

3D Environmental Mapping and Imaging for AUVSI RoboBoat

David Bumpus, Dan Kubik, Juan Vazquez

Dr. José Sánchez, Nick Schmidt

Department of Electrical and Computer Engineering

May 3
rd

, 2016

i

Abstract

Since 2013, Bradley has twice participated in an autonomous boat competition. Teams are challenged

to design a boat that completes challenges without human aid. For successful navigation around buoys

and shoreline, accurate distance measurements to objects from the boat must be obtained; this task has

proven difficult for Bradley teams. The purpose of this project is to improve the accuracy of these

distance measurements through the use of lidar, a laser surveying technique used in the autonomous

vehicle industry. This objective is achieved through three stages: data acquisition, data organization, and

data processing. Initially, a Velodyne laser scanner and a Logitech webcam are used respectively to

record lidar data and photos of the boat’s environment. This information is relayed to an Odroid-XU4, a

single-board computer selected for its low cost and speed. In the second stage, lidar data is organized

based on the azimuthal angle and by regions of interest. In the final stage, the location of the nearest

object is determined using feature detection. Additionally, a color-coded image that visually represents

distance is produced from the lidar data. This image will help future boat team members assess the

navigation system’s performance.

Table of Contents

Abstract .. i

I. Introduction and Overview ...1

A. Problem Background .. 1

B. Problem Statement .. 1

C. Constraints of the Solution .. 1

II. Statement of Work ..2

A. Nonfunctional Requirements ... 2

B. Functional Requirements .. 3

C. Design Overview ... 4

1) System Block Diagram .. 5

2) Subsystem Block Diagram ... 7

3) System State Diagram ... 7

4) Division of Labor .. 8

5) Hardware .. 8

6) Software .. 9

a. Nearest object detection .. 9

b. Creation of Color Overlay ... 9

7) Interface ... 10

D. Economic Analysis ... 10

III. Design Testing and Validation .. 11

IV. Results .. 11

V. Summary and Conclusions .. 12

VI. References .. 13

Appendix A: Parts List.. 14

Appendix B: Glossary ... 15

Appendix C: Detailed Test Procedures ... 16

Appendix D: Calculations ... 17

Appendix E: Metrics for Nonfunctional Requirements ... 18

Appendix F: Detailed Experimental Results ... 19

Appendix G: Structures of Storage Class Objects ... 24

Appendix H: Theory of Operation .. 25

Appendix I: Code .. 26

Appendix J: Recommendations for Future Work .. 76

1

I. Introduction and Overview

A. Problem Background

Every spring, AUVSI (the Association for Unmanned Vehicle Systems International) hosts an

International RoboBoat competition in Virginia. Since 2013, Bradley University’s Department of

Electrical and Computer Engineering has twice participated in this competition. RoboBoat teams are

required to design a boat that navigates and performs challenges without human control; all actions must

be autonomous. For this reason, it would be beneficial to accurately measure and model the environment

around the boat. Obstacles in the water must be detected and noted when making any navigational

decisions. This detection has proven difficult for past Bradley teams. Historically, teams have chosen to

use a camera to record the environment in front of the boat. While photographic images provide important

information about the environment, such as color, these pictures do not provide distance information

making it difficult to determine how far an obstacle is relative to the boat. While geometric methods may

be used to approximate this distance, these methods have proven to be ineffective. For this reason, the

RoboBoat project advisor would like to improve sensing capability of the boat by adding sensors that

provide depth information. Increasing the number of sensors on the boat will improve the reliability of the

boat’s navigational system and increase the chances for success in future RoboBoat competitions. A laser

scanner is used to acquire distance information. These scanners utilize a method known as lidar in which

lasers are used to measure distance. Lidar is already commonly used in many autonomous vehicle

applications.

B. Problem Statement

Dr. José Sánchez advised the development of a three-dimensional (3D) environmental mapping

system for use in the RoboBoat competition. Ultimately, the client desired to improve the sensing

capabilities of the boat by adding a system that can measure depth. The system would use a laser scanner

to complete a full lidar scan of the environment around the boat. This lidar information includes both

distance and reflectivity measurements. Measurements are returned to the boat’s central processing unit

(CPU) and also stored in a hard drive for post-run diagnostics. In addition, the distance measurements are

registered with pictures from a camera to create an image with a color overlay to visually demonstrate

depth. Finally, the system returns polar coordinates of the location of the object nearest the boat. The

system should be lightweight and compact. The lidar system must operate on less than 12 V, draw less

than 4 A, and consume less than 50 W. Additionally, the system must fit in a 10 inch (25.3 cm) cube. All

of these specifications allowed for the boat to function within competition constraints.

C. Constraints of the Solution

The constraints for the project were agreed upon by the design team, and Nick Schmidt, the

RoboBoat advisor. These constraints in Table I are each applied to the system as a whole. Many of these

constraints are due to limitations of the boat and rules of the RoboBoat competition. For example,

voltage, current, and power constraints are limited by the existing boat’s power supply. To prevent

capsizing the boat or slowing of the boat, the weight of the system has also been constrained. The rules of

the competition and size of the boat also limit how large the system can be, confining the lidar system to a

25.4 x 25.4 x 25.4 cm cube.
The remaining constraints are limited by the preferences of the boat team and how the lidar system

will be used. First, the system must measure the environment directly in front of the boat. Assuming the

direct front of the boat (bow) is 0°, and the surroundings of the boat encompass a range of 360°, the lidar

system must measure objects anywhere in the range of -90° to 90° (270° to 90°) to locate objects that will

be important for navigation. Next, two constraints are given that require that the system must measure

objects at a minimum distance from the boat. Using testimonials from previous RoboBoat competitions it

was determined that objects of interest will be no further than 9.1 m from the boat on the level of the

water and will be no higher than 3 m above the level of the lake. Using (1), (2), and (3) found in

2

Appendix D, the system must measure at least 9.58 m from the boat. Furthermore, to ensure a competitive

advantage, a full scan (360°) of the environment must be completed in less than 5 s. Finally, the lidar

system must operate for the full duration of a typical competition, 40 min.

TABLE I: LIST OF 3D LIDAR SYSTEM CONSTRAINTS

CONSTRAINTS

3D lidar system must operate on 12 volts or less

3D lidar system must draw less than 4 A

3D lidar system must consume less than 50 W

3D lidar system must weigh less than 3.6 kg

3D lidar system must fit in a 10 inch (25.4 cm) cube

3D lidar system must obtain 180° scan in front of boat

3D lidar system must measure a minimum distance of 9.1 m horizontally

3D lidar system must measure a minimum distance of 3 m vertically

3D lidar system must obtain full scan in no more than 5 s

3D lidar system must operate for 40 min.

II. Statement of Work

The following section contains the statement of work of this project. This section is divided into four

subsections for the reader’s convenience: Nonfunctional Requirements, Functional Requirements, Design

Overview, and Economic Analysis.

A. Nonfunctional Requirements

TABLE II: LIST OF 3D LIDAR SYSTEM NONFUNCTIONAL REQUIREMENTS

OBJECTIVES

3D lidar system should be weatherproof

3D lidar system should be configurable

3D lidar system should be mechanically stable

3D lidar system should be lightweight

3D lidar system should be executing in a timely manner

Included in Table II is a list of nonfunctional requirements developed for the 3D lidar system. Table

XI in Appendix E covers the metrics used to measure how effectively each nonfunctional requirement is

met. These metrics are rated on a scale from 1 to 5; with 1 representing the least amount of effectiveness

for the nonfunctional requirement and 5 represented the greatest.

“Weatherproof” refers to the ability of the system to survive against the elements such as water, the

wind, and the sun. As the boat will be on a lake, it would be beneficial for the system to have safeguards

against getting wet. “Configurability” refers to the ease future boat teams can obtain information from the

environmental mapping system. This information should be presented in an efficient manner that can be

easily accessed by simple commands from the boat’s control system. “Mechanically stable” means how

the motion of the system, if any, affects the motion of the boat. Less motion is desired for more precise

boat maneuvers. “Lightweight” alludes to the preferable lower weight of the system; the boat is less likely

3

to sink with a lighter load. “Executing in a timely manner” indicates the fact that the system will be used

in competition. Faster data acquisition and communication is desired to produce faster navigational

decisions, improving the runtime of the boat in competition.

B. Functional Requirements

TABLE III: LIST OF 3D LIDAR SYSTEM FUNCTIONAL REQUIREMENTS

OVERALL FUNCTIONS SPECIFICATIONS

3D lidar system should pass information to a hard

drive

180° of unprocessed scan data, image data,

angle and distance to nearest object, and

registered image are passed to hard drive.

3D lidar system should pass information to the boat's

onboard electronics

Angle and distance to nearest object are passed

along with 180° of unprocessed scan data, image

data, and registered image.

3D lidar system should accept input angles to define

range

Azimuthal range of data can be adjusted without

interfering with registration. The dataset

returned is reduced accordingly.

Included in Table III are the functional requirements of the overall system and their specifications

used to determine if the overall function is met. The first function listed involves the storage of all data in

an external hard drive so that it is accessible for troubleshooting after system testing or competitions. Four

sets of data must be stored on the hard drive. Similarly, for the second function to be met, the same four

sets of data must be returned to the boat’s CPU. Finally, the last function listed is the reduction of the

dataset for improved processing speed. This reduction occurs in response to a range defined by two input

angles. Regardless of the range defined, the frontal 180° of data must remain intact for use in the

registration process.
Tables IV through VI include functional requirements specific to the three subsystems: the laser

scanner, camera, and embedded device.

TABLE IV: LIST OF 3D LASER SCANNER SUBSYSTEM FUNCTIONAL REQUIREMENTS

SUBSYSTEM FUNCTIONAL REQUIREMENTS SPECIFICATIONS

Laser scanner must pass complete scan to embedded

device

The entire 360° by 30° dataset of environment

must be accessible via the embedded device.

Laser scanner must system must return distance

measurements

Distances must range from at least 0 m to 9.58

m, obtained with 95% accuracy.

Laser scanner must return azimuthal angles Azimuthal angles must range from 0° to 359.99°

Laser scanner must return reflectivity measurements Reflectivity measurements must range from 0 to

255

Table IV includes the functions and specifications of the laser scanner component of the system. The

first function describes the maximum amount of lidar data expected to be transferred from the laser

scanner. A full 360° surrounding the scanner as measured by the 16 internal laser channels (30°

altitudinal) must potentially be received from the laser scanner and stored in the random access memory

(RAM) of the embedded device. The data included in this full scan is included in the following functions

describing which specific measurements shall be returned by the laser scanner. The accuracy of the

second function is dictated by the accuracy of the scanner and is given as a percentage of the measured

4

distance. The fourth function alludes to that fact that reflectivity data should fall within the 0 to 255 range

as described in [1].

 TABLE V: LIST OF CAMERA SUBSYSTEM FUNCTIONAL REQUIREMENTS

SUBSYSTEM FUNCTIONAL REQUIREMENTS SPECIFICATIONS

Camera must communicate with embedded device Images must be taken and returned on command

Camera must capture boat environment Image must be in color and contain at least

environment in front of boat from 0° to 30°

above water level.

Table V lists the functions and specifications for the camera component of the system. The camera

must capture an image on command from the embedded device. These images must be in color to depict a

true representation of the environment. Moreover, the field of view of the camera images should be useful

for registration purposes and overlap a reasonable amount of the lidar data range.

TABLE VI: LIST OF EMBEDDED DEVICE SUBSYSTEM FUNCTIONAL REQUIREMENTS

SUBSYSTEM FUNCTIONAL REQUIREMENTS SPECIFICATIONS

Embedded device must register lidar data with image

data

Image overlaid with depth information should

have RGB colors ranging from 0 to 255

Embedded device must determine nearest object

location and distance

Within 9.58m, distance to object must be

accurate to within ±0.3 m and angle within ±5°

Embedded device must reduce dataset to desired angle

of view

Dataset returned must contain all points within

desired range as defined by the two input angles

Embedded device must store information in hard drive Hard drive must store unprocessed image,

unprocessed lidar data, and processed data

(distance to nearest object, image overlay with

depth information) for one 40 min. boat run.

The functions and specifications for the embedded device are included in Table VI. First, registration

must occur in the device, matching lidar data to a camera image. This registration is used to associate

areas in the image with measured distances. To represent distance, a color scale must be used that is

consistent and should include a spectrum of RGB (red, green, blue) values using the common 0 to 255

notation. This image will be used by future boat teams to verify and visualize the measurements of the

mapping system. Next, within the constrained region of 9.58 m (minimum), the distance and azimuthal

location of the nearest object must be determined. Finally, the embedded device must transfer all of the

data listed above in a hard drive. This hard drive must have enough storage space to store data for a full

run of the boat; this may last up to 40 minutes.

C. Design Overview

The following paragraphs will describe the solution and approach the team took to fulfill the

functions, objectives, constraints, and requirements discussed above.
First, the laser scanner selected is the Velodyne VLP-16 Puck™. The Puck is a 3D (three-

dimensional) laser scanner that is relatively inexpensive compared to other competitors’ similar products;

even with this lower price, the Puck provides many options that are ideal for this application. First, the

Puck is able to operate in the range of 9 V to 32 V. This fits within the constraint of 12 volts or less

provided by the boat’s power supply. Second, the Puck consumes only 8 W of power. This value is far

5

below the constraint of 50 W, leaving room for future components that may require additional power. In

addition, the dimensions of the Puck fit within a 25.4 cm cube. The scanner measures distances up to 100

m, which is is much further than the required 9.58 m, and greatly improves accuracy at close range. The

Puck is able to scan an environment with an azimuthal range of 360° and an altitudinal range of ±15°. The

360° range is sufficient to meet the 180° requirement for the front portion of the boat, and the extra range

enables greater flexibility for selectable ranges. To determine the minimum required altitudinal angle, the

inverse tangent of the horizontal and vertical measurement requirements, as seen Table I, can be obtained

as 18.24°. While the Puck has a maximum altitudinal range of +15°, the scanner can be mounted and

tilted so that this 18.24° altitude can be reached. The 3.24° below the horizon will not have a significant

impact of the measuring of the environment around the boat as this environment will mostly consist of

water. According to [1], the Puck can measure a full 360° field of view in 200 ms, easily meeting the 5 s

constraint. To communicate, the Puck uses an Ethernet port; therefore, the embedded device selected

must also have an Ethernet port.
For the camera, a 1.3 MP Logitech C500 webcam was selected for the design. The camera uses a

Universal Serial Bus (USB) for power, which at most, uses 5 V which is below the 12 V constraint. The

current and power draw are also within the constraints for this project. As this camera uses a USB to

communicate, the selected embedded device must also have USB capability.
Finally, an Odroid XU-4 was selected as the embedded device for this solution. As mentioned above,

it was necessary for the embedded device to have Ethernet and USB capabilities in order to communicate

with the laser scanner and camera. The Odroid provides these capabilities as well as two additional USB

ports, which improve the reconfigurability factor for future boat teams. To ensure the Odroid will have

enough memory space, an embedded MultiMediaCard (eMMC) is also included in the design. In order to

meet the storage necessary to hold an entire 40 min. run of the boat, a 1 terabyte (TB) hard drive has been

selected for the solution.
Tests can be performed to verify that these components are functioning as desired and to compare the

functions of these components to the specifications listed for each system and subsystem. A complete

description of these tests can be found in Appendix C.
The following section contains the design overview of this project. This section is divided into seven

subsections for the reader’s convenience: System Block Diagram, Subsystem Block Diagram, System State

Diagram, Division of Labor, Hardware, Software, and Interface.

1) System Block Diagram

Fig. 1 Proposed solution black box diagram

As can be seen in Fig. 1, the inputs to the system will be two angles which represent a range of the

boat’s environment that is desired to be processed and mapped. The order of these angles matters as the

range will be determined clockwise, from the first angle to the second angle. For example, if the two input

angles were 270° and 90°, the desired range would be the front portion of the boat. Conversely, if the two

input angles in order were 90° and 270°, the back portion of the boat would be returned, assuming

6

nothing was blocking the view of the laser scanner. An image depicting the angles can be seen in Fig. 2.

Notice that the front (bow) of the boat is considered 0°.

Fig. 2 Input/output angles

The system also has four outputs. First, the system returns distance measurements of the selected

range of the 3D environment around the boat. These distances will be sent in the form of spherical

coordinates (r, θ, φ), where r is distance, θ is the azimuthal angle, and φ is the altitudinal angle measured

from the horizontal relative to the scanner. This can be seen in Fig. 3 below.

Fig. 3 Spherical coordinate system for returning distance measurements

The system will also return the location of the nearest object. This location will be returned using

polar coordinates (r, θ), where r is the distance the object is from the boat, and θ is the azimuthal angle

found in Fig. 2. The “nearest object” is determined to be the closest non-water object to the boat. This

object will most likely be a buoy, the shoreline, or other hazards in the water. The third output will be a

camera image. Finally, the fourth output will be an image registered with distance information. This

image is, in essence, a combination of the distance measurements and the camera image. To represent

distances in the image, a color overlay will be used. This image will be most helpful for diagnostic testing

between competitions.

7

2) Subsystem Block Diagram

Fig. 4 System glass box diagram

Figure 4 depicts a high level of the internal components of the system and how they interact. There

are three main components: a laser scanner, a camera, and an embedded device. The embedded device

receives the two angles for the desired field of view. Once the distances have been measured by the

scanner and the camera images been taken, the embedded device organizes and processes the data. The

laser scanner measures using spherical coordinates, so the embedded device will need to convert this data

into rectangular coordinates for use in registration. Registration of the image and the distance

measurements will also be completed using the embedded device. Appendix F discusses the experimental

results in detail. Using this information, the location of the nearest object can be determined.

3) System State Diagram

A flowchart depicting the high level design of the laser scanner data acquisition software can be seen

in Fig. 5 below. First, user angle inputs must be provided, which signify the desired range to be further

processed. Next, a “MasterBlock” object is initialized, which is used to store all of the incoming laser

scanner data being sent from the VLP-16. Next, the “MasterBlock” is filled with data from each captured

scan until a full 360° rotation has been completed. For more information on the MasterBlock object,

please see the interface section below.
Next, lidar data and camera images are acquired. A full 360° scan will be taken by the laser scanner.

In addition, the camera will record video, from which still images from the individual frames are

obtained. All of this data will be sent directly to an external hard drive. Next, “cropping” occurs. For the

recorded 360° view of data, the data that falls within the range specified by the input angles can be

selected and returned as outputs. All other data in the 360° is unneeded for further processing except the

180° range of data of the front of the boat as seen in Fig. 2. This data will be used for registration. To

register 3D distance information with a camera image, it will be necessary to convert the distance

measurements from spherical coordinates to Cartesian (rectangular) coordinates. This conversion can be

made using (4), (5), and (6) as seen in Appendix D. Once converted, a registration technique will be used

to detect edges and objects in the distance and image data. An adaptation of the patented [2] SIFT (scale

invariant feature transform) algorithm will be used, composed of feature detection, feature matching, a

Transform Mode I estimation, image resampling, and transformation [3]. This technique will be used to

8

determine the nearest object and produce a registered image with color overlay. Once calculated, the

nearest object and registered image will be returned as outputs.

Fig. 5 High level flowchart of lidar system software

4) Division of Labor

The labor had been divided so that each team member was designated as a captain of one major

project development category of tasks. As captain, each team member led the development of those tasks,

though collaboration was recurrent and necessary throughout the project.

TABLE VII: 3D LIDAR DIVISION OF LABOR

Captain Task Category

David Bumpus Image registration and processing image data

Dan Kubik Scan data acquisition and processing

Juan Vazquez Camera and scanner interface and communication with embedded device

5) Hardware
To review, the system was designed around three main processes: data acquisition, data organization,

and data processing. To obtain these three processes, three components were used: a laser scanner, an

embedded device, and a camera.

The first process, data acquisition, involved acquiring the information associated with the boat’s

surrounding environment. There were two components responsible for this process, the laser scanner, the

Velodyne VLP-16 Puck, and the camera, the Logitech C500. The laser scanner was responsible for

9

measuring distance and reflectivity values, which were sent to the embedded device through Ethernet data

packets. The camera was responsible for producing a color image of the surrounding environment. The

second process, data organization, involved arranging the acquired information into a format that could be

used in the data processing stage. This final process, data processing, involved producing the project’s

designated functional requirements from the newly organized data.

The embedded device chosen, which is involved in all three processes, was the Odroid-XU4,

responsible for storing and processing all of the data associated throughout the system.

6) Software

a. Nearest object detection

As previously discussed, one of the functional requirements for this project was to locate the nearest

object to the boat and to pass the coordinates of this object to the boat’s navigation system. A feature

detection algorithm called the Scale Invariant Feature Transform (SIFT) was selected for the detection of

the nearest object [2]. The SIFT algorithm detects areas of interest, or keypoints, within a dataset. Unique

descriptors for each keypoint were used to match keypoints to similar datasets. This match, or

registration, was intended to enable association of distances with objects in an image. This principle is

illustrated in Fig. 11 of Appendix F.

As the boat records data from the environment around the boat, rocking in the water will cause

rotation of webcam images with respect to previously captured images. Additionally, as the boat moves

closer to objects, their apparent size will change. The primary motivation for using this algorithm was that

SIFT is robust against changes to the scale and rotation of an image or dataset. This means that objects

can be detected in an image and matched with similar images which have experienced a change in scale

or rotation.

SIFT keypoint detection for lidar datasets, or point clouds, uses variations in distance to determine

potential keypoints within the dataset. Keypoints are often found where adjacent data points indicate

significant disparity in distance. This change in distance typically occurs at the edge of an object where

adjacent data points are located farther behind the object. After determining the location of keypoints

within the point cloud, the distance from the laser scanner to each keypoint was calculated. The nearest

keypoint corresponds to the location of the nearest object. The three-dimensional coordinate location of

the keypoint was used to calculate the distance, azimuthal angle, and altitudinal angle of that object. The

open-source Point Cloud Library (PCL) contains an adaptation of the SIFT algorithm used for keypoint

detection in lidar point clouds [4]. Similarly, Open Source Computer Vision (OpenCV) contains an

adaptation of the SIFT algorithm used for keypoint detection in images [5].

b. Creation of Color Overlay

In order to achieve the desired color overlay image for use in registration, two challenges needed to be

addressed. First, the lidar dataset needed to be reduced from three-dimensions (3D) down to two

dimensions (2D) to be viewed as a color image. Second, because of the nature of the spacing of the lasers

inside the scanner, large gaps existed where the lasers did not measure the distance in a particular scene.

The final color image should visually represent the complete scene, so these gaps needed to be filled.

To fill the gaps of missing lidar data, Barnes interpolation [6] was used. Barnes interpolation was

selected for its ability to generate any value in a 2D grid from an unevenly distributed dataset. As the lidar

data is unevenly distributed, Barnes interpolation was well suited to generate the distance values used in

the image. As Barnes interpolation is designed for interpolation in a 2D plane, it was necessary to reduce

the 3D lidar dataset to two dimensions before the interpolation occurred.

10

This reduction was performed in a two-step process. First, the lidar data was converted from spherical

coordinates to rectangular coordinates using (4), (5), and (6) in Appendix D. These equations allow the

lidar data to be represented by an X (horizontal), Y (depth), and Z (vertical) coordinate scheme. Second,

to visually create a 2D plane to interpolate within, the Y dimension was removed from the lidar dataset.

This removal of depth effectively compressed all of the points in 3D space to the vertically positioned XZ

plane in 2D. The Barnes interpolation was used within this XZ plane to interpolate between the values of

known distances. The newly interpolated values in this plane became the values used in the overlay

image.

Once the distances to fill the image were interpolated, a thresholding color scheme was defined. The

distances associated with this color scheme were incremented by approximately 1.7 m per color (step)

using a linear scale. From nearest to farthest, the nine colors used to represent these subdivisions were:

green, dark green, yellow, light blue, blue, dark blue, orange, red, and maroon. This can be seen in Table

XII in Appendix F.

7) Interface
Between the data acquisition and data processing, there was a discrepancy of data format. On the

acquisition side, lidar data was being sent to the system in packets of encoded information. On the

processing side, PCL point clouds were used to detect objects. In order to successfully bridge this

formatting inconsistency, it was necessary to organize this lidar data as received from the laser scanner

and to format it into a useful manner, one that can be translated into a PCL point cloud. This organization

was achieved using a hierarchy of classes in C++. As data packets are received from the scanner, the data

is read by an object of the highest level of the hierarchy called a “MasterBlock.” If the data received falls

within the desired range of information as identified by the two angle inputs received from the boat’s

control system, it will be stored in the MasterBlock object, taking advantage of different levels of

organization provided by the lower levels of the hierarchy. The lowest level is a “dataPoint,” which

contains the individual distance, reflectivity measurement, and altitudinal angle that correspond to a

particular data point. Because of the flexible nature of the MasterBlock class, a MasterBlock object can be

many different sizes though can contain no more than one full 360° sweep of data. Once a full sweep of

360° has been presented to the interface of the MasterBlock object it will accept no more data and will

activate a flag acknowledging it is “done.” At this point, the MasterBlock can be used to easily access the

lidar data for further processing such as creating the color overlay image or registration with an image.

This process repeats for every instance registration needs to be achieved. For a more detailed explanation

of the internal subdivisions of these classes, please see Appendix G.

D. Economic Analysis

The total cost for the proposed project is $8,275.97. Table VIII lists each component of the system,

the manufacturer of the component, and the price. As can be seen, a majority of the total system cost

comes from the price of the Velodyne VLP-16 Puck 3D scanner. While this may seem expensive, the

initial costs of the project were actually projected to be higher; most commercial laser scanners are much

larger and designed for larger vehicles such as cars. The Puck is reasonably priced for the features that it

can provide and a good size for the RoboBoat application.

11

TABLE VIII: 3D LIDAR SYSTEM BUDGET

Brand Part Price

Velodyne LiDAR Puck (VLP-16) $8,094.00

Hardkernel Odroid XU4 $75.95

Hardkernel 8GB eMMC 5.0 Module $23.95

Logitech Webcam C500 $14.43

WD Elements 1TB External Hard Drive $54.99

Ameridroid Shipping Estimate $12.65

Total $8275.97

III. Design Testing and Validation

Each subsystem was tested and validated independently. The embedded device communication with

the laser scanner was verified by organizing the lidar data packet information into a format that could be

displayed using PCL. The accuracy of the scanner was verified by observing the accuracy and precision

of distance measurements taken from inside a cardboard box. The scanner was placed in the opening of

the box and successfully measured the dimensions of the box. The image capture interfacing between the

embedded device and webcam was validated by capturing an image and storing it in several file formats

compatible with OpenCV image processing algorithms. These images were displayed and verified to be

in color. Keypoint detection successfully determined the location of objects within the point cloud and

image. As a result, point cloud keypoints were used to determine the nearest object location. Equations

(7), (8), and (9) in Appendix D depict the calculation used to determine object distance, azimuth, and

elevation. This measurement proved to be accurate over the desired 95% specification.

IV. Results

The MasterBlock class and subordinate hierarchy classes were tested using 300-400 text files each

containing a data packet obtained from the laser scanner. A program was written that looped through

these files, individually extracted the data, stored the data into an array, and then passed this array to a

MasterBlock object. Different angle inputs were given to the MasterBlock object upon initialization to

define different areas of interest that should be stored within the object. MasterBlock performed as

desired; the data was reduced as directed by the angle inputs. Additional tests were performed to verify

the functionality of the 360° “done” flag which were also successful; the MasterBlock would stop

accepting additional data after it was determined at least 360° of data had been presented to it. For further

pictures and explanations regarding the testing of the MasterBlock class and hierarchy, please see the

detailed experimental results in Appendix F.

Keypoint detection for images and point clouds was successfully implemented. These results were

determined from trials in two environments. In one environment, a red ball was placed on a chair in the

corner of a room. A backpack also hung from a cabinet door. The keypoint detection was able to

distinguish objects from walls and cabinets. The location of the nearest object was successfully

determined with 95% accuracy. The error was calculated by measuring the distance and angle to the

nearest object and comparing the result to the calculated distance. Visual representations of the keypoint

detection obtained for the point cloud and image can be seen in Fig. 11 of Appendix F.

To test the creation of a color overlay, the laser scanner was brought to the lobby of the Bradley

University basketball arena and set upon a chair. In front of the scanner, there were three large columns,

12

as well as two large pieces of foam that represented what a buoy may appear to look like on a lake. This

setup can be seen in Fig. 13 in Appendix F.

Reducing the lidar dataset from 3D to 2D proved successful. When compressed into the XZ plane, the

approximate shapes of objects could be discerned from the original data. Interpolating this dataset created

a much more defined image; objects such as the buoys, the columns, and a back wall could be clearly

identified using the color thresholds. The interpolated values were compared with the actual distance

values to the objects in the scene with favorable results. Of the six major objects measured in the scene,

five were assigned the correct color scheme as expected. One of the buoys was the exception, and was off

by a significant margin (7 m). It is assumed this buoy error was caused by extraneous floor data, which is

discussed in more depth in Appendix F. For further pictures and explanations regarding the interpolation,

please also see Appendix F.

V. Summary and Conclusions

The purpose of this project was to develop a system which returns an accurate three dimensional

representation of the environment around the autonomous boat used in the RoboBoat competition. A

camera, laser scanner, embedded device were selected to meet these needs. There were significant

developments within each subsystem. Successful communication between the devices enabled data

capture and processing. However, full system integration remained incomplete because of timing issues.

The system is able to process the acquired information, but the processing speed is too slow to produce an

entire 360° scan. Using test data from the scanner the data organization scheme proved to be effective.

Further processing of this data was successful in obtaining the location of the nearest object as well as a

color overlay image that can be used in registration.

Potential future work for this project may include multi-threading to improve processing speed and

aid complete system integration for practical use. In additions, registration of the image and point cloud

keypoints will improve the precision of this overlay. This registration will reduce the effect of a time

delay and 3D point cloud distortion when determining object location and distance within a 2D image.

13

VI. References

[1] “VLP-16 User Manual and Programming Guide 63-9243 Rev A.” Velodyne, Aug-2015.

[2] Method and apparatus for identifying scale invariant features in an image and use of same for

locating an object in an image by David G. Lowe, US Patent 6,711,293 (March 23, 2004).

Provisional application filed March 8, 1999. Asignee: The University of British Columbia.

[3] Lowe, D.G., 1999. “Object recognition from local scale-invariant features.” International

Conference on Computer Vision, Corfu, Greece, pp. 1150 -1157.

[4] Dixon, Michael. "Overview." Point Cloud Library (PCL): Module Keypoints. Open Perception

Foundation, 11 Apr. 2010. Web. 27 Apr. 2016.

[5] "OpenCV: Introduction to SIFT (Scale-Invariant Feature Transform)." OpenCV: Introduction to

SIFT (Scale-Invariant Feature Transform). Doxygen, 18 Dec. 2015. Web. 28 Apr. 2016.

[6] Stanley L. Barnes, “A Technique for Maximizing Details in Numerical Weather Map Analysis,”

Journal of Applied Meteorology, vol. 3, pp. 396–409, 1964.

[7] “Make a Cardboard Box City,” Kid Fun. [Online]. Available:

http://kidfun.com.au/images/8671140212.jpg.

14

Appendix A: Parts List

Table IX: List of required parts

Brand Part

Velodyne LiDAR Puck™ (VLP-16)

Hardkernel Odroid XU4

Hardkernel 8GB eMMC 5.0 Module

Logitech Webcam C500

WD Elements 1TB External Hard Drive

Table IX contains a list of the parts required for this project. It should be noted that the hard drive

was never purchased due to time constraints.

15

Appendix B: Glossary

Keypoint: Point in a dataset of particular interest, namely, an area of high contrast in an image.

Registration: The process of transforming two or more different datasets into one coordinate system.

These datasets may or may not be of similar type.

Azimuth: Horizontal direction expressed as the angular distance between directions of a fixed point and

the direction of an object.

16

Appendix C: Detailed Test Procedures

To verify that the system is performing the required functions, a series of tests should be issued. First,

the subsystems must be tested individually.

For the laser scanner, first, it must be identified that a full 360° by 30° field of view is being recorded

and passed to the embedded device. This can be checked using the Veloview software. By running the

scanner using the Ethernet connection, Veloview will visually represent the data being received.

Additionally, the scanner must return distances at least 9.58 m away with 95% accuracy and reflectivity

measurements from 0 to 255. These values can be obtained using Veloview, and the 95% can be

determined by comparing the measurements seen in Veloview with measurements taken in the classroom.

For example, the scanner can be placed in a box. This box is clearly identifiable and can be easily

measured.

The embedded device must determine nearest object location and distance. This can be determined by

setting up a mock environment where there are a select amount of objects in a room. For example, it has

been mentioned that the atrium in the Renaissance Coliseum may be used. In this atrium, objects can be

systematically placed and measured as to their whereabouts. Placing the system up high, looking down

into the lobby can represent an open area like a lake. If the system can return the angle and distance to

their nearest object, it can be determined that the test was a success. To determine if the embedded device

is reducing the desired angle of view correctly and performing the registration properly, the outputs from

the system sent to the external hard drive can be obtained and examined.

To test the capabilities of the camera, the camera can be connected to the embedded device and

commanded to take pictures. By examining these images, it can be determined if the images contain

objects further than 9.58 m away with distinguishable edges. In addition, the range of these images can be

tested by comparing the size of the frame of the image and how wide the field of view is.

After all of the subsystems have been tested, full system testing can commence. Oscilloscopes,

voltage meters, and current meters can be used to determine voltage, current, and power usage. Once

calculated, these values can be used to calculate if the system can continuously run for 40 min. The

weight requirement can be tested using a scale. The system can be measured using a meter stick to

determine if the system will fit within a 25.4 cm cube. The timing of data packets in a scan is provided by

the laser scanner and can be used to determine how long it takes to make a full 360° scan.

For a detailed account of the results of the tests performed, please see Appendix F.

17

Appendix D: Calculations

Initially, two requirements were given describing the distance measured by the laser scanner. These

requirements requested that at a minimum, the laser scanner must be able to measure at least a horizontal

distance of 9.1 m and at least a vertical distance of 3 m from the laser scanner. Because it is possible that

an object can be both 9.1 m away and 3 m above the scanner, it is desired to know this maximum distance

from the scanner that is necessary to meet the requirements.

Equation (1) below can be used to determine this distance. As can be seen, the Pythagorean Theorem

is used to determine the maximum. It has been determined that the scanner must be able to measure at

least 9.58 m away.

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑀𝑖𝑛2 + 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑀𝑖𝑛2 (1)

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(9.1 𝑚)2 + (3 𝑚)2 (2)

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 9.58 𝑚 (3)

Equations (4), (5), and (6) describe the conversion from spherical coordinates to rectangular

(Cartesian) coordinates. R represents distance, ѡ represents the altitudinal angle and α represents the

azimuthal angle.

𝑋 = 𝑅 ∗ cos(ѡ) ∗ sin(α) (4)

𝑌 = 𝑅 ∗ cos(ѡ) ∗ cos(α) (5)

𝑍 = 𝑅 ∗ sin(ѡ) (6)

Equation (7), (8), and (9) are used to determine the nearest object location by calculating the

azimuthal angle to the nearest object, the angle of elevation to the nearest object, and the distance to the

nearest object. Notice that the distance equation (7) can be derived from the traditional 3D distance

equation knowing that the center of the laser scanner is located at the origin (0, 0, 0).

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √𝑥2 + 𝑦2 + 𝑧2 (7)

𝐴𝑧𝑖𝑚𝑢𝑡ℎ = sin−1 (
𝑧

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
) ∗

180

𝜋
 (8)

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 = tan−1 (
𝑦

𝑥
) ∗

180

𝜋
 (9)

18

Appendix E: Metrics for Nonfunctional Requirements

TABLE XI: METRICS FOR 3D LIDAR SYSTEM NONFUNCTIONAL REQUIREMENTS

Objective: 3D lidar system should be weatherproof

5 Can operate in rain, fog, wind, waves, and varying light intensities

4 Can operate in fog, wind, waves, and varying light intensities

3 Can operate in wind, waves, and varying light intensities

2 Can operate in wind

1 Only works indoors

Objective: 3D lidar system should be configurable

5 System is highly configurable

4 System is configurable

3 System is somewhat configurable

2 System is not very configurable

1 System is not configurable

Objective: 3D lidar system should be mechanically stable

5 Motion in system is contained

4 Motion in system is mostly contained

3 Motion in system is somewhat contained

2 Motion in system will impair other boat functions

1 Motion in system will disable boat

Objective: 3D lidar system should be lightweight

5 Weight less than 2 kg

4 Weight less than 2.86 kg

3 Weight less than 3.72 kg

2 Weight less than 4.58 kg

1 Weight less than 5.44 kg

Objective: 3D lidar system should execute in a timely manner

5 Scan time and processing less than 5 s

4 Scan time and processing less than 5.5 s

3 Scan time and processing less than 6 s

2 Scan time and processing less than 6.5 s

1 Scan time and processing less than 7 s

19

Appendix F: Detailed Experimental Results

I. Data Organization

Fig. 6 Scanning a cardboard box [7]

Fig. 7 Comparing lidar datasets: left is viewed using VeloView software, right is viewed through a

PCL visualization

In Fig. 6, the setup of one of the initial lidar data acquiring tests is shown. In Fig. 7, the resulting

lidar datasets can be seen. The left portion of Fig. 7 shows what the data is expected to look like; this

is a screenshot of what is seen using the VeloView software included with the scanner. The right

portion of Fig. 7 shows decoded information from text files as stored in a MasterBlock object. To

visualize this dataset as seen in the image, the MasterBlock object was converted to a PCL (Point

Cloud Library) point cloud, and visualized using the PCL viewer. Notice that the datasets are

identical in size and shape, demonstrating the success of the MasterBlock scheme. The colors in these

particular visualizations represent reflectivity. The colors from image to image appear different due to

different color schemes used.

Figure 8 through Fig. 10 demonstrate the functionality of the selection range of the MasterBlock

object. In Fig. 8, the complete 360° field of view of the lobby of the Bradley basketball arena can be

seen. To save all of this information in a MasterBlock object, the inputs (0°, 359°) were used.

Desiring only the frontal 180° area in front of the scanner was obtained using the angle inputs of

(270°, 90°) as seen in Fig. 9. Notice how the lower 180° has been removed and is no longer stored in

the MasterBlock. This can most easily be seen by the circle of data points picked up on the floor

around where the laser scanner was located. Similarly, in Fig. 10 the range has been further defined to

20

the frontal 90°. Using this method, any range can be successfully obtained within the 360° of the full

lobby.

Fig. 8 Full 360° view of the Renaissance Coliseum lobby: angle input was (0°, 359°)

Fig. 9 Frontal 180° of the Renaissance Coliseum lobby: angle input was (270°, 90°)

Fig. 10 Frontal 90° of the Renaissance Coliseum lobby: angle input was (315°, 45°)

21

II. Nearest Object Detection

Fig. 11 Comparison of PCL Keypoints (left) and OpenCV SIFT keypoints (right)

Figure 5 depicts keypoint detection for an environment containing a red ball on a chair, with a

backpack hanging from an open cabinet door. The keypoints occur at locations of high gradients. For the

PCL point cloud keypoints, each keypoint is found by computing gradients of distance measurements.

The keypoints are shown as blue spheres. These keypoints are found at the edges of objects and can be

used to determine the nearest object location. For the OpenCV image keypoints, a red circle visually

describes each keypoint. The SIFT algorithm uses an array of gradient vectors measuring changes in color

throughout the image to describe each keypoint. This array, referred to as a “descriptor,” can be matched

with similar descriptors in other images for the purpose of registration. The descriptor is visually

represented by a vector extending from the center of each circle.

Fig. 12. Command output of SIFT keypoint detection algorithm

Figure 12 displays the calculated azimuthal angle and distance to the nearest object. This output is

generated from the dataset seen in Fig. 11. However, the point cloud spans 180°, which contains

significantly more data than what can be seen in Fig. 11. The chalkboard on the right wall extends out of

the field of view and is the closest object to the sensor. Reducing the field of view for the point cloud to

match the perspective of the image produced the location of the nearest object in an image.

III. Creating a Depth Overlay

22

Fig. 13 Setup of the laser scanner in the lobby of the Bradley Renaissance Coliseum

Figure 13 depicts the setup of the laser scanner for data acquisition in the Bradley University

basketball arena, the Renaissance Coliseum. The laser scanner is located on the red seat of the left chair.

Notice the three main columns in the lobby, as well as the two pieces of black foam between the columns

that represent what a buoy may look like. Notice also the shape of the ceiling, and the staircases on the

left and the right of the image.

Fig. 14 Reduced lidar dataset of the Renaissance Coliseum setup

Figure 14 shows the lidar dataset used to create the color overlay image using the Barnes

interpolation. Notice that this dataset is not a 360° representation of the lobby; this 90° dataset was

reduced from the original 360° using the selection range functionality of the MasterBlock class with input

angles of (315°,45°). The three columns can clearly be seen (black arrows), as well as the two buoys

(green arrows). Floor data points also exist in the dataset, but have been cropped from this image, and are

located closer to the scanner near the center of the image. A few of the floor data points can be seen

below and to the left of the center black arrow.

Fig. 15 Barnes interpolation of lidar dataset with mostly removed floor data points

Farthest

Nearest

23

Figure 15 displays the Barnes interpolation for the lidar dataset. This interpolation was performed

after removing the floor data points; it was determined that including the floor data will skew the visual

results of the objects in the image.

Notice the clarity of some of the objects in this interpolation; the three pillars are very notable in

orange and the two buoys, in green and blue, are visible in the center foreground. Even the irregular

shapes of the ceiling can be seen in red and maroon between the pillars. While the stairs on the left and

right of the image are not as clearly defined, this was expected as the shapes were larger and more

complex. For the purpose of identifying objects on a lake, this level of visual identification of objects

should be sufficient.

 Table XII shows the ranges associated with each of the color thresholds used in Fig. 15. Each

interpolated distance is assigned a color, with the number in each box representing the lower bounds of

the range of that color. The farthest distance measured in the image was about 14.8 m from the scanner.

Table XII: Color range thresholds for Barnes interpolation.

0.0 m 1.8 m 3.5 m 5.3 m 7.0 m 8.8 m 10.5 m 12.2 m 14.0 m

Using the color scheme in Table XII, the expected color of each object was determined. These

colors were compared to the colors seen in the interpolated values in Fig. 15 to determine the accuracy of

the interpolation. The back walls, left and right columns, and right buoy all were interpolated correctly

and assigned the color that was expected. The center column is slightly closer to the scanner, and

therefore should have been assigned dark blue; the error from the actual to resultant values (dark blue to

orange) was about 0.3 m. This error is understandable as the distances to the three pillars are on the verge

of the dark blue/orange color border. The other notable error is the left buoy. Notice how the buoy is

assigned the green color (nearest to the scanner) when it should have been assigned a blue color like the

right buoy. This error is significant, and as mentioned in the body of the report, is believed to be caused

by floor data points interfering with the interpolated values.

Floor data is suspected for a few reasons. The floor had to be initially removed from the dataset to

improve upon the visual quality of the interpolation. With the floor in the interpolation, values became

skewed to appear closer to the scanner than they were in reality. To remove this floor data, all data points

with a Z component less than half of the height of the chair the scanner was located on was removed.

Assuming the scanner is parallel with the floor, this should have removed all of the floor data, as well as

the bottoms of parts of the columns and buoys. In reality, the scanner was not parallel with the floor and

was slightly angled on the seat of the chair. This tilt limits the functionality of the Z component filter.

Some floor data will not have been removed and will still affect the data in the rest of the image. This tilt

will most undoubtedly be found in practice on the boat. A more complex filter of floor (or water) data will

need to be developed to address this concern.

24

Appendix G: Structures of Storage Class Objects

Table XIII includes each of the classes in the MasterBlock hierarchy, from MasterBlock down to

dataPoint. The right column describes which elements are included in each class. For the most part, each

of these classes follow the general structure of a data packet as received by the laser scanner

[REFERCENCE to MANUAL]. All classes are of a rigid size except the MasterBlock, which utilizes

dynamic memory. Notice also that MasterBlock itself contains many HalfDataBlocks rather than

DataPackets as may be expected. While DataPacket objects are sent to a MasterBlock to be read, from

here they are are separated into HalfDataBlocks to provide greater flexibility of which azimuthal angles

are actually stored into a MasterBlock. Data from the DataPackets are decoded as described in

[MANUAL].

Table XIII: Storage classes and their features

Class Name Features

MasterBlock Ensures 180° frontal view and selected range are

stored within. Contains multiple HalfDataBlocks

DataPacket Contains twelve DataBlocks and a time stamp

DataBlock Contains two HalfDataBlocks

HalfDataBlock Contains sixteen DataPoints and an azimuth

DataPoint Contains one distance, reflectivity, and altitudinal

angle

25

Appendix H: Theory of Operation

Camera:

1. Install “OpenCV” libraries and application onto Odroid-XU4 (via Ubuntu Server)

2. Create camera directory

3. Download the image capture file “capture.cpp” and transfer into the camera directory

4. Compile the image capture file using the command “g++ capture.cpp –o capture `pkg-config -–

cflags -–libs opencv`”. It’s important to note that the symbol “``” are grave accents and not

apostrophes. If apostrophes are used the program will not allow for compiling.

5. Run the executable file using the command “./capture,” which will then continuously capture and

overwrite images using the Logitech C500 webcam.

Laser Scanner:

1. Create laser scanner directory (No prior libraries or application installations are required)

2. Download the Ethernet packet capture file “detection.c” and transfer into the laser scanner

directory.

3. Compile the Ethernet packet capture file using the command “g++ TestClasses1.cpp

dataBlock.cpp dataPacket.cpp halfDataBlock.cpp masterBlock.cpp recDataPoint.cpp

sphDataPoint.cpp –o main –std=c++11”.

4. Run the executable file using the command “./detection,” which will then continuously capture

incoming Ethernet packets from the laser scanner while filling and overwriting the

“MasterBlock” object with the corresponding data.

The following is an explanation of operation for the SIFT keypoint detection algorithm described in

Appendix D. Two open source software libraries are required and can be installed and compiled with

Microsoft Visual Studio.

SIFT keypoint detection algorithm operation:

1. Install OpenCV and PCL (including all PCL dependencies)*

2. Set up visual studio properties sheet for compiling PCL and OpenCV *

3. Build project in release mode

4. Copy datasets (<img.jpg> and <pointcloud.pcd>) to the path of the release application

5. Open command prompt and navigate to directory of application (img_lidar_matching.exe)

6. Enter application name, image, and point cloud and press enter

*Steps 1 and 2 are extensive and involve many elements outside of the scope of this report.

26

Appendix I: Code

The following appendix contains a majority of the code created for this project. This appendix is

broken into three main divisions: data acquisition, data organization, and data processing.

Data Acquisition:

Ethernet Detection Program:

 This program was written for allowing for interface between the Logitech C500 camera and

Odroid-XU4. Specifically, it allows for a continuous image capture from the webcam and conversion into

.PPM format using OpenCV libraries and commands.

/*

* Name: Juan Vazquez

* Senior Project: 3D Environmental Mapping & Imaging for AUVSI RoboBoat

* Department Name: Electrical and Computer Engineering

* Institution Name: Bradley University

*

*

* ************************************

* * REFERENCES/CREDITS *

* ************************************

* The following code was altered from the video capture code provided from

"Reading and Writing Images and Video" provided by OpenCV

* Link1:

docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html

*

* ************************************

* * PURPOSE *

* ************************************

* This program was written for allowing for interface between the Logitech

C500 camera and Odroid-XU4. Specifically it allows for

* a continuous image capture from the webcam and conversion into .PPM format

using OpenCV libraries and commands.

*

*/

#include "opencv2/opencv.hpp" //OpenCV libraries

#include <unistd.h> //Added for sleep command

using namespace cv;

int main(int, char**)

{

 unsigned int i, sleep(unsigned int seconds); //integer for loop count and

delay declarations

 char filename[4]; //array used for multiple images

 VideoCapture cap(0); //Opening Logitech C500 camera

 if(!cap.isOpened()) //Checking if camera is open

 return -1;

27

 while(1) //infinite loop for continous capture

 {

 for(i=1;i<4;i++) //continously capturing 3 images

 {

 sleep(5); //added for delay

 Mat image; //create a blank image

 cap >> image; //capture image using OpenCV

 printf("Image %d Captured\n", i); //Show that an image is being

captured

 sprintf(filename, "CapturedImage%d.ppm",i); //Store in .PPM

format

 imwrite(filename,image); //Write to .PPM format file

 }

 }

 return 0;

}

Ethernet Detection Program:

 This program was written in order to allow for interface between the VLP-16 laser scanner and

the Odroid-XU4. Specifically it scans for incoming raw and formatted Ethernet traffic (UDP) and records

individual packets into corresponding text files. IT is mainly dependent on the “libpcap” library.

/*

* Name: Juan Vazquez

* Senior Project: 3D Environmental Mapping & Imaging for AUVSI RoboBoat

* Department Name: Electrical and Computer Engineering

* Institution Name: Bradley University

*

*

* ************************************

* * REFERENCES/CREDITS *

* ************************************

* The following code was altered from the packet sniffer code provided from

"Packet Sniffer Code in C using Linux Sockets (BSD)

* - Part 2" provided by Binary Tides

* Link1: http://www.binarytides.com/packet-sniffer-code-in-c-using-linux-

sockets-bsd-part-2/

*

* ************************************

* * PURPOSE *

* ************************************

* This program was written in order to allow for interface between the VLP-16

Laser Scanner and the Odroid-XU4. Specifically, it

28

* scans for incoming raw and formatted Ethernet traffic (TCP, UDP, ICMP,

IGMP) and records individual packets into corresponding

* text files. It is mainly dependent on the "libpcap" library.

*

*/

/*

* **************************************

* * LIBRARIES *

* **************************************

*/

//||Packet Classification Libraries||

#include <iostream>

#include "dataPacket.h"

#include "recDataPoint.h"

#include "masterBlock.h"

#include <cstdint>

#include <stdio.h>

#define _CRT_SECURE_NO_WARNINGS

#include <fstream> //For text file reading

#include <string>

using namespace std;

#include <sstream>//For string to hex conversion (and the backwards '>>')

//||Ethernet Detection Libraries||

//||Standard Libraries||

#include<stdlib.h> //For use of "malloc()" command

#include<string.h> //For use of "strlen()" command

#include<unistd.h>

#include<sys/ioctl.h> //For use of "ioctl()" command

//||Header Declarations||

#include<netinet/ip_icmp.h> //ICMP

#include<netinet/udp.h> //UDP

#include<netinet/tcp.h> //TCP

#include<netinet/ip.h> //IP

//||Ethernet/Internet Protocol||

#include<netinet/if_ether.h> //For ETH_P_ALL

#include<net/ethernet.h> //For ether_header

#include<netinet/in.h>

#include<netdb.h> //Internet Database

#include<sys/socket.h>

#include<arpa/inet.h> //Internet Operations

//||Miscellaneous||

#include<errno.h> //Error Codes

#include<sys/time.h> //Time Types

#include<sys/types.h> //Data Types

/*

* **

* * FUNCTION DECLARATIONS *

* **

*/

29

//||Packet Classification Declarations||/

void PacketClassification(MasterBlock &pointerToPermanentMB, int fileNumber,

string line); //References

//||Ethernet Detection Declarations||/

string EthernetDetection();

/*Changed from Dan Revision */

//char* EthernetDetection();

//Text File Creation

FILE *logfile;

char filename[] = "DataPacket1.txt"; //ADDED //PROBLEM FOR REMOVING |00|00|

or old text files

//Ethernet Detection

struct sockaddr_in source,dest;

int udp=0,total=0,i,j;

//const char* arr[3619]; //Global Variable? ||CHECK THIS CODE||

int main()

{

 while (1)

 {

 MasterBlock marco = MasterBlock(0,359); //Create new Master Block

 MasterBlock &referenceToMarco = marco;//this is a NEW line. I am

creating a reference to marco called "referenceToMarco"

 int temporaryFileCounter = 1; //see below

 //Loop until Master Block is full

 while (! marco.isMasterBlockReadyYet())

 {

 //logfile=fopen("dataPacket1.txt","w");

 /*ETHERNET DETECTION FUNCTION*/

 //unsigned char *buffer = (unsigned char *) malloc(65536); //Its

Big!

 string line = EthernetDetection();

 printf("One Packet Printed\n");

 //cout << line;

 //COMEBACK sleep(.5);

 /*PACKET CLASSIFICATION FUNCTION*/ //Currently Disabling

// PacketClassification(referenceToMarco,temporaryFileCounter,line);

//ADDED MASTERBLOCK

// temporaryFileCounter++;

 /*REMOVE FUNCTION*/

 //remove(filename);

 /*PRINT ARRAY*/

 /*print("\nARRAY\n");

 int q;

 for(q = 0;q<3619;q++)

 {

 printf("%c", arr[q]);

 }

 print("\n");

 */

30

 }

 printf("\nMaster Block is Full\n"); //TROUBLESHOOTING: Shows each

time a Master Block is completed

 //break; //To break out of infinite loop and end program FOR TESTING

 }

 return 0;

}

/*Ethernet Detection VOID Start*/

string EthernetDetection()

/*Changed From Dan's Revision*/

//char * EthernetDetection()

{

Restart:

/*Ethernet Program START*/

 unsigned char *buffer = (unsigned char *) malloc(65536); //It's Big

 int saddr_size , data_size;

 struct sockaddr saddr;

 char arr[3619];

 //COMEBACK char* arr[3619]; //Previously was without error

 //char* arr[3619];

 char str[3619];

// logfile=fopen("dataPacket1.txt","w"); //Creating Text File 1

// if(logfile==NULL) //If Text File Can't Open

// {

// printf("Unable to create log.txt file.");

// }

 printf("\nEthernet Detection Started\n");

 int sock_raw = socket(AF_PACKET , SOCK_RAW , htons(ETH_P_ALL)) ;

 if(sock_raw < 0) //Error Message

 {

 //Print the error with proper message

 perror("Socket Error");

 //return void(1);

 }

 while(1) //Writing Ethernet Data INFINITE LOOP

 {

 saddr_size = sizeof saddr;

 //Receive a packet

 data_size = recvfrom(sock_raw , buffer , 65536 , 0 , &saddr ,

(socklen_t*)&saddr_size); //Reading Size of Incoming Data

 if(data_size <0) //Error Message

 {

 printf("Recvfrom error , failed to get packets\n");

 //return void(1);

 }

 //Now process the packet

 //||PROCESS PACKET START

 //Get the IP Header part of this packet , excluding the Ethernet

header

31

 struct iphdr *iph = (struct iphdr*)(buffer + sizeof(struct

ethhdr));

 ++total;

 switch (iph->protocol) //Check the Protocol and do accordingly...

 {

 /*VLP-16 Only Sends UDP Packets */

 case 17: //UDP Protocol

 ++udp;

 //||UDP PACKET PRINT START||

 unsigned short iphdrlen;

 struct iphdr *iph = (struct iphdr *)(buffer +

sizeof(struct ethhdr));

 iphdrlen = iph->ihl*4;

 struct udphdr *udph = (struct udphdr*)(buffer + iphdrlen

+ sizeof(struct ethhdr));

 int header_size = sizeof(struct ethhdr) + iphdrlen +

sizeof udph;

 //Move the pointer ahead and reduce the size of string

 //PrintData(buffer + header_size , data_size -

header_size);

 //||PRINT DATA START||

 unsigned char* data;

 int Size;

 data = buffer + header_size;

 Size = data_size - header_size;

 int i , j;

 //Restart:

 /*PRINTING DATA LOOP*/

 //While i < (Total Size of Data Packet) --> Print

Data

 int a = 0;//ADDED THIS

 for(i=0 ; i < Size ; i+=2) //Size = Data_Size from

Ethernet Detection Void Function

 {

 /*TEXT FILE PRINTING*/

 if (i > 3) //Start at |FF|EE| //What is I?

 {

 //str[3 - i] = "|%02X",(unsigned

int)data[i];

 /*Array Implementation Start*/

 //COMEBACK arr[3 - i] = "|%02X",(unsigned

int)data[i]; //Store

 arr[a] = '|';

 printf("%X",arr[a]);

 a++;

 arr[a] = data[i];

 printf("%X",arr[a]);

 a++;

 arr[a] = data[i+1];

 printf("%X",arr[a]);

 a++;

 //string threeletters = "|%02X", (unsigned

int)data[i]; //need to use "" instead of '' o.w. they are character literals

32

 //string threeletters = "|%02X",(unsigned

int)data[i];

 //arr[3*i] = threeletters[0];

 //arr[(3*i)+1] = threeletters[1];

 //arr[(3*i)+2] = threeletters[2];

 /*Array Implementation End*/

// fprintf(logfile , "|%02X",(unsigned

int)data[i]); fflush(logfile);

 /*REMOVE ZERO PACKETS*/

 if ((unsigned int)data[4] == 0) //Checking

for |00|00|

 {

 printf("\nZero Packet Detected\n");

 i = 0;

// fclose(logfile);

 //logfile=fopen("dataPacket1.txt","w");

//Creating Text File 1

 sleep(5);

 goto Restart;

 }

 }

 if(i==Size-1) //print the last spaces

 {

 //str[i] = "|";

 /*Array Implementation Start*/

 arr[a] = '|';//arr[i] = '|';

 //COMEBACK arr[i] = "|";

 /*Array Implementation End*/

// fprintf(logfile , "|"); fflush(logfile);

//Print the last line

 }

 //string line(arr[3619]);

 //std::string line = string(arr[3619]);

 }

 //||PRINT DATA END||

 //||UDP PACKET PRINT END||

 break;

 }

 //||PROCESS PACKET END

 break; //Once packet processed break out of loop

 }

// fclose(logfile); //Close text file

 //std::string line = string(arr[3619]); //This will print empty array

//COMEBACK std::string line = string(arr);

 //cout << line << "\n";

//COMEBACK printf("String: %s\n",line.c_str());

//COMEBACK return line;

/*Changed for String from Original Form */ //POSS COME BACK

33

//char* thethingwereturn = arr;

//return thethingwereturn;

std::string line = string(arr);

return line;

}

/*Dan Program VOID Start*/

void PacketClassification(MasterBlock &pointerToPermanentMB, int fileNumber,

string line) //ADDED MASTERBLOCK //PROBLEM: Created for POINTER

{

/*Dan's Program START*/

/*

 int number = 1;

 string line; //reading a text file

 string Result; // string which will contain the result

 ostringstream convert; // stream used for the conversion

 convert << number; // insert the textual representation of 'Number'

in the characters in the stream

 //converting loop#^^ to a string

 Result = convert.str(); // set 'Result' to the contents of the stream

e.g. now = "123"

 string hereIsMyFileName = "dataPacket" + Result + ".txt";

 ifstream myfile (hereIsMyFileName); //e.g. "dataPacket.txt"

 if (myfile.is_open())

 {

 while (! myfile.eof())

 {

 getline (myfile,line);

 cout << line << endl;

 }

 myfile.close();

 }

 else cout << "Unable to open file";

*/

// cout << line << endl;

 uint8_t dataIn[1206];

 int spot = 0;

 /*Classifying Different Data*/

 for (int i=0;i<3618;i+=3) //cause that is how long the variable "line" is

in characters (essentially, length(line))

 //math checks out: 3618/3 = 1206

 {

 //create a string from two characters:

 std::string myByteString = std::string() + line[i+1] + line[i+2];

//e.g. 'f'+'f' = "ff"

 //turn a string into a number (accepts many types)

34

 uint16_t x; //for some reason, the function below doesn't like

uint8_t though, but works for uint16_t >> so, I will convert later (see

below).

 std::stringstream ss;

 ss << std::hex << myByteString; //<<here's that string I made

 ss >> x;

 uint8_t y = (uint8_t)x; //convert from uint16_t to uint8_t >> will

work cause the biggest grabbed values will be a byte

 dataIn[spot] = y; //load it into our array

 spot = spot+1;

 }

 DataPacket myPacket = DataPacket(dataIn);

 pointerToPermanentMB.readNewPacket(myPacket);

/*Dan's Program END*/

}

Data organization:

The following code is the hierarchy of classes in C++ used to organize the lidar data, as well as a

main file (main.cpp) demonstrating how to send data packets in text file format to a MasterBlock object.

Notice that in this example, every text file is named in the format “dataPacket[#].txt.” Point Cloud

Library (PCL) is necessary for the visualization of the data in a MasterBlock. The file mbtopcl.cpp is used

to convert MasterBlock objects to PCL format to be used in this visualization.

 To create text files in the appropriate format, please see the MATLAB (.m) file at the bottom of

the data organization section. Also notice that header (.h) files were not included in this document to save

space, but can be reconstructed using the functions as seen in the provided .cpp files.

//Dan Kubik

//Bradley University

//Department of Electrical and Computer Engineering

//April 11, 2016

//main.cpp

//Converting incoming text files of lidar data to PCL point clouds and .pcd files

#include <iostream>

#include "recDataPoint.h"

#include "masterBlock.h"

#include "mbtopcl.h"

#include <cstdint>

#include <stdio.h>

#define _CRT_SECURE_NO_WARNINGS

35

//for reading a text file

#include <fstream>

#include <string>

using namespace std;

//for the string to hex conversion (and the backwards '>>')

#include <sstream>

#include <pcl/visualization/cloud_viewer.h> //for cloud viewer

#include <memory>

//for writing to a pcd file

#include <pcl/io/pcd_io.h>

#include <pcl/point_types.h>

boost::shared_ptr<pcl::visualization::PCLVisualizer>

rgbVis(pcl::PointCloud<pcl::PointXYZRGB>::ConstPtr cloud)

{

 // --

 // -----Open 3D viewer and add point cloud-----

 // --

 boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new

pcl::visualization::PCLVisualizer("3D Viewer"));

 viewer->setBackgroundColor(0, 0, 0);

 pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB>

rgb(cloud);

 viewer->addPointCloud<pcl::PointXYZRGB>(cloud, rgb, "sample cloud");

 viewer-

>setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE,

3, "sample cloud");

 viewer->addCoordinateSystem(1.0);

 viewer->initCameraParameters();

 return (viewer);

}

unsigned int text_id = 0;

void keyboardEventOccurred(const pcl::visualization::KeyboardEvent &event,

 void* viewer_void)

{

 boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer =

*static_cast<boost::shared_ptr<pcl::visualization::PCLVisualizer> *>

(viewer_void);

 if (event.getKeySym() == "r" && event.keyDown())

 {

 std::cout << "r was pressed => removing all text" << std::endl;

 char str[512];

 for (unsigned int i = 0; i < text_id; ++i)

 {

 sprintf(str, "text#%03d", i);

 viewer->removeShape(str);

36

 }

 text_id = 0;

 }

}

void mouseEventOccurred(const pcl::visualization::MouseEvent &event,

 void* viewer_void)

{

 boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer =

*static_cast<boost::shared_ptr<pcl::visualization::PCLVisualizer> *>

(viewer_void);

 if (event.getButton() == pcl::visualization::MouseEvent::LeftButton &&

 event.getType() ==

pcl::visualization::MouseEvent::MouseButtonRelease)

 {

 std::cout << "Left mouse button released at position (" <<

event.getX() << ", " << event.getY() << ")" << std::endl;

 char str[512];

 sprintf(str, "text#%03d", text_id++);

 viewer->addText("clicked here", event.getX(), event.getY(), str);

 }

}

int main()

{

 MasterBlock marco = MasterBlock(315,45);

 //MasterBlock marco = MasterBlock(0,359);

 for (int loop=1;loop<336;loop++) //loop through the files called

dataPacket1 through 335

 //for (int loop=1;loop<2;loop++)

 {

 // reading a text file

 string line;

 //converting int to string: (the loop number)

 string Result; // string which will contain the result

 ostringstream convert; // stream used for the conversion

 convert << loop; // insert the textual representation of

'Number' in the characters in the stream

 //converting loop#^^ to a string

 Result = convert.str(); // set 'Result' to the contents of the

stream e.g. now = "123"

 string hereIsMyFileName = "dataPacket" + Result + ".txt";

 ifstream myfile (hereIsMyFileName); //e.g. "dataPacket.txt"

 if (myfile.is_open())

 {

 while (! myfile.eof())

37

 {

 getline (myfile,line);

 cout << line << endl;

 }

 myfile.close();

 }

 else cout << "Unable to open file";

 uint8_t dataIn[1206];

 int spot = 0;

 for (int i=0;i<3618;i+=3) //cause that is how long the variable

"line" is in characters (essentially, length(line))

 //math checks out: 3618/3 = 1206

 {

 //create a string from two characters:

 std::string myByteString = std::string() + line[i+1] +

line[i+2]; //e.g. 'f'+'f' = "ff"

 //turn a string into a number (accepts many types)

 uint16_t x; //for some reason, the function below doesn't

like uint8_t though, but works for uint16_t >> so, I will convert later (see

below).

 std::stringstream ss;

 ss << std::hex << myByteString; //<<here's that string I made

 ss >> x;

 uint8_t y = (uint8_t)x; //convert from uint16_t to uint8_t >>

will work cause the biggest grabbed values will be a byte

 dataIn[spot] = y; //load it into our array

 spot = spot+1;

 }

 DataPacket myPacket = DataPacket(dataIn);

 marco.readNewPacket(myPacket); //the old packet should be destoyed

after every loop, and the default constructor should take effect

 if (marco.isMasterBlockReadyYet()) //stop if the masterBlock is

filled

 {

 break;

 }

 }//end for-loop

 //^^At this point in code, MasterBlock has now been created and is ready to

use!

38

 pcl::PointCloud<pcl::PointXYZRGB> convertedCloud =

mbtopclRGB(marco.getSelectionPointer(),marco.getSelectionSize());

 pcl::PointCloud<pcl::PointXYZRGB>::Ptr cldptr(&convertedCloud);

 //HalfDataBlock * gimmeThe180Data = marco.get180Pointer();

 //HalfDataBlock sel0 = gimmeThe180Data[904];

 //HalfDataBlock sel1 = gimmeThe180Data[15];

 //HalfDataBlock sel2 = gimmeThe180Data[101];

 //HalfDataBlock sel3 = gimmeThe180Data[304];

 //HalfDataBlock * gimmeThe180Data = marco.get180Pointer();

 boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer;

 viewer = rgbVis(cldptr);

 //--------------------

 // -----Main loop-----

 //--------------------

 //WRITE PCD

 //pcl::io::savePCDFileASCII ("ren_90.pcd", convertedCloud);

 //std::cerr << "Saved " << convertedCloud.points.size () << " data points to

test_pcd.pcd." << std::endl;

 //for (size_t i = 0; i < convertedCloud.points.size (); ++i)

 //std::cerr << " " << convertedCloud.points[i].x << " " <<

convertedCloud.points[i].y << " " << convertedCloud.points[i].z << std::endl;

 //RUN VIEWER

 while (!viewer->wasStopped())

 {

 viewer->spinOnce(100);

 //boost::this_thread::sleep(boost::posix_time::microseconds(100000));

//not sure why this doesn't work...don't need it though

 //pcl_sleep(0.01); //This is added by me (from a Bastian file) -

builds...but has apparently no affect.

 }

 ///

///

 //breakpoint so I can see the console window...

 return 0;

}

//Dan Kubik

//Bradley University

39

//Department of Electrical and Computer Engineering

//April 11, 2016

//sphDataPoint.cpp - the actual functions that make up the class (defined in the

.h file)

#include <iostream>

#include "sphDataPoint.h"

//constructors

SphDataPoint::SphDataPoint() //default constructor

{

 distance = 0.0;

 reflectivity = 0;

 altitudinalAngle = 0;

}

SphDataPoint::SphDataPoint(double dist, unsigned int refl, unsigned int

laserNumber)

{

 distance = dist; //gimme

 reflectivity = refl; //gimme

 if (laserNumber == 0)

 {altitudinalAngle = -15;}

 else if (laserNumber == 1)

 {altitudinalAngle = 1;}

 else if (laserNumber == 2)

 {altitudinalAngle = -13;}

 else if (laserNumber == 3)

 {altitudinalAngle = 3;}//the one mistyped on datasheet (fixed here)

 else if (laserNumber == 4)

 {altitudinalAngle = -11;}

 else if (laserNumber == 5)

 {altitudinalAngle = 5;}

 else if (laserNumber == 6)

 {altitudinalAngle = -9;}

 else if (laserNumber == 7)

 {altitudinalAngle = 7;}

 else if (laserNumber == 8)

 {altitudinalAngle = -7;}

 else if (laserNumber == 9)

 {altitudinalAngle = 9;}

 else if (laserNumber == 10)

 {altitudinalAngle = -5;}

 else if (laserNumber == 11)

 {altitudinalAngle = 11;}

 else if (laserNumber == 12)

 {altitudinalAngle = -3;}

 else if (laserNumber == 13)

 {altitudinalAngle = 13;}

 else if (laserNumber == 14)

40

 {altitudinalAngle = -1;}

 else if (laserNumber == 15)

 {altitudinalAngle = 15;}

 else

 {altitudinalAngle = 0;} //if this happens, bad on me

}

SphDataPoint::~SphDataPoint() //destructor

{

 //nothing! yay

}

//methods (functions)

double SphDataPoint::getDistance()

{

 return distance;

}

unsigned int SphDataPoint::getReflectivity()

{

 return reflectivity;

}

signed int SphDataPoint::getAltitudinalAngle()

{

 return altitudinalAngle;

}

//Dan Kubik

//Bradley University

//Department of Electrical and Computer Engineering

//April 11, 2016

//sphDataPoint.cpp - the actual functions that make up the class (defined in the

.h file)

#include <iostream>

#include "recDataPoint.h"

#include <math.h> //for sin/cos

#define PI 3.14159265

//constructors

RecDataPoint::RecDataPoint() //default constructor

{

 X = 0;

 Y = 0;

 Z = 0;

 reflectivity = 0;

}

41

RecDataPoint::RecDataPoint(SphDataPoint point, double azimuth)

{

 X =

point.getDistance()*cos(point.getAltitudinalAngle()*PI/180)*sin(azimuth*PI/180);

 Y =

point.getDistance()*cos(point.getAltitudinalAngle()*PI/180)*cos(azimuth*PI/180);

 Z = point.getDistance()*sin(point.getAltitudinalAngle()*PI/180);

 reflectivity = point.getReflectivity();

}

RecDataPoint::~RecDataPoint() //destructor

{

 //nothing! yay

}

//methods (functions)

double RecDataPoint::getX()

{

 return X;

}

double RecDataPoint::getY()

{

 return Y;

}

double RecDataPoint::getZ()

{

 return Z;

}

unsigned int RecDataPoint::getReflectivity()

{

 return reflectivity;

}

//Dan Kubik

//Bradley University

//Department of Electrical and Computer Engineering

//April 11, 2016

//halfDataBlock.cpp

#include <iostream>

#include "halfDataBlock.h"

//constructors

HalfDataBlock::HalfDataBlock() //default constructor

{

 azimuth = 0.0;

 for (int i=0;i<16;i++) //counts 0 to 15

42

 {dataPoints[i]=SphDataPoint();} //construct a SphDataPoint (16 times)

 // ^^^using default constructor - exciting!

}

HalfDataBlock::HalfDataBlock(uint8_t data[], double azimuthAngle) //receiving 48

bytes of unsorted data...(here is where the sorting will go down)

{

 //const int sizeOfData = 48; //cause 16*3 bytes each (2 distance, 1

reflectivity)

 azimuth = azimuthAngle; //pass along value

 for (int i=0;i<16;i++) //counts 0 to 15 for each of the SphDataPoint's it's

going to create

 {

 double distTemp = ((double)((data[(i+1)*3-2]<<8) + data[(i+1)*3-

3]))/100;

 unsigned int reflTemp = (int)(data[(i+1)*3-1]);

 dataPoints[i] = SphDataPoint(distTemp, reflTemp, i); //create a new

SphDataPoint (x16)

 }

}

HalfDataBlock::~HalfDataBlock() //destructor

{

 //nothing! yay (cause never used new/delete)

}

//methods (functions)

SphDataPoint HalfDataBlock::getDataPoint(unsigned int n)

{

 return dataPoints[n];

}

double HalfDataBlock::getAzimuth()

{

 return azimuth;

}

//Dan Kubik

//Bradley University

//Department of Electrical and Computer Engineering

//April 11, 2016

//dataBlock.cpp

#include <iostream>

#include "dataBlock.h"

43

//constructors

DataBlock::DataBlock() //default constructor

{

 for (int i=0;i<2;i++) //counts 0 to 1

 {halfBlocks[i]=HalfDataBlock();} //construct a HalfDataBlock (2 times)

 // ^^^using default constructor - exciting!

}

DataBlock::DataBlock(uint8_t data[], double nextAzimuth) //receiving 98 bytes of

unsorted data

{

 //const int sizeOfData = 98; //cause (16*3 bytes each (2 distance, 1

reflectivity) *2) + 2 for leading azimuth\

 double currentAzimuth = ((double)((data[1]<<8) + data[0]))/100; //will

always be first two values in data array

 double derivedAzimuth = 0;

 //first, adjust for a rollover from 359.99 to 0 degrees

 if (nextAzimuth < currentAzimuth)

 {nextAzimuth = nextAzimuth+360;}

 //perform the interpolation

 derivedAzimuth = currentAzimuth + ((nextAzimuth - currentAzimuth)/2);

 //correct for any rollover over from 359.99 to 0 degrees

 if (derivedAzimuth>360)

 {derivedAzimuth = derivedAzimuth-360;}

 halfBlocks[0] = HalfDataBlock(&data[2], currentAzimuth); //create a new

HalfDataBlock //points to first distance measurement in data array

 halfBlocks[1] = HalfDataBlock(&data[50], derivedAzimuth); //create the

second HalfDataBlock //points to 48 bytes later than 1st halfBlock

}

DataBlock::~DataBlock() //destructor

{

 //nothing! yay (cause never used new/delete)

}

//methods (functions)

HalfDataBlock DataBlock::getHalfDataBlock(unsigned int n)

{

 if (n<2)

 {return halfBlocks[n];}

 else

 {//something's wrong! (my bad)

 //not sure how we want to have an error signal pop up...but if I did,

it'd go here

 return HalfDataBlock();

44

 }

}

//Dan Kubik

//Bradley University

//Department of Electrical and Computer Engineering

//April 11, 2016

//dataPacket.cpp

#include <iostream>

#include "dataPacket.h"

//constructors

DataPacket::DataPacket() //default constructor

{

 for (int i=0;i<12;i++) //counts 0 to 11

 {blocks[i]=DataBlock();} //construct a DataBlock (12 times)

 // ^^^using default constructor - exciting!

 firstAzimuth = 0;

 lastAzimuth = 0;

 timeStamp = 0;

}

DataPacket::DataPacket(uint8_t data[]) //receiving 1206 bytes of unsorted data

(header removed)

{ //alternate constructor

 for (int i=0;i<12;i++)

 {

 if (i<11)

 {

 blocks[i] = DataBlock(&data[(100*i)+2],

(((double)((data[(100*(i+1)+3)]<<8) + data[100*(i+1)+2]))/100));

 //^^ sends 98 bytes and the azimuth of the next block

 }

 else //i==11

 {

 double previousBlockAzimuth = (((double)((data[(100*(i-

1)+3)]<<8) + data[100*(i-1)+2]))/100);

 double currentBlockAzimuth = (((double)((data[(100*i)+3]<<8) +

data[(100*i)+2]))/100);

 double estimatedNextAzimuth = 0;

 if (currentBlockAzimuth>previousBlockAzimuth) //did not cross

the 360 threshold

 {

 estimatedNextAzimuth = currentBlockAzimuth*2 -

previousBlockAzimuth;

 }

45

 else //it moved around the 360 hump

 {

 estimatedNextAzimuth = currentBlockAzimuth*2 + 360 -

previousBlockAzimuth;

 }

 if (estimatedNextAzimuth >=360)

 {estimatedNextAzimuth = estimatedNextAzimuth-360;}

 blocks[i] = DataBlock(&data[(100*i)+2], estimatedNextAzimuth);

 }

 }

 firstAzimuth = blocks[0].getHalfDataBlock(0).getAzimuth();

 lastAzimuth = blocks[11].getHalfDataBlock(1).getAzimuth();

 timeStamp = (double)((data[1203]<<24) + (data[1202]<<16) + (data[1201]<<8)

+ data[1200]);

}

DataPacket::~DataPacket() //destructor

{

 //nothing! yay (cause never used new/delete)

}

//methods (functions)

DataBlock DataPacket::getDataBlock(unsigned int n)

{

 return blocks[n]; //must be within 0 to 11

}

double DataPacket::getTimeStamp()

{

 return timeStamp;

}

double DataPacket::getLastAzimuth()

{

 return lastAzimuth;

}

double DataPacket::getFirstAzimuth()

{

 return firstAzimuth;

}

//Dan Kubik

//Bradley University

//Department of Electrical and Computer Engineering

//April 11, 2016

//masterBlock.cpp

46

#include <iostream>

#include "masterBlock.h"

#define FRONTRANGE 180 //desired range is 180 degrees in front of boat

//constructors

MasterBlock::MasterBlock() //default constructor

{

 desiredStartingAngle = 0;

 desiredEndingAngle = 0;

 ourStartAngle = 0;

 doneFlag = false;

 firstAssignedYet = false;

 pointer180 = 0; //points to the array

 pointerSelection = 0; //points to the array

 howMany180HalfBlocks = 0; //essentially a counter

 howManySelectionHalfBlocks = 0; //essentially a counter

 LastAzimuthFromLastPacket = 0;

}

MasterBlock::MasterBlock(double startAngle, double endAngle)

{

 desiredStartingAngle = startAngle;

 desiredEndingAngle = endAngle;

 ourStartAngle = 0; //no clue yet

 doneFlag = false;

 firstAssignedYet = false;

 double selectionSize;

 if (endAngle < startAngle)

 {selectionSize = 360+endAngle-startAngle;}

 else

 {selectionSize = endAngle-startAngle;}

 int size180 = ((int)(FRONTRANGE/0.1))+10;//10 additional scan overflow

safeties

 int selection = ((int)(selectionSize/0.1))+10;//10 additional scan overflow

safeties

 //pointer = new type [number_of_elements]

 pointer180 = new HalfDataBlock [size180];//if range is 180, this will be

1810

 pointerSelection = new HalfDataBlock [selection];

 howMany180HalfBlocks = 0; //to be added to later

 howManySelectionHalfBlocks = 0; //to be added to later

 LastAzimuthFromLastPacket = -1;//we haven't read anything yet...

}

MasterBlock::~MasterBlock() //destructor

{

 delete [] pointer180;

47

 delete [] pointerSelection;

}

//methods (functions)

bool MasterBlock::isMasterBlockReadyYet()

{

 return doneFlag;

}

HalfDataBlock * MasterBlock::get180Pointer()

{

 return pointer180;

}

HalfDataBlock * MasterBlock::getSelectionPointer()

{

 return pointerSelection;

}

unsigned int MasterBlock::get180Size()

{

 return howMany180HalfBlocks;

}

unsigned int MasterBlock::getSelectionSize()

{

 return howManySelectionHalfBlocks;

}

void MasterBlock::readNewPacket(DataPacket newPacket) //receiving 1206 bytes of

unsorted data (header removed)

{

 if (doneFlag==false)//if it's 'TRUE', we shouldn't want to read any more

data for this MasterBlock

 {

 bool firstTime = false; //asume at start

 bool originalInThisPacket = false; //asume at start

 bool wePassedIt = false; //asume at start

 if (firstAssignedYet==false) //check if this is our first packet or

not

 {

 ourStartAngle = newPacket.getFirstAzimuth(); //here is the

azimuth we start with!

 firstAssignedYet=true; //override flag

 firstTime = true; //to remember for the rest of this packet

reading

 //LastAzimuthFromLastPacket = -1; //I think this should still

not have a known value...

 }

48

 //check: is the original azimuth in THIS (newly received)

dataPacket?? (not the first packet)

 if (firstTime==false) //not the first packet read in the masterBlock

 {

//

////////////

 //check for if the end azimuth to look for is in current packet

 if (newPacket.getLastAzimuth() < newPacket.getFirstAzimuth())

//the packet straddles the 0 degree mark

 {

 if(ourStartAngle>=newPacket.getFirstAzimuth())

 {originalInThisPacket = true;} //get ready to shut down

the read function of this packet

 else if(ourStartAngle<=newPacket.getLastAzimuth())

 {originalInThisPacket = true;} //get ready to shut down

the read function of this packet

 }

 else //normal packet: does not straddle 0 degree mark

 {

 if(ourStartAngle>=newPacket.getFirstAzimuth() &&

ourStartAngle<=newPacket.getLastAzimuth())

 {originalInThisPacket = true;} //get ready to shut down

the read function of this packet

 }

 ///

///////

 //now, check for the strange case that the original azimuth has

been missed;

 //it happened to fall between two separate packets the second

time around

 if (newPacket.getFirstAzimuth() <

LastAzimuthFromLastPacket)//this packet and the last packet straddles the 0 degree

mark

 {

 if(ourStartAngle>=LastAzimuthFromLastPacket) //shouldn't

be equal to...but w/e couldn't hurt

 {wePassedIt = true;}

 else if(ourStartAngle<=newPacket.getFirstAzimuth())

 {wePassedIt = true;}

 }

 else //this packet and last packet do not straddle 0 mark

 {

 if(ourStartAngle>=LastAzimuthFromLastPacket &&

ourStartAngle<=newPacket.getFirstAzimuth())

 {wePassedIt = true;}

 }

 }

//

//

49

//Now for the big question:

 //Do we want this information?

 //(loop through all information and check to see if this data fits in

either of the 180 and selected ranges

 if (wePassedIt == false)//if it is TRUE, we do NOT want to add it to

this MasterBlock

 {

 for (int blockCounter=0;blockCounter<12;blockCounter++) //loop

through blocks (0-11)

 {

 if (doneFlag==false) //because it can become true inside

of this loop

 {

 double temp0 =

newPacket.getDataBlock(blockCounter).getHalfDataBlock(0).getAzimuth(); //known

azimuth

 double temp1 =

newPacket.getDataBlock(blockCounter).getHalfDataBlock(1).getAzimuth();

//interpolated one

 if (originalInThisPacket==true) //we need to be

cautious //notice: (only true beyond 1st packet)

 {

 if(newPacket.getLastAzimuth() <

newPacket.getFirstAzimuth())//this packet straddles 0 degree mark

 {

 if(temp0<LastAzimuthFromLastPacket)//We have entirely passed 0 degrees

(since the last block in this packet)

 {//somewhat of a misnomer^^^: here it

technically means lastAzimuthRead (old temp1)

 if(ourStartAngle>350)//originalAzimuth was on the 350s "high" side (not our

side - we have already passed it)

 { //(this shouldn't happen

lol). Since original is in this packet, and this is only true on after a full 360

 //degrees rotation, if we

have gone beyond it and hit 0, something is up

 doneFlag==true; //kill it

for sure this time

 }

 else //originalAzimtuh is on

the 0s-10s side (our side) of the 0 degree (we have to look out for it)

 {

 if(ourStartAngle<=temp0)//it is in between this temp0 and the last temp1

(or == temp0)

 {//aka we want nothing

anymore! Kill the read function!

 doneFlag = true;

 }

50

 else

if(ourStartAngle>temp0 && ourStartAngle<=temp1)//it is in between temp0 and temp1

or is temp1

 {//we still need to check

temp0, but temp1 is unwanted

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

 doneFlag = true;

//kill read function!

 }

 else //it's in this

packet, but NOT near these two azimuths (check as normal)

 {

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

 if(check180Range(temp1)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(1),

true);}

 if(checkSelectedRange(temp1)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(1),

false);}

 }

 }

 }

 else if(temp0>temp1)//0 degrees is

smack dab between temp0 and temp1

 {

51

 if(ourStartAngle>350)//originalAzimuth was on the 350s "high" side

 {

 if(ourStartAngle<=temp0)//we've passed it

 {doneFlag==true; //kill

it if it isn't already dead

 }

 else//temp0 is still

valuable

 {

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

 doneFlag=true;

//now kill it

 }

 }

 else //originalAzimtuh is on

the 0s-10s side

 {

 if(ourStartAngle>temp1)//both temp1 and temp0 are valuable (we haven't hit

it yet)

 {

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

 if(check180Range(temp1)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(1),

true);}

52

 if(checkSelectedRange(temp1)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(1),

false);}

 }

 else //

(ourStartAngle<=temp1) //only temp0 is valuable

 {

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

 doneFlag = true;

//kill it

 }

 }

 }

 else if(temp0==0)

 {

 if(ourStartAngle>350)//originalAzimuth was on the 350s "high" side

 {//we've already passed it

 doneFlag=true;

 }

 else //originalAzimtuh is on

the 0s-10s side

 {

 if(ourStartAngle>temp1)//both temp1 and temp0 are valuable (we haven't hit

it yet)

 {

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

53

 if(check180Range(temp1)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(1),

true);}

 if(checkSelectedRange(temp1)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(1),

false);}

 }

 else //

(ourStartAngle<=temp1) //only temp0 is valuable

 {

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

 doneFlag = true;

 }

 }

 }

 else if(temp1==0)

 {

 if(ourStartAngle>350)//originalAzimuth was on the 350s "high" side

 {

 if(ourStartAngle <=

temp0)//we've already passed it

 {doneFlag=true;

 }

 else //temp0 is valuable

temp1 forgetaboutit

 {

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

54

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

 doneFlag = true;

 }

 }

 else //originalAzimtuh is on

the 0s-10s side

 {

 if (ourStartAngle >=

temp1)//temp0 is valuable

 {

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

 doneFlag = true;

 }

 else //neither temp0 or

temp1 is valuable

 {doneFlag=true;

 }

 }

 }

 else //we have not yet hit 0 degrees,

though it will come sometime in this packet

 {//treat it like normal...

 if(ourStartAngle<=temp0)//it is

in between this temp0 and the last temp1 (or temp0)

 {//aka we want nothing anymore!

Kill the read function!

 doneFlag = true;

 }

 else if(ourStartAngle>temp0 &&

ourStartAngle<=temp1)//it is in between temp0 and temp1 or is temp1

 {//we still need to check

temp0, but temp1 is unwanted

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

55

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

 doneFlag = true; //kill

read function!

 }

 else //it's in this packet, but

NOT near these two azimuths (check as normal)

 {

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

 if(check180Range(temp1)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(1),

true);}

 if(checkSelectedRange(temp1)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(1),

false);}

 }

 }

 }

 else//this packet does NOT straddle 0 degree

mark (yay)

 {

 if(ourStartAngle<=temp0)//it is in

between this temp0 and the last temp1 (or == temp0)

 {//aka we want nothing anymore! Kill

the read function!

 doneFlag = true;

 }

 else if(ourStartAngle>temp0 &&

ourStartAngle<=temp1)//it is in between temp0 and temp1 or is temp1

 {//we still need to check temp0, but

temp1 is unwanted

 if(check180Range(temp0)==true)

56

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

 doneFlag = true; //kill read

function!

 }

 else //it's in this packet, but NOT

near these two azimuths (check as normal)

 {

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

 if(check180Range(temp1)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(1),

true);}

 if(checkSelectedRange(temp1)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(1),

false);}

 }

 }

 }

 else //we don't need to be cautious...check as

normal...

 {

 if(check180Range(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

true);}

 if(checkSelectedRange(temp0)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(0),

false);}

57

 if(check180Range(temp1)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(1),

true);}

 if(checkSelectedRange(temp1)==true)

 {addToMasterBlock(newPacket.getDataBlock(blockCounter).getHalfDataBlock(1),

false);}

 }

 //need to update this: LastAzimuthFromLastPacket -

updates every time cause we will use it for other stuff too (see misnomer)

 LastAzimuthFromLastPacket = temp1;

 }

 }//<<<end for loop

 }

 else //wePassedIt==true

 {doneFlag=true;//kill the read functionality!

 }

 }//end doneFlag==false

}

void MasterBlock::addToMasterBlock(HalfDataBlock entry, bool trueIs180)

{

 if (trueIs180==true)//add to 180 block

 {

 pointer180[howMany180HalfBlocks] = entry;

 howMany180HalfBlocks = howMany180HalfBlocks + 1; //essentially a

counter

 }

 else//add to selection block

 {

 pointerSelection[howManySelectionHalfBlocks] = entry;

 howManySelectionHalfBlocks = howManySelectionHalfBlocks + 1;

 }

}

bool MasterBlock::check180Range(double halfBlockAzimuth)

{//the assumption is that this is a value still within the 360 range

 double halfRange = FRONTRANGE/2.0;

 if((halfBlockAzimuth >= 360-halfRange) || (halfBlockAzimuth <= halfRange))

//yes, in "180" range

 {return true;}

 else

 {return false;}

}

58

bool MasterBlock::checkSelectedRange(double halfBlockAzimuth)

{//the assumption is that this is a value still within the 360 range

 if(desiredStartingAngle>desiredEndingAngle)//selected range straddles 0

degrees

 {

 if(halfBlockAzimuth>=desiredStartingAngle ||

halfBlockAzimuth<=desiredEndingAngle)

 {return true;}

 else

 {return false;}

 }

 else //selected range is "normal" and does not straddle 0 degrees

 {

 if(halfBlockAzimuth>=desiredStartingAngle &&

halfBlockAzimuth<=desiredEndingAngle)

 {return true;}

 else

 {return false;}

 }

}

//Dan Kubik

//Bradley University

//Department of Electrical and Computer Engineering

//April 11, 2016

//mbtopcl.cpp

#include <iostream>

#include "mbtopcl.h"

#include <pcl/io/pcd_io.h>

#include <pcl/point_types.h>

//function mbtopcl:

//Converts array HalfDataBlocks to XYZ (recDataPoints) to to PCL point cloud of

type XYZ

pcl::PointCloud<pcl::PointXYZ> mbtopcl(HalfDataBlock * hdbPointer, unsigned int

size)

{

 pcl::PointCloud<pcl::PointXYZ> cloud; //creates type XYZI type of PCL point

cloud (can be changed later...)

 //Change cloud properties:

 cloud.width = size*16; //because 16 points per HalfDataBlock

 cloud.height = 1; //set to 1 for unorganized datasets (aka ours)

 cloud.is_dense = false; //no points will have infinite as their value

 cloud.points.resize (cloud.width * cloud.height);

 int cloudTracker = 0;

59

 for (int i1 = 0; i1<size; i1++) //loop through the HalfDataBlocks (through

main array of them)

 {

 HalfDataBlock hdb = hdbPointer[i1];

 for (int i2 = 0; i2<16; i2++) //looping through the 16 sphDataBlocks

 {

 SphDataPoint newSphPoint = hdb.getDataPoint(i2); //extract

points 0-15

 RecDataPoint newRecPoint =

RecDataPoint(newSphPoint,hdb.getAzimuth()); //create X,Y,Z,R rectangular Data

Point

 cloud.points[cloudTracker].x = newRecPoint.getX();

 cloud.points[cloudTracker].y = newRecPoint.getY();

 cloud.points[cloudTracker].z = newRecPoint.getZ();

 cloudTracker = cloudTracker +1; //keep looping through the PCL

cloud - no real organization...

 }

 }

 return cloud;

}

pcl::PointCloud<pcl::PointXYZI> mbtopclI(HalfDataBlock * hdbPointer, unsigned int

size)

{

 pcl::PointCloud<pcl::PointXYZI> cloud; //creates type XYZI type of PCL

point cloud (can be changed later...)

 //Change cloud properties:

 cloud.width = size*16; //because 16 points per HalfDataBlock

 cloud.height = 1; //set to 1 for unorganized datasets (aka ours)

 cloud.is_dense = false; //no points will have infinite as their value

 cloud.points.resize (cloud.width * cloud.height);

 int cloudTracker = 0;

 for (int i1 = 0; i1<size; i1++) //loop through the HalfDataBlocks (through

main array of them)

 {

 HalfDataBlock hdb = hdbPointer[i1];

 for (int i2 = 0; i2<16; i2++) //looping through the 16 sphDataBlocks

 {

 SphDataPoint newSphPoint = hdb.getDataPoint(i2); //extract

points 0-15

 RecDataPoint newRecPoint =

RecDataPoint(newSphPoint,hdb.getAzimuth()); //create X,Y,Z,R rectangular Data

Point

60

 cloud.points[cloudTracker].x = newRecPoint.getX();

 cloud.points[cloudTracker].y = newRecPoint.getY();

 cloud.points[cloudTracker].z = newRecPoint.getZ();

 cloud.points[cloudTracker].intensity =

newRecPoint.getReflectivity();

 cloudTracker = cloudTracker +1; //keep looping through the PCL

cloud - no real organization...

 }

 }

 return cloud;

}

pcl::PointCloud<pcl::PointXYZRGB> mbtopclRGB(HalfDataBlock * hdbPointer, unsigned

int size)

{

 pcl::PointCloud<pcl::PointXYZRGB> cloud; //creates type XYZI type of PCL

point cloud (can be changed later...)

 //Change cloud properties:

 cloud.width = size*16; //because 16 points per HalfDataBlock

 cloud.height = 1; //set to 1 for unorganized datasets (aka ours)

 cloud.is_dense = false; //no points will have infinite as their value

 cloud.points.resize (cloud.width * cloud.height);

 int cloudTracker = 0;

 for (int i1 = 0; i1<size; i1++) //loop through the HalfDataBlocks (through

main array of them)

 {

 HalfDataBlock hdb = hdbPointer[i1];

 for (int i2 = 0; i2<16; i2++) //looping through the 16 sphDataBlocks

 {

 SphDataPoint newSphPoint = hdb.getDataPoint(i2); //extract

points 0-15

 RecDataPoint newRecPoint =

RecDataPoint(newSphPoint,hdb.getAzimuth()); //create X,Y,Z,R rectangular Data

Point

 cloud.points[cloudTracker].x = newRecPoint.getX();

 cloud.points[cloudTracker].y = newRecPoint.getY();

 cloud.points[cloudTracker].z = newRecPoint.getZ();

 //making up a color scheme: lower reflectivity = red, highest

reflectivityfarthest = blue

 cloud.points[cloudTracker].r = 255 -

newRecPoint.getReflectivity();

 cloud.points[cloudTracker].g = 0;

61

 cloud.points[cloudTracker].b = newRecPoint.getReflectivity();

 cloudTracker = cloudTracker +1; //keep looping through the PCL

cloud - no real organization...

 }

 }

 return cloud;

}

//Alternate way to load a point:

 //pcl::PointXYZRGB o;

 //o.x = newRecPoint.getX();

 //o.y = newRecPoint.getY();

 //o.z = newRecPoint.getZ();

 //o.r = 255 - newRecPoint.getReflectivity();

 //o.g = 0;

 //o.b = newRecPoint.getReflectivity();

 //cloud.points[cloudTracker] = o;

%{
 Dan Kubik
 ECE 498
 Senior Project

 Designed to read a Wireshark formatted text file and create multiple
 files each based on a packet that can be sent in to my C++ program
 involving MasterBlocks

 February 9, 2016

 createTexts.m

%}

clc;
close all;
clear all;
%% Initial file read and data extraction
readname = 'C:\frameGrab.txt';

fileID_read = fopen(readname,'r');

scanIn = textscan(fileID_read,'%s'); %saves each "word" as a string
scanIn = scanIn{1};

fclose(fileID_read);
%% Writing to Multiple Files
writeCounter =0;

for loop=1:length(scanIn)

62

 tempScanIn = scanIn(loop);
 tempScanIn = tempScanIn{1}; %converted to string
 if ~isempty(strfind(tempScanIn, '|ff|ff|ff|')) %there is an

|ff|ff|ff|...blah etc.
 temp = strfind(tempScanIn, '|ff|ee|'); %looking for our starting

point
 if ~isempty(temp)%(it exists)
% temp = temp{1};%convert into array of doubles
 writeCounter = writeCounter + 1; %starts at file#1
 writename = ['C:\dataPacket', num2str(writeCounter), '.txt'];
 fileID_write = fopen(writename,'w');

 stringToWrite = tempScanIn;
 stringToWrite = stringToWrite(temp(1):length(tempScanIn));

 fprintf(fileID_write,stringToWrite);

 fclose(fileID_write);
 end
 end
end

Data Processing:

The following code was used to create the overlay image using Barnes interpolation and to

implement the SIFT algorithm. Subsequent iterations of the Barnes interpolation are included in the file,

but were not found to be necessary for the lidar application, as they did not significantly improve the

quality of the image and created long run time of the code.

The SIFT file requires PCL to run.

%{

Dan Kubik

Bradley University

Department of Electrical and Computer Engineering

4/11/2016

barnesInterpolation.m

Testing the Barnes Interpolation/Analysis Method

Will import PCD Data using pcl functions I found online and writing the

barnes algorithm to interpolate data in a grid.

After reading Barnes' 1964 paper:

"A Technique for Maximizing Details in Numerical Weather Map Analysis"

%}

clc;

clear all;

close all;

63

% answer = loadpcd('ball_and_chair_45.pcd'); %it prints in the command window

the type of PCD

answer = loadpcd('ren_90.pcd'); %it prints in the command window the type of

PCD

X = answer(1,:);

Y = answer(2,:);

Z = answer(3,:);

R = answer(4,:);

G = answer(5,:);

B = answer(6,:);

% gridSizeX = 27;

% gridSizeZ = 18;

gridSizeX = 500; %just using X - See Below

% gridSizeZ = 54;

%% Desampling for improving interpolation speed

%Every 5?

sizeX = size(X);

sizeX = sizeX(2);

count = 1;

for loop = 1:5:sizeX

 newX(count) = X(loop);

 newZ(count) = Z(loop);

 newY(count) = Y(loop);

 newR(count) = R(loop);

 count = count + 1;

end

X = newX;

Z = newZ;

Y = newY;

R = newR;

v = Y;

%% Removing "Floor"/water by a filter of height

sizeX = size(X);

sizeX = sizeX(2);

count = 1;

for loop = 1:sizeX

 if (Z(loop)>=-0.46) %<< Using value since I know how tall scanner was on

chair

 %(It's good!)...so add

 newX2(count) = X(loop);

64

 newZ2(count) = Z(loop);

 newY2(count) = Y(loop);

 newR2(count) = R(loop);

 count = count + 1;

 end

end

X = newX2;

Z = newZ2;

Y = newY2;

R = newR2;

v = Y;

%%

% v = Y;

maxX = max(X);

maxZ = max(Z);

minX = min(X);

minZ = min(Z);

rangeZ = maxZ-minZ;

rangeX = maxX-minX;

sizeX = size(X);

sizeZ = size(Z);

sizeZ = sizeZ(2);

colors = zeros(sizeX(2),3);

%% Begin regular stuff

ratio1 = rangeX/gridSizeX;

gridSizeZ = round(rangeZ/ratio1);

xpoints = linspace(minX, maxX, gridSizeX);

zpoints = linspace(minZ, maxZ, gridSizeZ);

M = sizeX(2);

k = 5;

pointSetX = zeros(1, gridSizeX*gridSizeZ);

pointSetZ = zeros(1, gridSizeX*gridSizeZ);

plotcount = 1;

65

%CREATE GRID

for loop = 1:gridSizeX

 for loop2 = 1:gridSizeZ

 pointSetX(plotcount) = xpoints(loop);

 pointSetZ(plotcount) = zpoints(loop2);

 plotcount = plotcount+1;

 end

end

gridSize = gridSizeX*gridSizeZ;

firstGuess = zeros(gridSize,1); %initial guess!

%ACTUAL INTERPOLATION

for gLoop = 1:gridSize

 numSum = 0;

 denSum = 0;

 for jay = 1:M %X and Z are same size

 r = sqrt((pointSetX(gLoop)-X(jay))^2 + (pointSetZ(gLoop)-Z(jay))^2);

%distance to that point

 nthing = exp((-1*r^2)/4*k);

 numSum = numSum + (r*nthing*v(jay));

 denSum = denSum + r*nthing;

 end

 firstGuess(gLoop) = numSum/denSum;

end

%{

"At each data point (known), subtract from the reported value the value

obtained in the first-guess analysis at that point. The data point is

regarded as being in the center of the square formed by the 4 nearest grid

points, regardless of it's actual position within that area (use

coordinates). The interpolated value at the data point is determined by the

arithmatic average of the interpolated values at the 4 nearest grid points.

%}

 % If additional iterations are desired:

% v2 = zeros(M,1); %probably would over-write original values, but will keep

here for visualization purposes.

% guessAtKnown = zeros(M,1);

%

% for jay = 1:M %looping through known values

% %1 Determine nearest coordinates (Find closest Grid Points)

% xHigh = 0;

% xLow = 0;

% zHigh = 0;

% zLow = 0;

% xCoorHigh = 0;

% xCoorLow = 0;

% zCoorHigh = 0;

% zCoorLow = 0;

66

% xFlag = 0;

% zFlag = 0;

%

% for quickCheckX = 1:gridSizeX-1

% if xFlag ==0

% if(X(jay)>xpoints(quickCheckX) &&

X(jay)<xpoints(quickCheckX+1))

% xHigh = xpoints(quickCheckX+1);

% xLow = xpoints(quickCheckX);

% xCoorHigh = quickCheckX+1;

% xCoorLow = quickCheckX;

% xFlag = 1;

% elseif (X(jay)==xpoints(quickCheckX))

% xHigh = xpoints(quickCheckX+1);

% xLow = xpoints(quickCheckX);

% xCoorHigh = quickCheckX+1;

% xCoorLow = quickCheckX;

% xFlag = 1;

% elseif (quickCheckX==(gridSizeX-1) &&

X(jay)==xpoints(quickCheckX+1)) %could only ever happen on last iteration

% xHigh = xpoints(quickCheckX+1);

% xLow = xpoints(quickCheckX);

% xCoorHigh = quickCheckX+1;

% xCoorLow = quickCheckX;

% xFlag = 1;

% end

% end

% end

% for quickCheckZ = 1:gridSizeZ-1

% if zFlag==0

% if(Z(jay)>zpoints(quickCheckZ) &&

Z(jay)<zpoints(quickCheckZ+1))

% zHigh = zpoints(quickCheckZ+1);

% zLow = zpoints(quickCheckZ);

% zCoorHigh = quickCheckZ+1;

% zCoorLow = quickCheckZ;

% zFlag = 1;

% % fprintf('argument 1 = success, M=%d\n',jay);

% % fprintf('%d\n',quickCheckZ);

% elseif (Z(jay)==zpoints(quickCheckZ))

% zHigh = zpoints(quickCheckZ+1);

% zLow = zpoints(quickCheckZ);

% zCoorHigh = quickCheckZ+1;

% zCoorLow = quickCheckZ;

% zFlag = 1;

% % fprintf('argument 2 = success\n');

% elseif (quickCheckZ==(gridSizeZ-1) &&

Z(jay)==zpoints(quickCheckZ+1)) %could only ever happen on last iteration

% zHigh = zpoints(quickCheckZ+1);

67

% zLow = zpoints(quickCheckZ);

% zCoorHigh = quickCheckZ+1;

% zCoorLow = quickCheckZ;

% zFlag = 1;

% % fprintf('argument 3 = success\n');

% end

% end

% end

% %Coordinates identified!^

%

% % fprintf('x1=%d x2=%d z1=%d

z2=%d\n',xCoorLow,xCoorHigh,zCoorLow,zCoorHigh);

%

% value1 = zCoorLow*gridSizeX - mod(xCoorLow,gridSizeX);

% value2 = value1 + 1;

% value3 = zCoorHigh*gridSizeX - mod(xCoorLow,gridSizeX);

% value4 = value3 + 1;

%

% guessAtKnown(jay) =

(firstGuess(value1)+firstGuess(value2)+firstGuess(value3)+firstGuess(value4))

/4;

% %^"First guess Analysis" from values from first iteration

% end

%

% % 2nd Round of Interpolation

%

% secondGuess = zeros(gridSize,1); %initial guess!

%

% %Defining new v ('v2')

% for loop = 1:M

% if (isnan(guessAtKnown(loop)))

% v2(loop) = v(loop)-guessAtKnown(loop);

% else

% v2(loop) = 0; %have no helpful information to add

% end

% end

%

% for gLoop = 1:gridSize

% numSum = 0;

% denSum = 0;

% for jay = 1:M %X and Z are same size

% r = sqrt((pointSetX(gLoop)-X(jay))^2 + (pointSetZ(gLoop)-Z(jay)

)^2); %distance to that point

% nthing = exp((-1*r^2)/4*k);

% numSum = numSum + (r*nthing*v2(jay));

% denSum = denSum + r*nthing;

% end

% secondGuess(gLoop) = numSum/denSum;

% end

68

%% Colors and Plotting

colors2 = zeros(gridSize,3);

% % COLORS FOR CALCULATED DATA - 1 run

% colorRange = max(firstGuess) - min(firstGuess); %e.g. 3 between high and

low

% for colLoop = 1:gridSize

% colors2(colLoop, 1) = (firstGuess(colLoop)-min(firstGuess))/colorRange;

% colors2(colLoop,2) = 0;

% colors2(colLoop,3) = 1 - colors2(colLoop, 1);

% end

%Thresholded Colors for 1st Run

thresholds = linspace(min(firstGuess),max(firstGuess),10);

for colLoop = 1:gridSize

 if

(firstGuess(colLoop)>=thresholds(1)&&firstGuess(colLoop)<thresholds(2))

 colors2(colLoop,1) = 0.96;

 colors2(colLoop,2) = 0.87;

 colors2(colLoop,3) = 0.7;

 elseif

(firstGuess(colLoop)>=thresholds(2)&&firstGuess(colLoop)<thresholds(3))

 colors2(colLoop,1) = 0.13;

 colors2(colLoop,2) = 0.54;

 colors2(colLoop,3) = 0.13;

 elseif

(firstGuess(colLoop)>=thresholds(3)&&firstGuess(colLoop)<thresholds(4))

 colors2(colLoop,1) = 1;

 colors2(colLoop,2) = 1;

 colors2(colLoop,3) = 0;

 elseif

(firstGuess(colLoop)>=thresholds(4)&&firstGuess(colLoop)<thresholds(5))

 colors2(colLoop,1) = 0.53;

 colors2(colLoop,2) = 0.81;

 colors2(colLoop,3) = 0.98;

 elseif

(firstGuess(colLoop)>=thresholds(5)&&firstGuess(colLoop)<thresholds(6))

 colors2(colLoop,1) = 0;

 colors2(colLoop,2) = 0;

 colors2(colLoop,3) = 1;

 elseif

(firstGuess(colLoop)>=thresholds(6)&&firstGuess(colLoop)<thresholds(7))

69

 colors2(colLoop,1) = 0;

 colors2(colLoop,2) = 0;

 colors2(colLoop,3) = 0.5;

 elseif

(firstGuess(colLoop)>=thresholds(7)&&firstGuess(colLoop)<thresholds(8))

 colors2(colLoop,1) = 1;

 colors2(colLoop,2) = 0.65;

 colors2(colLoop,3) = 0;

 elseif

(firstGuess(colLoop)>=thresholds(8)&&firstGuess(colLoop)<thresholds(9))

 colors2(colLoop,1) = 1;

 colors2(colLoop,2) = 0;

 colors2(colLoop,3) = 0;

 elseif

(firstGuess(colLoop)>=thresholds(9)&&firstGuess(colLoop)<thresholds(10))

 colors2(colLoop,1) = 1;

 colors2(colLoop,2) = 0.41;

 colors2(colLoop,3) = 0.71;

 else %white is error

 colors2(colLoop,1) = 1;

 colors2(colLoop,2) = 1;

 colors2(colLoop,3) = 1;

 end

% colors2(colLoop, 1) = (firstGuess(colLoop)-min(firstGuess))/colorRange;

% colors2(colLoop,2) = 0;

% colors2(colLoop,3) = 1 - colors2(colLoop, 1);

end

% colors3 = zeros(gridSize,3);

% % COLORS FOR CALCULATED DATA - 2 runs

% colorRange = max(secondGuess) - min(secondGuess); %e.g. 3 between high and

low

% for colLoop = 1:gridSize

% colors3(colLoop, 1) = (secondGuess(colLoop)-

min(secondGuess))/colorRange;

% colors3(colLoop,2) = 0;

% colors3(colLoop,3) = 1 - colors3(colLoop, 1);

% end

% %COLORS FOR CALCULATED DATA - 2 runs LIDAR

% finalGuess = firstGuess + secondGuess;

% colors3 = zeros(gridSize,3);

% maxDist = max(finalGuess);

% % minDist = min(finalGuess);

% for colLoop = 1:gridSize

% colors3(colLoop,1) = finalGuess(colLoop)/maxDist;

% colors3(colLoop,2) = 0;

% colors3(colLoop,3) = 1 - (finalGuess(colLoop)/maxDist);

70

% end

% scatter (X,Z, 10); %plot initial data

hold on;

% axis([-10 8 -4 5]);

% scatter (X,Z, 10, colors); %plot initial data

% scatter(pointSetX, pointSetZ, 10);

% scatter (X,Z, 10, colors); %plot initial data

%

scatter(pointSetX, pointSetZ, 10, colors2);

% scatter(pointSetX, pointSetZ, 10, colors3);

%% Write an Image File (you will have to rotate it)

%% BMP

% A = zeros(gridSizeX,gridSizeZ,3);

% gridcounter = 1;

% for loop = 1:gridSizeX

%

% for loop2 = 1:gridSizeZ

% A(loop, loop2, 1) = colors2(gridcounter,1);

% A(loop, loop2, 2) = colors2(gridcounter,2);

% A(loop, loop2, 3) = colors2(gridcounter,3);

% gridcounter = gridcounter +1;

%

% end

%

% end

% imwrite(A,'Test1.bmp');

%% JPEG

% A = zeros(gridSizeX,gridSizeZ,3);

% gridcounter = 1;

% for loop = 1:gridSizeX

%

% for loop2 = 1:gridSizeZ

% A(loop, loop2, 1) = colors2(gridcounter,1);

% A(loop, loop2, 2) = colors2(gridcounter,2);

% A(loop, loop2, 3) = colors2(gridcounter,3);

% gridcounter = gridcounter +1;

%

% end

%

71

% end

% imwrite(A,'Test1.jpeg');

SIFT keypoint detection algorithm:

#include <iostream>

#include <fstream>

#include <cstdint>

#include <stdio.h>

#include <iomanip>

#include <math.h>

// PCL

#include "pcl/point_types.h"

#include "pcl/point_cloud.h"

#include "pcl/io/pcd_io.h"

#include "pcl/keypoints/sift_keypoint.h"

#include <pcl/visualization/pcl_visualizer.h>

// OpenCV

#include "opencv2/core/core.hpp"

#include "opencv2/features2d/features2d.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/nonfree/nonfree.hpp"

#define PI 3.14159265

#define COEFF 0.190631263 // Coefficient for converting LiDAR Cartesian

coordinates to meters

using namespace cv;

static void help()

{

 printf("\nThis program generates features for an image and a point cloud,

then matches them and returns the distance to the nearest object.\n"

 "Using the SIFT desriptor:\n"

 "\n"

 "Usage:\n img_lidar_matching <image.jpg> <pointcloud.pcd> \n");

}

void

detect_keypoints(pcl::PointCloud<pcl::PointXYZRGB>::Ptr &points,

 float min_scale, int nr_octaves, int nr_scales_per_octave, float

min_contrast,

 pcl::PointCloud<pcl::PointWithScale>::Ptr &keypoints_out)

{

 pcl::SIFTKeypoint<pcl::PointXYZRGB, pcl::PointWithScale> sift_detect;

 // Use a FLANN-based KdTree to perform neighborhood searches

 sift_detect.setSearchMethod(pcl::search::KdTree<pcl::PointXYZRGB>::Ptr(new

pcl::search::KdTree<pcl::PointXYZRGB>));

 // Set the detection parameters

 sift_detect.setScales(min_scale, nr_octaves, nr_scales_per_octave);

 sift_detect.setMinimumContrast(min_contrast);

 // Set the input

 sift_detect.setInputCloud(points);

 // Detect the keypoints and store them in "keypoints_out"

 sift_detect.compute(*keypoints_out);

}

72

void visualize_keypoints(const pcl::PointCloud<pcl::PointXYZRGB>::Ptr points,

 const pcl::PointCloud<pcl::PointWithScale>::Ptr keypoints)

{

 // Add the points to the vizualizer

 pcl::visualization::PCLVisualizer viz;

 viz.setBackgroundColor(256, 256, 256);

 pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB>

rgb(points);

 viz.addPointCloud(points, "points");

 viz.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POI

NT_SIZE, 3, "points");

 // Draw each keypoint as a sphere

 for (size_t i = 0; i < keypoints->size(); ++i)

 {

 // Get the point data

 const pcl::PointWithScale & p = keypoints->points[i];

 // Pick the radius of the sphere *

 float r = 2 * p.scale;

 // * Note: the scale is given as the standard deviation of a Gaussian

blur, so a

 // radius of 2*p.scale is a good illustration of the extent of the

keypoint

 // Generate a unique string for each sphere

 std::stringstream ss("keypoint");

 ss << i;

 // Add a black sphere at the keypoint

 viz.addSphere(p, 2 * p.scale, 0.0, 0.0, 1.0, ss.str());

 }

 // Give control over to the visualizer

 viz.spin();

}

double dist_calc(double x, double y, double z)

{

 double distance = sqrt((x*x) + (y*y) + (z*z));

 return(distance);

}

double azimuth_calc(double z, double distance)

{

 double azimuth = asin(z/ distance) * 180 / PI;

 return(azimuth);

}

double elevation_calc(double y, double x)

{

 double elevation = atan2(y, x) * 180 / PI;

 return(elevation);

}

int keypoints(const char * filename1, const char * filename2)

{

 // Create some new point cloud to hold data

 pcl::PointCloud<pcl::PointXYZRGB>::Ptr points(new

pcl::PointCloud<pcl::PointXYZRGB>);

73

 // Original

 //pcl::PointCloud<pcl::PointWithScale>::Ptr keypoints_ptr(new

pcl::PointCloud<pcl::PointWithScale>);

 // Create keypoint object

 pcl::PointCloud<pcl::PointWithScale> keypoints;

 pcl::PointCloud<pcl::PointWithScale>::Ptr keypoints_ptr(&keypoints);

 // Load a point cloud

 pcl::io::loadPCDFile(filename2, *points);

 // Compute keypoints

 const float min_scale = 0.2; // Tune to dataset of interest, originally

0.01

 const int nr_octaves = 2; // Tune to dataset of interest, originally 3

 const int nr_octaves_per_scale = 2; // Tune to dataset of interest,

originally, 3

 const float min_contrast = 1; // Tune to dataset of interest, originally

10.0

 detect_keypoints(points, min_scale, nr_octaves, nr_octaves_per_scale,

min_contrast, keypoints_ptr);

 ///

 // load image

 Mat img1 = imread(filename1, CV_LOAD_IMAGE_COLOR);

 if (img1.empty())

 {

 printf("Cannot read image\n");

 return -1;

 }

 int nfeatures = 400;

 int nOctaveLayers = 3;

 double contrastThreshold = 0.05;

 double edgeThreshold = 10;

 double sigma = 2;

 Ptr<FeatureDetector> detector = new SIFT(nfeatures, nOctaveLayers,

contrastThreshold, edgeThreshold, sigma);

 Ptr<DescriptorExtractor> extractor = new SIFT(nfeatures, nOctaveLayers,

contrastThreshold, edgeThreshold, sigma);

 vector<KeyPoint> img_keypoints;

 detector->detect(img1, img_keypoints);

 Mat descriptors1;

 extractor->compute(img1, img_keypoints, descriptors1);

 // Search for nearest object keypoint distance and angle

 float minDist = 1000;

 float distance = 0;

 int closest = 0;

 float x = 0;

 float y = 0;

 float z = 0;

 float azimuth = 0;

 float elevation = 0;

 for (int m = 0; m < keypoints.width; m++)

 {

74

 x = COEFF * keypoints.points[m].data[0];

 y = COEFF * keypoints.points[m].data[1];

 z = COEFF * keypoints.points[m].data[2];

 distance = dist_calc(x, y, z);

 azimuth = azimuth_calc(z, distance);

 elevation = elevation_calc(y, x);

 if (distance < minDist)

 {

 closest = m;

 minDist = distance;

 }

 }

 // Determine closest keypoint in meters and calculate azimuth

 x = COEFF * keypoints.points[closest].data[0];

 y = COEFF * keypoints.points[closest].data[1];

 z = COEFF * keypoints.points[closest].data[2];

 distance = dist_calc(x, y, z);

 azimuth = azimuth_calc(z, distance);

 elevation = elevation_calc(y, x);

 cout << "\n\nThe nearest object is: ";

 cout << distance;

 cout << " meters away\n with an azimuth of ";

 cout << azimuth;

 // Print number of Lidar keypoints to command prompt

 cout << "\n\nThere are ";

 cout << keypoints.width;

 cout << " lidar keypoints detected.";

 cout << "\n\nThere are ";

 cout << nfeatures;

 cout << " image keypoints detected.";

 // drawing the results

 namedWindow("keypoints", WINDOW_NORMAL);

 Mat disp_img_keypoints;

 drawKeypoints(img1, img_keypoints, disp_img_keypoints, Scalar::all(-1),

DrawMatchesFlags::DRAW_RICH_KEYPOINTS);

 imshow("keypoints", disp_img_keypoints);

 // Display Pointcloud and Keypoints

 visualize_keypoints(points, keypoints_ptr);

 waitKey(0);

 return (0);

}

//

//

int main(int argc, char** argv)

{

 if (argc != 3)

 {

 help();

 return -1;

 }

 keypoints(argv[1],argv[2]);

75

 return 0;

}

76

Appendix J: Recommendations for Future Work

In the data acquisition stage, future work may include the implementation of multi-threading on

the embedded device. Multi-threading will improve the processing speed and improve data acquisition to

allow complete system integration.

 In the data processing stage, future work should include registration of the point cloud and image

data, which will improve the precision of the 3D distance overlay for the 2D image. Implementing

registration will allow each keypoint to have a corresponding interpolated distance, and will eliminate any

distortion created from the compression of 3D to 2D.

