Real-time Heart Monitoring and ECG Signal Processing

Fatima Bamarouf, Claire Crandell, and Shannon Tsuyuki

Advisors: Drs. Yufeng Lu and Jose Sanchez
Department of Electrical and Computer Engineering
Bradley University

October 1, 2015
Contents

• Introduction and Overview
• Design Approach and Method of Solution
• Economic Analysis
• Schedule
• Division of Labor
• Societal and Environmental Impacts
• Summary and Conclusions
Introduction and Overview

• Problem Background
• Problem Statement
• Constraints
Problem Background

• Arrhythmias
 • Are irregular heartbeats caused by defective electrical signals in the heart [1]
 • Include premature ventricular contractions (PVCs)
Problem Background

- Premature ventricular contractions (PVCs)
 - Up to 40-75% of people have occasional PVC beats [2]
 - May lead to ventricular tachycardia (VT)

Figure 1. Electrocardiogram with “V” labels for PVCs [3]
Problem Background

• Ventricular tachycardia (VT)
 • Involves the ventricles contracting before they have filled completely with blood
 • Limits blood flow to the body

Figure 2. ECGs for normal heart rhythm and ventricular tachycardia [1]
Problem Background

• An electrocardiogram (ECG) describes the heart’s electrical activity

• An ECG can be recorded using a Holter monitor or event monitor

Figure 3. Features of a normal ECG [4]
Problem Background

- Holter monitor

Figure 4. Holter monitor with ECG reading [5]
Problem Background

• Event monitor

Figure 5. Wireless event monitor system [6]
Problem Background

• Holter and event monitors are limited in functionality
 • Utilize some in-platform signal processing for diagnostic assistance
 • Must perform some signal processing offline
 • Are unable to address medical issues in real time
Problem Statement

• Develop a low-power, stand-alone embedded system for continuous heart monitoring that will
 • Process ECG data in real time
 • Detect PVCs accurately and consistently
 • Alert the patient’s doctor wirelessly of ventricular tachycardia
Constraints

• Real-time ECG signal processing
• On-board signal processing computations
• Battery-powered functionality
TABLE I. SCOPE OF HEART MONITORING SYSTEM

<table>
<thead>
<tr>
<th>In Scope</th>
<th>Out of Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG signal processing</td>
<td>Electrode interfacing, battery circuit</td>
</tr>
<tr>
<td>PVC and VT detection</td>
<td>Detection of other types of cardiac arrhythmias</td>
</tr>
<tr>
<td>High-level wireless communication</td>
<td>Security issues (encryption, data integrity, etc.)</td>
</tr>
</tbody>
</table>

Scope

TABLE I. SCOPE OF HEART MONITORING SYSTEM
Contents

• Introduction and Overview
• **Design Approach and Method of Solution**
• Economic Analysis
• Schedule
• Division of Labor
• Societal and Environmental Impacts
• Summary and Conclusions
Design Approach and Method of Solution

- System Block Diagram
- State Diagram
- Nonfunctional Requirements
- Functional Requirements
- Description of Solution
- Solution Testing
System Block Diagram

Unprocessed Heart Data → Real-time Heart Monitor System → Wireless Message

Figure 6. Overall heart monitoring system diagram
State Diagram

Figure 7. State diagram for heart monitoring system

Start

Store heart data into memory

Transmit a message to the doctor (for VT)

Perform preprocessing

Classify each beat as PVC or non-PVC

Determine if VT is present

Start
Nonfunctional Requirements

• Compatible with all patient data in the MIT-BIH database [3]
• Reasonably priced
• Portable
• Low-power
Functional Requirements

• Storing heart data input into memory
 • The embedded device must have an internal memory of at least 25 kB
Functional Requirements

• Performing preprocessing on the heart signal
 • Filtering/normalization must prepare the heart data for the QRS, PVC, and VT detection functions
 • QRS detection must have at least 90% sensitivity and 90% specificity [8]
 • QRS detection must be tested using heart data from the MIT-BIH arrhythmia database [3]
Functional Requirements

• Classifying each QRS complex as PVC or non-PVC
 • Must have at least 90% accuracy [9]
Functional Requirements

• Determining whether ventricular tachycardia is present using PVC detection results
 • Must have at least 90% accuracy
Description of Solution

<table>
<thead>
<tr>
<th>Functions</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storing heart data</td>
<td>RAM</td>
</tr>
<tr>
<td>Preprocessing (Filtering/QRS detection)</td>
<td>Pan-Tompkins</td>
</tr>
<tr>
<td>PVC detection</td>
<td>Template matching</td>
</tr>
<tr>
<td>Ventricular tachycardia detection</td>
<td>Three or more consecutive PVCs</td>
</tr>
<tr>
<td>Wireless functionality</td>
<td>CC3200 LaunchPad</td>
</tr>
</tbody>
</table>
Description of Solution: Hardware

• SimpleLink Wi-Fi CC3200 Launchpad
 • Inexpensive: $30.00
 • Simplifies data transmission
 • 256 kB RAM

Figure 8. CC3200 Launchpad [10]
Description of Solution: QRS Detection

• Pan-Tompkins algorithm [11]

Figure 9. Preliminary QRS detection using the Pan-Tompkins algorithm and MATLAB
Description of Solution: PVC Detection

• Correlation with normal QRS-complex and RR-interval templates

• Low correlation signals PVC

Figure 10. QRS and RR-interval templates and correlation [9]
Description of Solution: Ventricular Tachycardia

- Three or more consecutive PVC beats
- Wireless message transmitted to medical authorities

Figure 11. ECG demonstrating ventricular tachycardia [3]
Solution Testing

• MATLAB simulation of QRS, PVC, and VT detection
 • Use MIT-BIH arrhythmia database for testing data
 • Ensure that accuracy, sensitivity, and specificity are at least 90% using the WFDB toolbox
 • Estimate the execution time
Solution Testing

• C implementation of QRS, PVC, and VT detection
 • Store the heart data in the board’s memory and export the detection results to a file
 • Evaluate number of clock cycles required and quantization error propagation
 • Test the amount of time needed to send heart data from a PC to the board
Solution Testing

• Wireless communication
 • Use a packet sniffer to verify wireless communication
 • Verify that testing data sent from the board matches the data that the doctor would receive
Solution Testing

• System integration (C implementation and wireless communication)
 • Evaluate the delay between uploading the heart data and the doctor’s access to the data
 • Verify that heart data input with three or more consecutive PVCs correctly transmits a message to the doctor
Contents

• Introduction and Overview
• Design Approach and Method of Solution
• Economic Analysis
• Schedule
• Division of Labor
• Societal and Environmental Impacts
• Summary and Conclusions
Economic Analysis

TABLE III. PROJECT COSTS FOR HEART MONITORING SYSTEM

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC3200 LaunchPad</td>
<td>$30.00</td>
</tr>
</tbody>
</table>
Contents

• Introduction and Overview
• Design Approach and Method of Solution
• Economic Analysis
• Schedule
• Division of Labor
• Societal and Environmental Impacts
• Summary and Conclusions
Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Duration (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC Algorithm (MATLAB)</td>
<td>65</td>
</tr>
<tr>
<td>PVC Algorithm (C)</td>
<td>100</td>
</tr>
<tr>
<td>Wi-Fi Communication</td>
<td>150</td>
</tr>
<tr>
<td>Progress Report I</td>
<td>80</td>
</tr>
<tr>
<td>Progress Report II</td>
<td>80</td>
</tr>
<tr>
<td>Final Presentation</td>
<td>80</td>
</tr>
<tr>
<td>Final Report</td>
<td>80</td>
</tr>
</tbody>
</table>

TABLE IV. PROJECT SCHEDULE
Figure 12. Gantt chart for the fall semester
Figure 13. Gantt chart for the spring semester
Contents

• Introduction and Overview
• Design Approach and Method of Solution
• Economic Analysis
• Schedule
• Division of Labor
• Societal and Environmental Impacts
• Summary and Conclusions
Division of Labor

• MATLAB Simulation (PVC detection)
 • Shannon/Fatima

• C Programming (PVC detection)
 • Claire/Shannon

• Wi-Fi Communication
 • Fatima/Claire
Contents

- Introduction and Overview
- Design Approach and Method of Solution
- Economic Analysis
- Schedule
- Division of Labor
- **Societal and Environmental Impacts**
- Summary and Conclusions
Societal and Environmental Impacts

• Low-power modes minimize battery consumption
• Testing data contains no personally identifiable information
• Wi-Fi technology allows for additional security [10]
Contents

• Introduction and Overview
• Design Approach and Method of Solution
• Economic Analysis
• Schedule
• Division of Labor
• Societal and Environmental Impacts
• **Summary and Conclusions**
Summary and Conclusions

• PVCs are irregular heartbeats that may lead to VT
• An embedded device is proposed that will detect PVCs in real time and wirelessly alert the patient’s doctor of VT
Summary and Conclusions

• Design should be compatible with all patient data in the MIT-BIH database, reasonably priced, portable, and low-power.

• Design must include real-time ECG signal processing, on-board signal processing computations, and battery-powered functionality.
Summary and Conclusions

• Proposed Design
 • CC3200 LaunchPad (Texas Instruments)
 • Pan-Tompkins algorithm for QRS detection
 • Template matching for PVC detection
 • Three consecutive PVC beats for VT detection
 • Tested using MIT-BIH arrhythmia database and MATLAB
Real-time Heart Monitoring and ECG Signal Processing

Fatima Bamarouf, Claire Crandell, and Shannon Tsuyuki

Advisors: Drs. Yufeng Lu and Jose Sanchez
Department of Electrical and Computer Engineering
Bradley University

October 1, 2015
References

References

Figure 14. Gantt chart for the MATLAB simulation (PVC algorithm) phase of the project.
Detailed Gantt Chart (2)

Figure 15. Gantt chart for the C implementation (PVC algorithm) phase of the project
Figure 16. Gantt chart for the wireless development phase of the project
Specificity and Sensitivity [8]

\[
SP = \frac{TN}{TN + FP} \quad SE = \frac{TP}{TP + FN}
\]

- TP (True Positive): detected QRS complex that is present in the signal
- TN (True Negative): data point between QRS complexes that does not contain a QRS peak
- FP (False Positive): incorrect identification of QRS peak
- FN (False Negative): QRS peak that was not detected by the algorithm
Memory Requirements

• Sampling rate for ECG signal (MIT-BIH arrhythmia database): 360 Hz

• Number of samples required for 30 seconds of ECG data: 10,800

• Amount of memory required: 21 kB
Problem Background

• Heart disease is the number one cause of death in the United States

![Chart of the three leading causes of death in the United States](source)

Figure 17. Chart of the three leading causes of death in the United States

Source: Centers for Disease Control and Prevention [17]
Nonfunctional Requirements: Metrics

Objective: The device should be compatible with all patient data in the MIT-BIH database. [3]

Metric:

• Highly compatible: 10 points
• Very compatible: 7.5 points
• Compatible: 5.0 points
• Somewhat compatible: 2.5 points
• Not compatible: 0 points
Nonfunctional Requirements: Metrics

Objective: The device should be portable.

Metric:
• Very easy to carry around: 10 points
• Easy to carry around: 7.5 points
• Portable: 5.0 points
• Uncomfortable to carry around: 2.5 points
• Difficult to carry around: 0 points
Nonfunctional Requirements: Metrics

TABLE VI. QUANTITATIVE PERFORMANCE LEVELS FOR REAL-TIME HEART MONITORING [8, 9]

<table>
<thead>
<tr>
<th>Power Consumption in 24 Hours of Continuous Use (W)</th>
<th>Price ($)</th>
<th>Value Scaled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>500</td>
<td>10</td>
</tr>
<tr>
<td>2.50</td>
<td>600</td>
<td>7.5</td>
</tr>
<tr>
<td>3.25</td>
<td>700</td>
<td>5</td>
</tr>
<tr>
<td>4.00</td>
<td>800</td>
<td>2.5</td>
</tr>
<tr>
<td>4.75</td>
<td>900</td>
<td>0</td>
</tr>
</tbody>
</table>
TABLE V. MORPHOLOGICAL CHART FOR HEART MONITORING SYSTEM [10,11,12,13,14,15,16]

<table>
<thead>
<tr>
<th>Functions</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storing heart data</td>
<td>Flash memory</td>
</tr>
<tr>
<td></td>
<td>RAM</td>
</tr>
<tr>
<td>Preprocessing (Filtering/QRs detection)</td>
<td>Pan-Tompkins</td>
</tr>
<tr>
<td></td>
<td>Wavelet transform</td>
</tr>
<tr>
<td></td>
<td>Wavelet transform and Pan-Tompkins</td>
</tr>
<tr>
<td>PVC detection</td>
<td>Wavelet transform</td>
</tr>
<tr>
<td></td>
<td>Template matching</td>
</tr>
<tr>
<td></td>
<td>RR-interval</td>
</tr>
<tr>
<td>Ventricular tachycardia detection</td>
<td>Three or more consecutive PVCs</td>
</tr>
<tr>
<td></td>
<td>Three or more consecutive PVCs, heart rate greater than 100 beats per minute</td>
</tr>
<tr>
<td></td>
<td>Statistical analysis</td>
</tr>
<tr>
<td>Wireless functionality</td>
<td>eZ430-RF2500</td>
</tr>
<tr>
<td></td>
<td>CC2540 (Bluetooth)</td>
</tr>
<tr>
<td></td>
<td>CC3200</td>
</tr>
</tbody>
</table>
Design Evaluation: Design Alternatives

- Total design space: 162 designs
- Two designs analyzed in detail
TABLE VIII. FIRST DESIGN FOR HEART MONITORING SYSTEM

<table>
<thead>
<tr>
<th>Functions</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storing heart data</td>
<td>Flash memory</td>
</tr>
<tr>
<td>Preprocessing (Filtering/QRS detection)</td>
<td>Pan-Tompkins</td>
</tr>
<tr>
<td>PVC detection</td>
<td>RR-interval</td>
</tr>
<tr>
<td>Ventricular tachycardia detection</td>
<td>Three or more consecutive PVCs and heart rate above 100 beats per minute</td>
</tr>
<tr>
<td>Wireless functionality</td>
<td>CC2540 (Bluetooth)</td>
</tr>
</tbody>
</table>
Design Evaluation: Design 2

TABLE IX. SECOND DESIGN FOR HEART MONITORING SYSTEM

<table>
<thead>
<tr>
<th>Functions</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storing heart data</td>
<td>Flash memory</td>
</tr>
<tr>
<td>Preprocessing (Filtering/QRs detection)</td>
<td>Wavelet transform and Pan-Tompkins</td>
</tr>
<tr>
<td>PVC detection</td>
<td>Wavelet transform</td>
</tr>
<tr>
<td>Ventricular tachycardia detection</td>
<td>Three or more consecutive PVCs</td>
</tr>
<tr>
<td>Wireless functionality</td>
<td>eZ430-RF2500</td>
</tr>
</tbody>
</table>
Design Evaluation: NEM

- The two designs were then evaluated against the constraints and objectives

TABLE X. CONSTRAINTS AND OBJECTIVES FOR HEART MONITORING SYSTEM

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time ECG signal processing</td>
<td>Compatible with all patient data in the MIT-BIH database [3]</td>
</tr>
<tr>
<td>On-board signal processing computations</td>
<td>Low-power</td>
</tr>
<tr>
<td>Battery-powered functionality</td>
<td>Reasonably priced</td>
</tr>
<tr>
<td></td>
<td>Portable</td>
</tr>
</tbody>
</table>
Design Evaluation: NEM

TABLE XI. NUMERAL EVALUATION MATRIX

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Design</th>
<th>Design 1</th>
<th>Design 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time ECG signal processing</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>On-board signal processing computations</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Battery-powered functionality</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ : Constraint met
Design Evaluation: NEM

TABLE XII. NUMERAL EVALUATION MATRIX

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Design</th>
<th>Design 1</th>
<th>Design 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatible with all patient data in the MIT-BIH database</td>
<td></td>
<td>7.5</td>
<td>10</td>
</tr>
<tr>
<td>Low-power</td>
<td></td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Reasonably priced</td>
<td></td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Portable</td>
<td></td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Alternative Solution: Hardware

- eZ430-RF2500 (Texas Instruments)
 - MSP430F2274 MCU
 - CC2500 wireless transceiver
 - 32 kB flash memory

Figure 18. eZ430-RF2500 Development Kit [12]
Alternative Solution: Software

• PVC detection
 • Wavelet transform algorithm [13]
 • RR-interval algorithm [14]