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Problem Description

* Arrhythmias

* Areirregular heartbeats caused by defective
electrical signals in the heart [1]

* Include premature ventricular contractions (PVCs)

* PVCs may lead to ventricular tachycardia (VT)
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Figure 1. EIectrbcérdiogram with -”V”- Iabels for PVCs [2]



Problem Description

* Normal vs. Arrhythmic Heart Rhythms

Source:
http://watchlearnlive.heart.org/ [1]



Problem Description

* An electrocardiogram (ECG) describes the
heart’s electrical activity

* An ECG can be recorded using a Holter
monitog or event monitor
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Figure 2. Features of a Figure 3. Holter monitor with ECG

normal ECG [3] reading [4]



Problem Description

* Holter and event monitors are limited in
functionality

e Utilize some in-platform signal processing for
diagnostic assistance

* Must perform some signal processing offline

e Are unable to address medical issues in real
time



Objectives

* Develop a low-power, stand-alone
embedded system for continuous heart
monitoring that will

* Process ECG data in real time
* Detect PVCs accurately and consistently

* Alert the patient’s doctor wirelessly of
ventricular tachycardia



Constraints

* Real-time ECG signal processing
* On-board signal processing computations

* Battery-powered functionality



System Block Diagram
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Figure 4. Overall heart monitoring system diagram



Scope H

TABLE I. SCOPE OF HEART MONITORING SYSTEM

_______InScope | Outof Scope

ECG signal processing Electrode interfacing,
battery circuit
PVC and VT detection Detection of other types
of cardiac arrhythmias
High-level wireless Security issues
communication (encryption, data

integrity, etc.)



Division of Labor

 MATLAB Simulation (PVC detection)

* Shannon/Fatima

* C Programming (PVC detection)
* Claire/Shannon

* Wi-Fi Communication

e Fatima/Claire/Shannon
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Functional Requirements

TABLE II. FUNCTIONAL REQUIREMENTS (ALGORITHMS)

Functional Specification Specification
Requirement Met?

Filtering and/or The filtering/normalization must ensure Yes
normalizing the that the heart data is compatible with the

heart data QRS, PVC, and VT detection functionality.

Identifying each QRS The QRS detection algorithm must return Yes
complex the R-peak indices for use in the PVC

detection subsystem.

Classifying each QRS The PVC detection algorithm must return Yes
complex as PVC or the PVC indices for use in the VT detection

non-PVC subsystem.



Problem Approach

Pan-Tomp kins Algorithm (peak detection)

Figure 5. High-level

FVCData

Three consecutive PVCs (VT detection)

Send Wireless M essage




Pan-Tompkins A

Raw ECG Data
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gorithm [5]

Figure 6. Flowchart for Pan-
Tompkins algorithm
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Functional Requirements

TABLE IIl. FUNCTIONAL REQUIREMENTS (ALGORITHMS)

Functional Specification Specification
Requirement Met?

Filtering and/or The filtering/normalization must ensure Yes
normalizing the that the heart data is compatible with the

heart data QRS, PVC, and VT detection functionality.

Identifying each QRS The QRS detection algorithm must return Yes
complex the R-peak indices for use in the PVC

detection subsystem.

Classifying each QRS The PVC detection algorithm must return Yes
complex as PVC or the PVC indices for use in the VT detection
non-PVC subsystem.



Template Generation Algorithm [6]

Beat Amplitud e Series ER-interval Series
Mean of the Amplitud e Series Mean of ER-interv al Series

The 1st Beat that Fulfilled Both Mean
Conditions

T1 & T2 Templates

Figure 7. Flowchart for T1 and T2 generation



Normalized Amplitude
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Template Generation Algorithm

Raw Data + QRS Data (Zmin)
Beat Amplitud e Series RE-intery al Series

Mean of the Amplitud e Series M ean of RR-interv al Series

The 1st Beat that Fulfilled Both Mean
Conditions
T1 & T2 Templates

Figure 9. Flowchart for T1 and T2 generation
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Template Generation Algorithm “

Raw Data + QRS Data (2min)
Beat Amplitud e Series RRE-intery al Series

Mean of the Amplitud ¢ Series Mean of RR-interval Series

The 1st Beat that Fulfilled Both Mean
Condition s

Tl & T2 Templates

Figure 10. Flowchart for T1 and T2 generation
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Figure 11. MATLAB plot of QRS detection results.



Template Generation Algorithm

Raw Data + QRS Data (2min)
Beat Amplitud e Series RE-interv al Series

Mean of the Amplimud e Series Mean of RER-interval Series
The 1st Beat that Fulfilled Both Mean
Conditions
T1 & T2 Templates

Figure 12. Flowchart for T1 and T2 generation
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Template Generation Algorithm

Raw Data + QRS Data (Zmin)
Beat Amplitud e Series R E-interv al Series

Mean of the Amplitud e Series Mean of ER-interval Series

The 1=t Beat that Fulfilled Both M ean
Conditions
T1 & T2 Templates

Figure 13. Flowchart for T1 and T2 generation
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Wavelet Transtorm Algorithm [7]

* QRS (T1 template) detection method

e Zero crossings of quadratic spline wavelet
transform used to find QRS onset and offset



Wavelet Transtorm Algorithm (8] 0

* First-order wavelet transform:

1
y(n) = (1—5) * (—2x(n) + 2x(n — 1))



Wavelet Transform Algorithm o

Wavelet Transform
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Figure 14. QRS onsets and offsets detected using the wavelet transform



Templates T1 and T2
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Figure 15. T1 and T2 generation
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Template-Matching Algorithm

k-th Beat Aligned to T1 Beat (RR.interval)
Correlation of Aligned k-th Correlation of Stretched or
Beat with Template T1 Comp ressed RR-interval with T2

Combine Both Correlations
Using E xponential Function

Compare the Correlation Result to the
Threshold

PFVC ornot PVC

Figure 16. Flowchart for template-matching algorithm

Stretch/Comp ress k-th to k+1




Template-Matching Algorithm

k-th Beat Aligned to T1 Beat (RR.interval)
Correlation of Aligned k-th Correlation of Stretched or
Beat with Template T1 Compressed RRE-interval with T2

Combine Both Correlations
Using Exponential Function
Compare the Correlation Result to the
Threshold

PFVC ornot PVC

Figure 17. Flowchart for template-matching algorithm

Stretch/Comp ress k-th to k+1




Template-Matching Algorithm

k-th Beat Aligned to T1 Beat (RR-interval)
Correlation of Aligned k-th Correlation of Stretched or
Beat with Template T 1 Compressed RR-interval with T2

Combme Both Correlations
Using Exponential Function

Compare the Correlation Result to the
Threshold

PVC ormnot PVC

Figure 18. Flowchart for template-matching algorithm

Stretch/Comp ress k-th to k+1
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Figure 19. T2 (interval between R peaks) and RR-interval signal for
PVC beat



Interpolation and Extrapolation

* Let b, be the data between the k™" beat
and the k + 1t beat.

* If length(b, )< length(T2), we do
extrapolation based on

new_b, = byl +a(n—-1)](n=1,2,...L)

~ length(by)
 length(T2)

04



Normalized Correlation 34
Coefficient

Ym=o|bx(n) = by ][N(n) — N]

Z3bc() ~ B ING) - 2

* X is the QRS complex correlation coefficient

Xkr)» Yk =

* v, is the RR-interval correlation coefficient

* b, (n) is the QRS complex/RR-interval in the kt" beat
* L is the template length

* N(n) is the template (T1 or T2)

* b, and N are the signal mean and the template mean



Template-Matching Algorithm

k-th Beat Aligned to T1 Beat (RR-interval)
Correlation of Aligned k-th Correlation of Stretched or
Beat with Template T 1 Compressed RR-interval with T2

Combine Both Correlations
Using Exponential Function
Compare the Correlation Result to the
Threshold

PVC ornot PVC

Figure 20. Flowchart for template-matching algorithm

Stretch/Comp ress k-th to k+1




Exponential Function Correlation

(eXk' + e¥k')
2e

Zr = f(xk,J’k) =

* r determines the increasing rate of the slope
and zj, = Z;n,-. in @ healthy beat

* Weusedr =5, z;, = 0.55
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Functional Requirements

TABLE IV. FUNCTIONAL REQUIREMENTS (IMPLEMENTATION)

Specifications Specification
Met?

Storing heart data The internal memory of the device Yes
input into memory must be at least 25 kB.
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Hardware

e SimpleLink Wi-Fi CC3200 Launchpad
* Inexpensive: $30.00

e Simplifies data transmission
e 256 kB RAM

3 i
Figure 21. CC3200 Launchpad [9]



Communication

e uUDMA (Micro Direct Memory Access) system
with PC (USB connection)

e CC3200 receives buffers of heart data

 WiFi connection for web services



ULDMA Diagram

< UDMA
QV%‘{@‘ 4 Controller
N
UART
PC Buffer
ARM Cortex-M4
Processor
CC3200

Figure 22. UART data flow between the PC and the CC3200



PC-side Program

e Uses WFDB (Waveform Database) library
functions to access the MIT-BIH arrhythmia
database

* Converts the integer values into characters
for uDMA transfer



Functional Requirements
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TABLE V. FUNCTIONAL REQUIREMENTS (IMPLEMENTATION)

Specifications Specification
Met?

Determining whether
ventricular tachycardia
is present using the
calculated PVC
information

Transmitting a wireless
message to the
patient’s doctor in the
event of ventricular
tachycardia

The VT detection algorithm must
return a 30-second interval of heart
data surrounding the VT event for
use in the wireless communication
subsystem.

The time delay between the device
transmitting the message and the
doctor receiving the message must
be less than one second.

1000 data
samples: about
3 seconds

approximately
2 minute delay



4.4

CC3200 WiFi Setup

* The CC3200 was set up in station mode to
access the internet

www.ti.com

TR T vl o]

PRI e, 1. Connect to AP ‘

Eadrin e

e o >

A S B 2. Ping AP 3. Ping Tl Server

Figure 23. CC3200 set up in station mode [10]
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Temboo

 Middleware that allows different devices

(such as the LaunchPad) to access web-based
services

Q Code
Utilities

2000+ rt
Code Processes 100+ APIs

Figure 24. Temboo integration with an embedded device [11]



Temboo/Twilio

* Sending an SMS message using the CC3200
LaunchPad

* Message includes text and image file



Temboo/Twilio
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Figure 25. Transmitting an SMS message using the LaunchPad




Wireless - Plotly

Heart Data test
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Figure 26. Sample Plotly graph of 1000 samples of heart data
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System Integration

 Combined project uses Energia sketch in
Code Composer Studio

* GNU compiler replaced ARM compiler
* Mixed C/C++ code
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Functional Requirements
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TABLE VI. FUNCTIONAL REQUIREMENTS (ALGORITHM METRICS)

Specification Specification
Met?

|dentifying each
QRS complex

Classifying each
QRS complex as
PVC or non-PVC

The device must have at least Yes
90% positive predictivity and at
least 90% sensitivity.

The device must have at least Yes
90% accuracy.



QRS Detection Metrics [12]

TP TP

PP = E =
TP + FP > TP+ FN

* PP: positive predictivity
* SE: sensitivity

* TP (True Positive): detected QRS complex that is present in the
signal

TN (True Negative): data point between QRS complexes that
does not contain a QRS peak

* FP (False Positive): incorrect identification of QRS peak

* FN (False Negative): QRS peak that was not detected by the
algorithm



PVC Detection Metric [12]

TP+ TN

ACC =
ce TP +TN + FP + FN

* ACC: accuracy

e TP (True Positive): detected PVC that is present in the
signal

TN (True Negative): healthy QRS complex
* FP (False Positive): incorrectly detected PVC

* FN (False Negative): PVC beat that was not detected by
the algorithm



Solution Testing

* MATLAB simulation of QRS, PVC, and VT
detection

* Use MIT-BIH arrhythmia database for testing
data

* Ensure that accuracy, sensitivity, and specificity
are at least 90% using the WFDB toolbox



Solution Testing

* Cimplementation of QRS, PVC, and VT
detection

* Store the heart data in the board’s memory and
export the detection results to a file



Solution Testing o

TABLE VII. QRS SENSITIVITY COMPARISON

Record QRS Sensitivity | QRS Sensitivity (C
(MATLAB) implementation)

106 0.9994 0.9762
116 0.9889 0.9885
119 1.0000 1.0000
201 0.9815 0.9731
203 0.9903 0.9910
208 0.9654 0.9381
Total 0.9912 0.9909
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Solution Testing

TABLE VIII. QRS POSITIVE PREDICTIVITY COMPARISON

Record QRS Positive QRS Positive
Predictivity Predictivity (C
(MATLAB) Implementation)
106 0.9946 0.9995
116 0.9978 0.9987
119 1.0000 1.0000
201 0.9943 0.9791
203 0.9871 0.9821
208 0.9985 0.9942
Total 0.9921 0.9918



Solution Testing

TABLE IX. OVERALL ACCURACY COMPARISON

58

Record Accuracy Accuracy (C
(MATLAB) Implementation)

106
116
119
201
203
208
Total

0.9390
0.9957
1.0000
0.9682
0.9284
0.9702
0.9096

0.9404
0.9966
1.0000
0.9441
0.8987
0.9481
0.9316



Results
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Figure 27. Plotly graph of VT event
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Summary and Conclusions

* PVCs are irregular heartbeats that may lead
to VT

* An embedded system has been developed
that detects PVCs in real time and wirelessly
alerts the patient’s doctor of VT



Summary and Conclusions

* Future Work
* Interfacing the LaunchPad with electrodes

* Additional improvements to the signal
processing algorithms
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Code Optimization ”

* CC3200 has only 256kb of RAM

* The template matching algorithm requires
storing 20 seconds of heart data on-board

* Instead, we obtained used a simple average
to find a suitable template:

0.9 x average < template < 1.1 x average
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T1 Alignment
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Figure 28. T1 template and PVC QRS complex aligned to T1’s R peak
index



Memory Requirements

e Sampling rate for ECG signal (MIT-BIH
arrhythmia database): 360 Hz

* Number of samples required for 30 seconds
of ECG data: 10,800

* Amount of memory required: 21 kB



Nonfunctional Requirements:
Metrics

Objective: The device should be compatible with all
patient data in the MIT-BIH database. [2]

Metric:

* Highly compatible: 10 points
* Very compatible: 7.5 points
 Compatible: 5.0 points
 Somewhat compatible: 2.5 points

* Not compatible: 0 points



Nonfunctional Requirements:
Metrics

Objective: The device should be portable.

Metric:

* Very easy to carry around: 10 points
e Easy to carry around: 7.5 points
* Portable: 5.0 points
 Uncomfortable to carry around: 2.5 points

Difficult to carry around: 0 points



Nonfunctional Requirements: 70
Metrics

TABLE XI. QUANTITATIVE PERFORMANCE LEVELS FOR REAL-TIME
HEART MONITORING

Power Consumption
in 24 Hours of Price (S) Value Scaled

Continuous Use (W)

1.50 500 10
2.50 600 7.5
3.25 700 5
4.00 300 2.5

4.75 900 0



Alternative Solution: Hardware

e eZ430-RF2500 (Texas Instruments)
e MSP430F2274 MCU
e CC2500 wireless transceiver

* 32 kB flash memory

6Z430-RF2500 /3 TEXAS
Wireless Development Tool INSTRUMENTS

Figure 29. eZ430-RF2500 Development Kit [13]
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Alternative Solution: Software

* PVC detection
* Wavelet transform algorithm [13]

* RR-interval algorithm [14]
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Pan-Tompkins Algorithm [5]
1. Low-pass Filter
* 11 Hz cut-off frequency

 5-sample delay

* Gainof 36
yn)=2y(n—1)—yn-2)+x(n) —2x(n—6) + x(n — 12)

2. High-pass Filter
5 Hz cut-off frequency
* 29-sample delay
* Gainofl

yn)=yn-1) — Bizx(n) +x(n—16) —x(n—17) + %x(n — 32)



Pan-Tompkins Algorithm

3. Derivative
* Provides information about QRS slope
* Approximates derivative from 0-30 Hz
 Has a4-sample delay

y(n) = é [2x(n) + x(n—1) —x(n—3) — 2x(n — 4)]

4. Squaring Function

* Emphasizes higher frequencies of the ECG (caused by
QRS complexes)

y(n) = x*(n)



Pan-Tompkins Algorithm

5. Moving-Window Integration

 Detects long-duration and large-amplitude QRS complexes

y(nT) = %[x(nT —(N—-1T)+x(nT — (N —2)T + -+ x(nT)]
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Algorithm Efficacy, 100s
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Figure 30. Performance of template-matching algorithm MATLAB
simulation
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Algorithm Efficacy, 200s

Algorithm Accuracy
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Figure 31. Performance of template-matching algorithm MATLAB
simulation



WEFDB Library (PC side)

e isigopen () : open a specific WFDB record

e getvec (): getthe next sample in the
record



WFDB Toolbox (MATLAB)

e rdsamp () : place samples from a WFDB
record into a vector

e rdann () : place annotations (characters)
from a WFDB record into a vector



WFDB Toolbox (MATLAB)

e wrsann () : write experimental annotations
Into a vector

* bxb () : generate a report (with accuracy
and positive predictivity data) using
experimental annotations



Sample BXB Report

31

Beat-by-beat comparison results for record mitdb/100

reference annotator: atr
Test annotator: test

Algorithm

n S v q 0 X
N | 356 0 0 0 0 8 0
s | 4 0 0 0 0 0 0
v o 0 0 0 0 0 0 0
F | 0 0 0 0 0 0 0
Q | 0 0 0 0 0 0 0
o | 0 0 0 0 0
X 0 0 0 0 0

QRS sensitivity:

QRS positive predictivity
VEB sensitivity

VEE positive predictivity:
SVEE sensitivity:

SVEE positive predictivity:
RMS RR interval error:

97.83% (360/368)
100.00% (3060/360)

- (0/0)

- (0/0)

0.00% (0/4)

- (0/0)
168. 87 ms

Figure 30. Text file generated using the bxb () function in the
WEDB toolbox



Energia and Code Composer
Studio

* To be able to load the Energia sketch code
from CCS, the libraries were changed to be
compatible with Energia’s GNU compiler

e Hardware libraries

* DSP library



DSP library for CC3200

*Corr Coeff.c
*arm sub £32()
*arm mult £32()
*Normal amplt.c, normIntRange.c

*arm mean £32()

*arm std £32()



QRS Detection
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Figure 32. MATLAB plot of QRS detection results
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UART Data Transfer

Obtain the next
sample from the
MIT-BIH database

A 4

A

Y

Convert the sample

into a sequence of
characters

Add the characters
to the output buffer

198 samples?

Pad the output
buffer to a length of
990 characters

Send out the buffer
using UART, reset
number of samples

Figure 33. UART data transfer flowchart (PC)
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UART Data Transfer

UDMA Controller UART Interrupt Main Function

Set bRxDone Is bRxDone set?
Data available?
Clear UART interrupt Convert character
buffer to integer buffer

Place buffer contents
in memory

Use the Pan-Tompkins
A algorithm to find peaks

Trigger UART interrupt

\

Clear bRxDone

Figure 34. UART data transfer flowcharts (CC3200)



Alternative QRS Detection

Find envelope of heart data

.

Generate "auxiliary signal"
using signal derivative

.

Detect QRS onset and offset
using hypothesis testing

Figure 35. Flowchart for alternative QRS
detection method



Alternative QRS Detection

Find envelope of heart data

.

Generate "auxiliary signal"
using signal derivative

.

Detect QRS onset and offset
using hypothesis testing

Figure 36. Flowchart
for alternative QRS
detection method

Uses statistics to accurately
locate QRS onset and offset

Can be used to determine
abnormal QRS complexes



Alternative QRS Detection

Find envelope of heartdata | US€ the Hilbert transform to

i obtain the envelope

Generate "auxiliary signal"
using signal derivative

.

Detect QRS onset and offset
using hypothesis testing

Figure 37. Flowchart
for alternative QRS
detection method



Alternative QRS Detection

Find envelope o heartdata | © EStiMate the derivative using a

parabola'
|

Generate "auxiliary signal” h (k) —_ (2 (h(k + 27") — h(k - 27"))

using signal derivative

¢ + h(k +r)—h(k —71))

Detect QRS onset and offset
using hypothesis testing

Figure 38. Flowchart
for alternative QRS
detection method



Alternative QRS Detection

Find envelope of heart data

.

Generate "auxiliary signal"
using signal derivative °

.

Detect QRS onset and offset
using hypothesis testing

Figure 39. Flowchart
for alternative QRS
detection method

Calculate a cumulative mean
for the QRS onset and offset
windows

Determine the probability
density functions



Envelope Signa

Envelope of the Signal
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Figure 40. Envelope of the initial ECG signal
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Figure 41. Auxiliary signal of the envelope
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C Implementation Results -
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Figure 42. T1 (QRS complex) template generated on the CC3200



C Implementation Results
T2
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Figure 43. T2 (RR interval) template generated on the CC3200



System Integration

e |[ssues addressed

* Memory configuration

e Synchronization with PC

data buffer

PC

>

CC3200
LaunchPad

Hdone”

Figure 44. Improved UART testing system
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Example (Extrapolation) 7

Ly =10, L=21, a, =5~ 0476

TABLE XII. INDICES AFTER EXTRAPOLATION

1
1.48
1.95
2.43
2.90

o B W N =



Wireless - Plotly

* Code language: JavaScript Object Notation
(JSON)

* Language independent

* Based on JavaScript, C/C++/C#, Python, Perl, etc.



JSON Example [14]

un=chrisé
key=kdfa3id&
orilgiln=ploté&
platform=11ispé&

argS:[[Ol 1, 21, (3, 4, 51, [1, 2, 3],
[6, 6, O]]&

kwargs={"filename": "plot from api",
"fileopt": "overwrite", "style": {
"type": "bar" }, "traces": [1],
"layout": { "title": "experimental

data" }, "world readable": true }



Quadratic Spline Wavelet

Transform [8

i=0
while (j < J)
Wiif =+ -55f+G;
mf = [zi:if*H
j=3t1

end of while.

100

TABLE XIV. WAVELET TRANSFORM
NORMALIZATION COEFFICIENTS

Normalization
Coefficient

TABLE XIll. WAVELET
COEFFICIENTS

nfsample) | _H__| G ___
-1 0.125
0 0.375 -2.0
1 0.375 2.0
2 0.125

o A W N =

1.12
1.03
1.01
1.00




