

Real-time Heart Monitoring and ECG Signal Processing

Fatima Bamarouf, Claire Crandell, and Shannon Tsuyuki

Advisors: Drs. Yufeng Lu and Jose Sanchez Department of Electrical and Computer Engineering Bradley University

October 1, 2015

Contents

- Introduction and Overview
- Design Approach and Method of Solution
- Economic Analysis
- Schedule
- Division of Labor
- Societal and Environmental Impacts
- Summary and Conclusions

Introduction and Overview

- Problem Background
- Problem Statement
- Constraints

- Arrhythmias
 - Are irregular heartbeats caused by defective electrical signals in the heart [1]
 - Include premature ventricular contractions (PVCs)

- Premature ventricular contractions (PVCs)
 - Up to 40-75% of people have occasional PVC beats [2]
 - May lead to ventricular tachycardia (VT)

Figure 1. Electrocardiogram with "V" labels for PVCs [3]

- Ventricular tachycardia (VT)
 - Involves the ventricles contracting before they have filled completely with blood
 - Limits blood flow to the body

Figure 2. ECGs for normal heart rhythm and ventricular tachycardia [1]

- An electrocardiogram (ECG) describes the heart's electrical activity
- An ECG can be recorded using a Holter monitor or event monitor

• Holter monitor

Figure 4. Holter monitor with ECG reading [5]

• Event monitor

Figure 5. Wireless event monitor system [6]

- Holter and event monitors are limited in functionality
 - Utilize some in-platform signal processing for diagnostic assistance
 - Must perform some signal processing offline
 - Are unable to address medical issues in real time

Problem Statement

- Develop a low-power, stand-alone embedded system for continuous heart monitoring that will
 - Process ECG data in real time
 - Detect PVCs accurately and consistently
 - Alert the patient's doctor wirelessly of ventricular tachycardia

Constraints

- Real-time ECG signal processing
- On-board signal processing computations
- Battery-powered functionality

Scope

TABLE I. SCOPE OF HEART MONITORING SYSTEM

In Scope	Out of Scope
ECG signal processing	Electrode interfacing, battery
	circuit
PVC and VT detection	Detection of other types of cardiac
	arrhythmias
High-level wireless communication	Security issues (encryption, data
	integrity, etc.)

Contents

- Introduction and Overview
- Design Approach and Method of Solution
- Economic Analysis
- Schedule
- Division of Labor
- Societal and Environmental Impacts
- Summary and Conclusions

Design Approach and Method of Solution

- System Block Diagram
- State Diagram
- Nonfunctional Requirements
- Functional Requirements
- Description of Solution
- Solution Testing

System Block Diagram

Figure 6. Overall heart monitoring system diagram

Figure 7. State diagram for heart monitoring system

Nonfunctional Requirements

- Compatible with all patient data in the MIT-BIH database [3]
- Reasonably priced
- Portable
- Low-power

- Storing heart data input into memory
 - The embedded device must have an internal memory of at least 25 kB

- Performing preprocessing on the heart signal
 - Filtering/normalization must prepare the heart data for the QRS, PVC, and VT detection functions
 - QRS detection must have at least 90% sensitivity and 90% specificity [8]
 - QRS detection must be tested using heart data from the MIT-BIH arrhythmia database [3]

- Classifying each QRS complex as PVC or non-PVC
 - Must have at least 90% accuracy [9]

- Determining whether ventricular tachycardia is present using PVC detection results
 - Must have at least 90% accuracy

Description of Solution

TABLE II. SELECTED DESIGN FOR HEART MONITORING SYSTEM

Functions	Means
Storing heart data	RAM
Preprocessing (Filtering/QRS detection)	Pan-Tompkins
PVC detection	Template matching
Ventricular tachycardia detection	Three or more consecutive PVCs
Wireless functionality	CC3200 LaunchPad

Description of Solution: Hardware

- SimpleLink Wi-Fi CC3200 Launchpad
 - Inexpensive: \$30.00
 - Simplifies data transmission
 - 256 kB RAM

Figure 8. CC3200 Launchpad [10]

Description of Solution: QRS Detection

• Pan-Tompkins algorithm [11]

Figure 9. Preliminary QRS detection using the Pan-Tompkins algorithm and MATLAB

Description of Solution: PVC Detection

- Correlation with normal QRS-complex and RR-interval templates
- Low correlation signals PVC

Figure 10. QRS and RR-interval templates and correlation [9]

Description of Solution: Ventricular Tachycardia

- Three or more consecutive PVC beats
- Wireless message transmitted to medical authorities

Figure 11. ECG demonstrating ventricular tachycardia [3]

- MATLAB simulation of QRS, PVC, and VT detection
 - Use MIT-BIH arrhythmia database for testing data
 - Ensure that accuracy, sensitivity, and specificity are at least 90% using the WFDB toolbox
 - Estimate the execution time

- C implementation of QRS, PVC, and VT detection
 - Store the heart data in the board's memory and export the detection results to a file
 - Evaluate number of clock cycles required and quantization error propagation
 - Test the amount of time needed to send heart data from a PC to the board

- Wireless communication
 - Use a packet sniffer to verify wireless communication
 - Verify that testing data sent from the board matches the data that the doctor would receive

- System integration (C implementation and wireless communication)
 - Evaluate the delay between uploading the heart data and the doctor's access to the data
 - Verify that heart data input with three or more consecutive PVCs correctly transmits a message to the doctor

Contents

- Introduction and Overview
- Design Approach and Method of Solution
- Economic Analysis
- Schedule
- Division of Labor
- Societal and Environmental Impacts
- Summary and Conclusions

Economic Analysis

TABLE III. PROJECT COSTS FOR HEART MONITORING SYSTEM

Component	Cost
CC3200 LaunchPad	\$30.00

Contents

- Introduction and Overview
- Design Approach and Method of Solution
- Economic Analysis
- Schedule
- Division of Labor
- Societal and Environmental Impacts
- Summary and Conclusions

Schedule

TABLE IV. PROJECT SCHEDULE

Task	Duration (hours)
PVC Algorithm (MATLAB)	65
PVC Algorithm (C)	100
Wi-Fi Communication	150
Progress Report I	80
Progress Report II	80
Final Presentation	80
Final Report	80

Schedule

Figure 12. Gantt chart for the fall semester

Schedule

Jan 10, '16 Jan 17, '16 Jan 24, '16 Jan 31, '16 Feb 7, '16 Feb 14, '16 Feb 21, '16 Feb 28, '16 Mar 6, '16 Mar 13, '16 Mar 20, '16 Mar 27, '16 Apr 3, '16 Apr 10, '16 Apr 17, '16 Apr 24, '16

Figure 13. Gantt chart for the spring semester

Contents

- Introduction and Overview
- Design Approach and Method of Solution
- Economic Analysis
- Schedule
- Division of Labor
- Societal and Environmental Impacts
- Summary and Conclusions

Division of Labor

- MATLAB Simulation (PVC detection)
 - Shannon/Fatima
- C Programming (PVC detection)
 - Claire/Shannon
- Wi-Fi Communication
 - Fatima/Claire

Contents

- Introduction and Overview
- Design Approach and Method of Solution
- Economic Analysis
- Schedule
- Division of Labor
- Societal and Environmental Impacts
- Summary and Conclusions

Societal and Environmental Impacts

- Low-power modes minimize battery consumption
- Testing data contains no personally identifiable information
- Wi-Fi technology allows for additional security [10]

Contents

- Introduction and Overview
- Design Approach and Method of Solution
- Economic Analysis
- Schedule
- Division of Labor
- Societal and Environmental Impacts
- Summary and Conclusions

Summary and Conclusions

- PVCs are irregular heartbeats that may lead to VT
- An embedded device is proposed that will detect PVCs in real time and wirelessly alert the patient's doctor of VT

Summary and Conclusions

- Design should be compatible with all patient data in the MIT-BIH database, reasonably priced, portable, and low-power
- Design must include real-time ECG signal processing, onboard signal processing computations, and battery-powered functionality

Summary and Conclusions

- Proposed Design
 - CC3200 LaunchPad (Texas Instruments)
 - Pan-Tompkins algorithm for QRS detection
 - Template matching for PVC detection
 - Three consecutive PVC beats for VT detection
 - Tested using MIT-BIH arrhythmia database and MATLAB

Real-time Heart Monitoring and ECG Signal Processing

Fatima Bamarouf, Claire Crandell, and Shannon Tsuyuki

Advisors: Drs. Yufeng Lu and Jose Sanchez Department of Electrical and Computer Engineering Bradley University

October 1, 2015

References

- [1] Arrhythmias. [Online] Available: http://watchlearnlive.heart.org/CVML_Player.php?moduleSelect=arrhyt
- [2] A. Pérez-Silva and J. L. Merino. "Frequent ventricular extrasystoles: significance, prognosis and treatment," *E-Journal of the ESC Council for Cardiology Practice*, 2011. [Online] Available: http://www.escardio.org/COMMUNITIES/COUNCILS/CCP/E-JOURNAL/VOLUME9/Pages/frequentventricular-extrasystoles-significance-prognosis-treatment-Perez-Silva.aspx#.VNpf6_nF9TR
- [3] MIT-BIH Arrhythmia Database. [Online] Available: http://www.physionet.org/physiobank/database/mitdb/
- [4] *Cardiovascular System Assessments*. [Online] Available: http://media.lanecc.edu/users/driscolln/RT116/softchalk/Cardia_Assessment/Cardia_Assessment_print.html
- [5] Holter Monitor. [Online] Available: http://www.hopkinsmedicine.org/healthlibrary/test_procedures/cardiovascular/holter_monitor_92,P07976/
- [6] Cardiac Monitors. [Online] Available: https://www.medicompinc.com/cardiac-monitors/
- [7] Holter monitor (24h). [Online] Available: http://www.nlm.nih.gov/medlineplus/ency/article/003877.htm
- [8] B. Ribeiro, et al., "Choosing Real-Time Predictors for Ventricular Arrhythmia Detection," *International Journal of Pattern Recognition and Artificial Intelligence*, vol. 21, no. 08, pp. 1249-1263, 2007. [Online] Available: https://eden.dei.uc.pt/~bribeiro/FCT_files_2006/LNCS_ICONIP2006.pdf
- [9] P. Li, et al., "A low-complexity data-adaptive approach for premature ventricular contraction recognition," *Signal, Image and Video Processing*, vol. 8, no. 1, pp. 111-120, 2013. [Online] Available: http://link.springer.com/article/10.1007%2Fs11760-013-0478-6
- [10] *CC3200-LAUNCHXL*. [Online] Available: http://www.ti.com/ww/en/launchpad/launchpads-connected-cc3200-launchxl.html?DCMP=cc3100cc3200&HQS=cc3200launchpad-oob

References

- [11] J. Pan and W. Tompkins, "A Real-Time QRS Detection Algorithm," *IEEE Transactions on Biomedical Engineering*, vol. -32, no. 3, pp. 230-236, 1985. [Online] Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4122029
- [12] *MSP430 Wireless Development Tool*. [Online] Available: http://www.ti.com/tool/ez430-rf2500
- [13] R. Chang, et al., "High-Precision Real-Time Premature Ventricular Contraction (PVC) Detection System Based on Wavelet Transform," J Sign Process Syst, vol. 77, no. 3, pp. 289-296, 2013. [Online] Available: http://link.springer.com/article/10.1007%2Fs11265-013-0823-6
- [14] M. Tsipouras, et al., "An arrhythmia classification system based on the RR-interval signal," *Artificial Intelligence in Medicine*, vol. 33, no. 3, pp. 237-250, 2005. [Online] Available: http://www.ncbi.nlm.nih.gov/pubmed/15811788
- [15] S. Fokkenrood, et al., "Ventricular Tachycardia/Fibrillation Detection Algorithm for 24/7 Personal Wireless Heart Monitoring," *Pervasive Computing for Quality of Life Enhancement, Lecture Notes in Computer Science*, vol. 4541, pp. 110-120, 2007. [Online] Available: http://link.springer.com/chapter/10.1007%2F978-3-540-73035-4_12
- [16] CC2540 SimpleLink Bluetooth Smart Wireless MCU with USB. [Online] Available: http://www.ti.com/product/cc2540
- [17] *CC2530 Development Kit.* [Online] Available: http://www.ti.com/tool/cc2530dk
- [18] Deaths: Final Data for 2013. [Online] Available: http://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64_02.pdf

Detailed Gantt Chart (1)

Figure 14. Gantt chart for the MATLAB simulation (PVC algorithm) phase of the project

Detailed Gantt Chart (2)

Task Name	 0dt 25 115	Nov 1 '15	Nov 8 '15	Nov 15 '15	Nov 22 '15	Nov 29 '15	Dec 6 '15	Dec 13 '15 Dec 20
	<u>S M T W T F</u>	SSMTWTF	SSMTWTF	S S M T W T F	S S M T W T F S	S M T W T F S	S M T W T F S	S M T W T F S S M
Code the PVC					1			
algorithm in C								
Test the C code or	1						1	
the board using th	ie							
testing data (in								
progress)								
Performance								
(number of clock								
cycles/time								
required)								
Assessment								
(accuracy,								
sensitivity,								
specificity)								
Quantization erro	r						Ť	
calculation								
(propagation of								
quantization erro	r)							

Figure 15. Gantt chart for the C implementation (PVC algorithm) phase of the project

Detailed Gantt Chart (3)

Figure 16. Gantt chart for the wireless development phase of the project

Specificity and Sensitivity [8]

$$SP = \frac{TN}{TN + FP}$$
 $SE = \frac{TP}{TP + FN}$

- TP (True Positive): detected QRS complex that is present in the signal
- TN (True Negative): data point between QRS complexes that does not contain a QRS peak
- FP (False Positive): incorrect identification of QRS peak
- FN (False Negative): QRS peak that was not detected by the algorithm

Memory Requirements

- Sampling rate for ECG signal (MIT-BIH arrhythmia database): 360 Hz
- Number of samples required for 30 seconds of ECG data: 10,800
- Amount of memory required: 21 kB

• Heart disease is the number one cause of death in the United States

Figure 17. Chart of the three leading causes of death in the United States Source: Centers for Disease Control and Prevention [17]

Nonfunctional Requirements: Metrics

Objective: The device should be compatible with all patient data in the MIT-BIH database. [3]

Metric:

- Highly compatible:
- Very compatible:
- Compatible:
- Somewhat compatible:
- Not compatible:

10 points
7.5 points
5.0 points
2.5 points
0 points

Nonfunctional Requirements: Metrics

Objective: The device should be portable.

Metric:

- Very easy to carry around:
- Easy to carry around:
- Portable:
- Uncomfortable to carry around:
- Difficult to carry around:

10 points
7.5 points
5.0 points
2.5 points
0 points

Nonfunctional Requirements: Metrics

TABLE VI. QUANTITATIVE PERFORMANCE LEVELS FOR REAL-TIME HEART MONITORING [8,

Power Consumption in 24 Hours of Continuous Use (W)	Price (\$)	Value Scaled
1.50	500	10
2.50	600	7.5
3.25	700	5
4.00	800	2.5
4.75	900	0

Design Evaluation: Morphological Chart

TABLE V. MORPHOLOGICAL CHART FOR HEART MONITORING SYSTEM [10,11,12,13,14,15,16]

Functions		Means	
Storing heart data	Flash memory	RAM	
Preprocessing (Filtering/QRS detection)	Pan-Tompkins	Wavelet transform	Wavelet transform and Pan-Tompkins
PVC detection	Wavelet transform	Template matching	RR-interval
Ventricular tachycardia detection	Three or more consecutive PVCs	Three or more consecutive PVCs, heart rate greater than 100 beats per minute	Statistical analysis
Wireless functionality	eZ430-RF2500	CC2540 (Bluetooth)	CC3200

Design Evaluation: Design Alternatives

- Total design space: 162 designs
- Two designs analyzed in detail

Design Evaluation: Design 1

TABLE VIII. FIRST DESIGN FOR HEART MONITORING SYSTEM

Functions	Means	
Storing heart data	Flash memory	
Preprocessing (Filtering/QRS detection)	Pan-Tompkins	
PVC detection	RR-interval	
Ventricular tachycardia detection	Three or more consecutive PVCs and heart rate above 100 beats per minute	
Wireless functionality	CC2540 (Bluetooth)	

Design Evaluation: Design 2

TABLE IX. SECOND DESIGN FOR HEART MONITORING SYSTEM

Functions	Means
Storing heart data	Flash memory
Preprocessing (Filtering/QRS detection)	Wavelet transform and Pan- Tompkins
PVC detection	Wavelet transform
Ventricular tachycardia detection	Three or more consecutive PVCs
Wireless functionality	eZ430-RF2500

Design Evaluation: NEM

• The two designs were then evaluated against the constraints and objectives

TABLE X. CONSTRAINTS AND OBJECTIVES FOR HEART MONITORING SYSTEM

Constraints	Objectives
Real-time ECG signal processing	Compatible with all patient data in the MIT-BIH database [3]
On-board signal processing computations	Low-power
Battery-powered functionality	Reasonably priced
	Portable

Design Evaluation: NEM

TABLE XI. NUMERAL EVALUATION MATRIX

Desig	n Design 1	Design 2
Constraints		
Real-time ECG signal processing	+	+
On-board signal processing computations	+	+
Battery-powered functionality	+	+

+ : Constraint met

Design Evaluation: NEM

TABLE XII. NUMERAL EVALUATION MATRIX

Desig	n Design 1	Design 2
Objectives		
Compatible with all patient data in the MIT- BIH database	7.5	10
Low-power	10	10
Reasonably priced	10	10
Portable	10	10

Alternative Solution: Hardware

- eZ430-RF2500 (Texas Instruments)
 - MSP430F2274 MCU
 - CC2500 wireless transceiver
 - 32 kB flash memory

Figure 18. eZ430-RF2500 Development Kit [12]

66

Alternative Solution: Software

- PVC detection
 - Wavelet transform algorithm [13]
 - RR-interval algorithm [14]