated with a Kinect
Initialize block.

Image sensor type Type of sensor where the image will be called. Choose between the
RGB camera and the infrared camera.
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Image resolution The resolution of image to retrieve. The 640x480 resolution is
supported on all targets that support the Kinect, but some targets may
not support the other resolutions.

Output format Format of the output image. MATLAB RGB outputs a MxNx3 matrix.
MATLAB Greyscale outputs MxN matrix.

Output data type Data type to use for the output image. Integral and floating-point data
types are supported.

Backlight This option allows the Kinect to capture data to be adjusted according

compensation to environmental conditions.

Flicker reduction This option can reduce the flicker caused by the frequency of the
power line.

Frame interval Frame rate that images are taken. Zero uses the default frame rate.

(seconds)

Sample time Sample time of the block. Zero means continuous, positive indicates

discrete block with given sample time, and negative one designates
inherited sample time. Because this is a source block, it can only
inherit a sample time if the block is within a conditionally executed
subsystem.
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Kinect Get Depth

; -
n Source Block Parameters: Kinect Get Depth l — ot e
Kinect Get Depth
Gets the latest depth and player information from the Kinect sensor.
Navigation
depth b Go to Kinect blocks using this Kinect sensor
Kinect Kinect £ i
Get Depth h inect name: |unassigned ~
Image resolution: | 640 x 480 o
Sample time (seconds):
time [» . - )
qc_get_step_size * ceil(0.033 / gc_get_step_size)
Wined Gat Depih [7] show player
[ oK I I Cancel I I Help Apply
L
Input Description
- N/A

Output Description
Depth Two-dimensional matrix of type uint16 representing the depth image. Elements of
the matrix represents the distance between the object at that pixel and the camera in

millimeters.

# Frame number of current depth frame.

time Timestamp associated with current frame. May not be related to the start time of
the model.

player (Optional) Two-dimensional matrix of type uint16 representing the players in the
scene. Every element of the matrix has the number of players visible at that pixel.
The element is zero when there is no player at that pixel. This output is only
available when the Show player parameter is checked.

Parameter
Kinect name

Image
resolution

Sample time

Show player

Description

Name to identify this Kinect sensor. Must be associated with a Kinect
Initialize block.

The resolution of image to retrieve. The 640x480 resolution is supported on
all targets that support the Kinect, but some targets may not support the other
resolutions.

Sample time of the block. Zero means continuous, positive indicates discrete
block with given sample time, and negative one designates inherited sample
time. Because this is a source block, it can only inherit a sample time if the
block is within a conditionally executed subsystem.

Player output is created when this is checked, but not all targets support this
option.
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Stream Server

ru Source Block Parameters: Stream Server l = -&-r
Stream Server
Listens for and accepts a connection from a remote host and sends andior
receives data from that host.
Main Advanced Signal Data Types
Source of URL | Specify via dialog (do not evaluate) x|
state URI upon which to listen: -
- tcpip:/iremotehost: 12000 U
emp Apply URI to all configurations (including normal simulation)
Send buffer size in bytes:
Sever sentp 1480
Receive buffer size in bytes:
rov 1450
> = Byte ordering: | little endian (Intel - LSB first) M
new p Optimize for:| Minimum latency a
Stream Server Send options: | Send all data i
topipremotehost: 18000
Receive options: | Receive all data i
Default cutput value:
[0]
Sample time (seconds):
qc_get_step_size
|:| Active during normal simulation
oK H Cancel H Help Apph
Input Description
snd Data to be sent to peer. Data is sent each sampling instant when enabled. Bus and
multi-dimensional inputs are supported.
en Enable signal. When non-zero, data at snd port is transmitted. When zero, data is
ignored.
uri String specifying the URI to listen to and service client connections. Input is only
available is the Source of URI parameter is set to “External input port.”
Output Description
state Current status of connection. Zero means stream is not connected. One means
stream is waiting to accept connection. Two means stream is connected to remote
host. Three means stream is closing the connection to the host.
err Negative QUARC error code if an error occurs sending and receiving data. Zero if
no error occurred. Zero can also mean data could not be sent or received without
blocking. Check sent and new outputs to verify data is actually sent or received.
sent Optional Boolean value representing if the input signal was successfully written to
the stream buffer. Non-zero (true) means data was written successfully. Otherwise,
it is zero. This output just indicates data was written to the stream buffer, not that it
was delivered to the successfully remote peer.
rcv Optional output contains data received from peer. If no data has been received yet,

this value is the Default output value parameter. If no new data is received, it will
retain the last value received. The Default output value parameter determines the
dimensions of the output. Bus and multi-dimensional outputs are supported.
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new Optional Boolean output that indicates if the rcv output is new or old data. Non-
zero (true) means new data has been received. Zero (false) means data could not be
received without blocking.
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Stream Client

ru Source Block Parameters: Stream Client l = ﬁr
Stream Client
Connects to a remote host and sends and/or receives data from that host.
Main Advanced Signal Data Types
Source of URL: | Specify via dialog (do not evaluate) ':
URI of host to which to connect:
state b tepipiremotehost: 18000 E]
Ysna Apply URI to all configurationg (including normal gimulation)
e Send buffer size in bytes:
1450
EE:IE:I'IT sent Receive buffer size in bytes:
1460
rov b Byte ordering: | little endian (Intel - LSE first) 'j
o Optimize for:| Minimum latency ':
n=vp Send options: | Send all data *:
lc.cic:s-:T::I:i::S:laa Receive options: | Receive all data -
Default cutput value:
1]
Sample time (seconds):
qc_get_step_size
|:| Active during normal simulation
oK H Cancel ][ Help Apply
Input Description
snd Data to be sent to peer. Data is sent each sampling instant when enabled. Bus and
multi-dimensional inputs are supported.
en Enable signal. When non-zero, data at snd port is transmitted. When zero, data is
ignored.
uri String specifying the URI to listen to and service client connections. Input is only
available is the Source of URI parameter is set to “External input port.”
Output Description
state Current status of connection. Zero means stream is not connected. One means
stream is waiting to accept connection. Two means stream is connected to remote
host. Three means stream is closing the connection to the host.
err Negative QUARC error code if an error occurs sending and receiving data. Zero if
no error occurred. Zero can also mean data could not be sent or received without
blocking. Check sent and new outputs to verify data is actually sent or received.
sent Optional Boolean value representing if the input signal was successfully written to
the stream buffer. Non-zero (true) means data was written successfully. Otherwise,
it is zero. This output just indicates data was written to the stream buffer, not that it
was delivered to the successfully remote peer.
rcv Optional output contains data received from peer. If no data has been received yet,

this value is the Default output value parameter. If no new data is received, it will
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retain the last value received. The Default output value parameter determines the
dimensions of the output. Bus and multi-dimensional outputs are supported.

new Optional Boolean output that indicates if the rcv output is new or old data. Non-
zero (true) means new data has been received. Zero (false) means data could not be
received without blocking.
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