AC System Monitoring Device

Final Presentation

Andrew Jarrett

Project Advisor: Professor Gutschlag Department of Electrical and Computer Engineering

April 21, 2016

Outline

- I. Project Overview
 - A. Project Description
 - B. Project Objectives
 - C. Project Specifications
 - D. Proposed Solution
- II. Work Accomplished
 - A. Achievements
 - B. Problems Encountered
- III. Results
 - A. Monitoring AC system
 - B. AC Power Factor Correction
- IV. Conclusion
- V. Q&A

- Project Description
 - Monitor single phase alternating current (AC) system
 - Ability to measure the efficiency of the AC system
 - Optimize the efficiency through power factor correction
 - Implemented with a digital system
 - Displays AC system information on an LCD panel

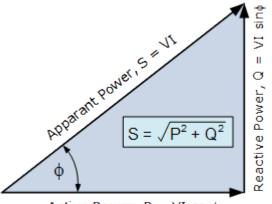
- Project Objectives
 - Monitor AC Voltage
 - Monitor AC Current
 - Monitor AC Power Factor
 - Power Factor Correction

Project Specifications

Specifications	Min	Max	Tolerance
Voltage Range	100 V _{ac}	250 V _{ac}	±15%
Current Range	0 A	5 A	±15%
Power Factor Calculation	0.3	1.0	±15%
Sampling Period	1 ms	1000 ms	N/A
Digital Electricomechanical Contact Outputs	1	N/A	N/A

- Proposed Solution
 - Schweitzer Engineering Laboratories (SEL)
 - SEL-2411 Programmable Automation Controller
 - AC power expansion card
 - Customizable logic programming
 - ► Safe Enclosure to 600V_{ac}

Proposed SEL-2411 Manufacture Specifications


Specification	Min	Max	Tolerance
AC Voltage Input Card (300V Model)	100 V _{ac}	250 V _{ac}	±0.08%
AC Current Input Card (5A Model)	0.05A	10.0 A	±0.5%
Power Factor Calculation	0	1.0	±1%
Sampling Period	N/A	100ms	N/A
Digital Electromechanical Contact Outputs	N/A	8	N/A

Achievements

- Design Monitoring AC System
 - SEL-2411 Programmable Automation Controller
 - Ordered and researched add-on components to the device
 - Resistive-Inductive (RL) Load
 - Provide a load to measure AC voltage and AC current
 - Variable resistor in series with inductor
 - Provide lagging current load with a power factor of about 0.7
 - Repeatable and controllable load

Achievements

- Design AC Power Factor Correction
 - Performed by switching of capacitors in parallel with load
 - Performed by relays controlled by the SEL-2411
 - Sizing of the capacitance through equations 1 4

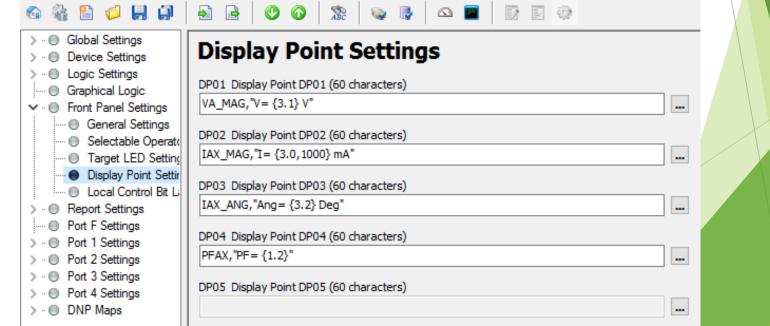
Active Power, P = VI cos

$$\bar{Q} = \bar{V}_s \bar{I}_s \sin\theta \tag{1}$$

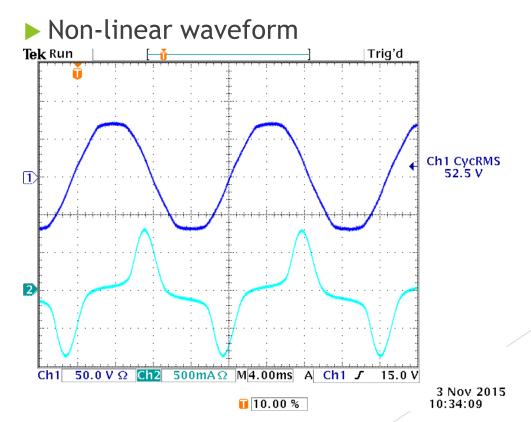
$$\bar{Q}_{cor} = -\bar{Q} \tag{2}$$

$$C_{cor} = \frac{1}{2\pi f \bar{X}_{cor}} \tag{3}$$

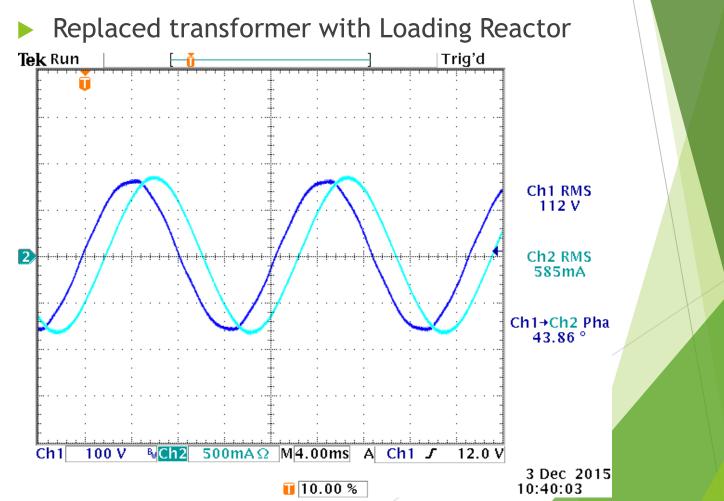
$$C_{cor} = \frac{\bar{Q}_{cor}}{2\pi f \bar{V}_{s}^{2}}$$


(4)

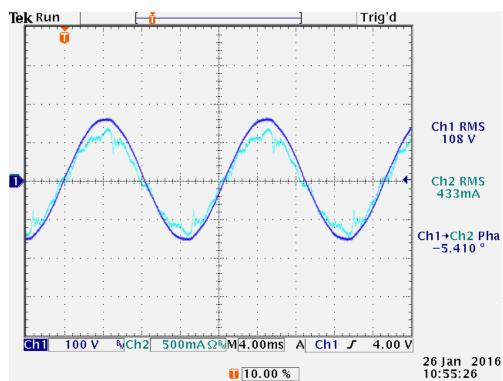
Achievements


- Programming the SEL-2411 Programmable Automation Controller
 - AcSELERATOR QuickSet[®] Software
 - Graphical Logic Programming

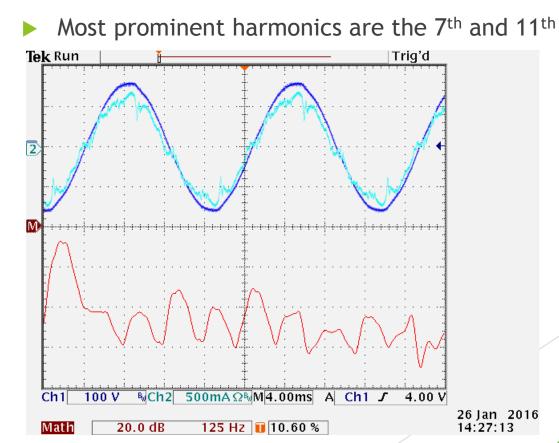
AcSELerator® QuickSet - [Settings Editor - PF_Control_AC_smd (SEL-2411 007 v6.0.3.1)]


File Edit View Communications Tools Windows Help Language

- Problems Encountered
 - Resistive Inductive (RL) Load
 - Used transformer winding for inductive load



- Problems Encountered
 - Resistive Inductive (RL) Load


12

- Problems Encountered
 - Power Factor Correction
 - Does perform the power factor correction
 - Introducing the capacitors causes current distortion

Problems Encountered

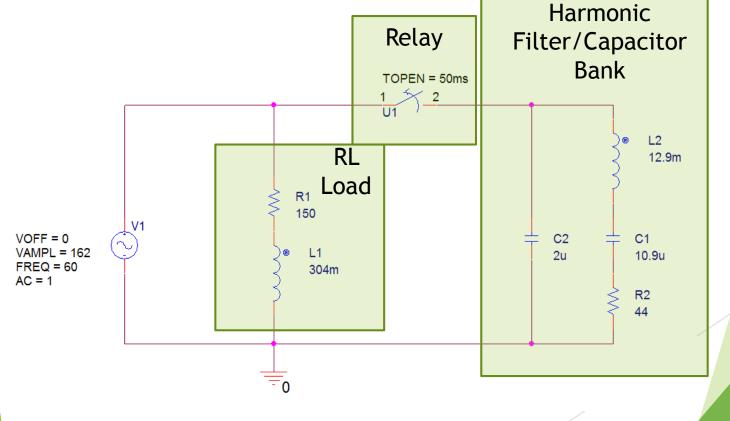
Analysis on the current distortion with FFT determined harmonics are being introduced by the power factor correction

Problems Encountered

Design to fix current harmonic distortion

- ▶ Tuned RLC circuit to the 7th Harmonic using equation 5
- Calculated inductance needed with 10.9µF capacitance, shown in equation 7

Resistor controls the bandwidth of the tuned filter


$$\omega = \sqrt{\frac{1}{LC}} \Rightarrow L = \frac{1}{\omega^2 C}$$
(5)

$$\omega = 2\pi f_0 h = 2\pi (420 Hz) = 2639 \frac{rad}{s}$$

$$L = \frac{1}{\left(2639 \frac{rad}{s}\right)^2 10.9 \times 10^{-6}F} = 13.19 mH$$

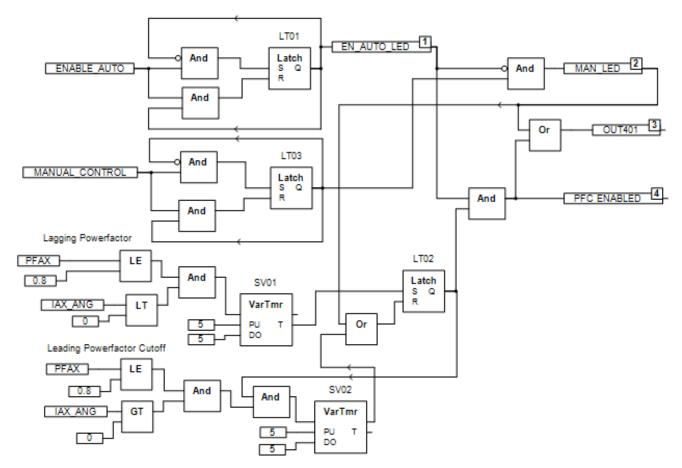
$$Q = \frac{\sqrt{\frac{L}{c}}}{R} \to \delta = \pm \frac{1}{2}Q = \pm \frac{1}{2} \cdot \frac{\sqrt{\frac{0.01319H}{10.9 \times 10^{-6}F}}}{440} = \pm 39.5\% \to (252 Hz, 588 Hz)$$
(8)

- Problems Encountered
 - Tuned 7th harmonic filter using a RLC circuit

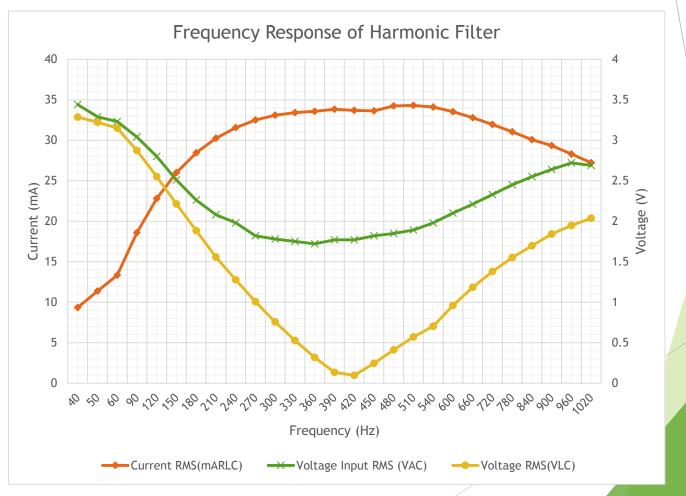
- Monitoring AC system
 - Lab AC meters rated ±0.5%
 - AC Voltage Monitoring
 - ► AC Meter Card Specification ±0.08%
 - Average Error = -0.15%
 - AC Current Monitoring
 - ► AC Meter Card Specification ±0.5%
 - Average Error = 0.39%
 - AC Power Factor Monitoring
 - ► AC Meter Card Specification ±1%
 - Average Error = -0.098%

Monitoring AC system

SEL-2411 Programmable Automation Controller

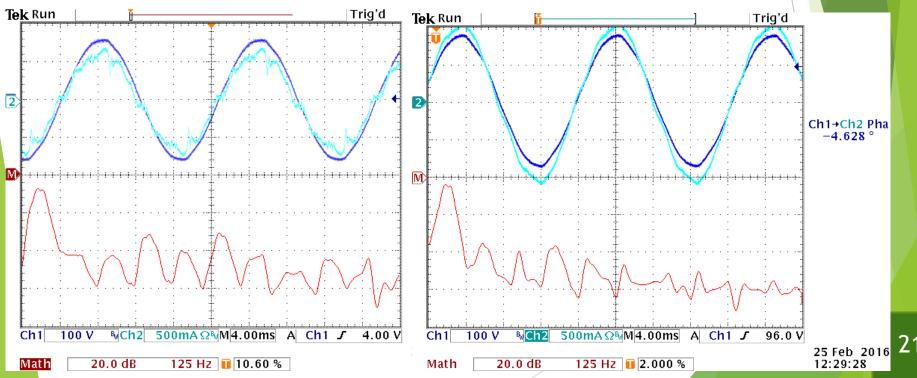

Display information of the AC system

- Cycles information on two screens
- Displays Voltage, Current, Phase Angle, and Power Factor

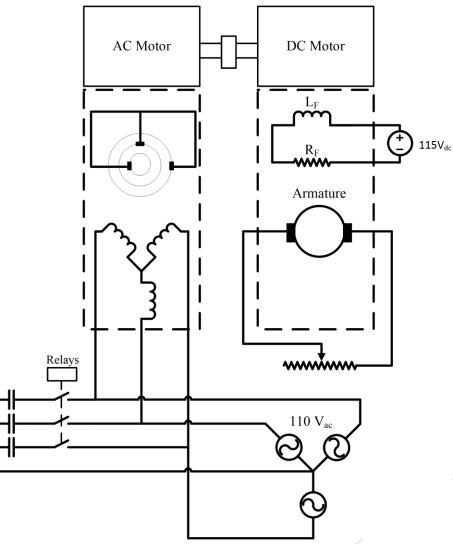


Monitoring AC system

Logic Diagram from ACSELERATOR QuickSet[®] Software

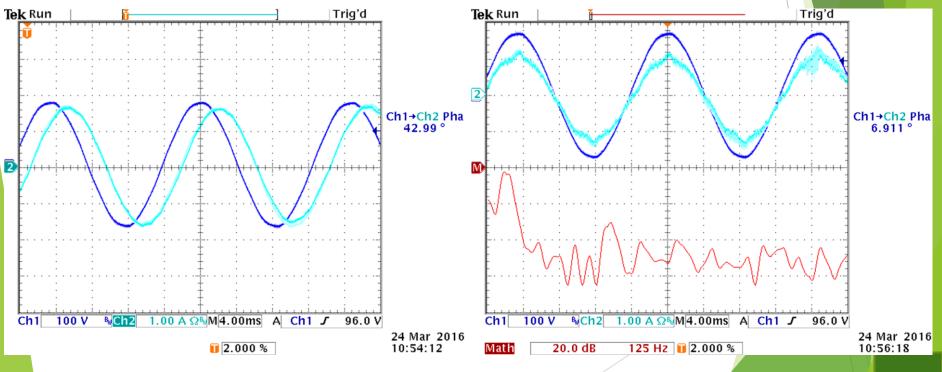


Harmonic Filter Frequency Response



Harmonic Filtering

- Reduced current distortion
- Resulted in higher current
- No increase of efficiency with PF correction


AC Power Factor Correction AC Motor Load Alternate Load Test

AC Power Factor Correction

Harmonics reduced in 3-phase machine power factor correction

39 Watt reduction in power usage

Conclusion

- Successfully implemented SEL-2411 to monitoring AC system
- Performed power factor correction
 - Sized capacitance needed for loads
- Explored solution to current harmonic distortion
 - Performing power factor correction causes current harmonic distortion
 - Using RLC tuned harmonic filter does provide way to reduce the harmonic distortion
 - Using harmonic filtering reduces power saving with power factor correction
- Testing with 3-phase motor load
 - Success in correcting the power factor

Q&A

Detailed Results

Monitoring AC System

AC Voltage Monitoring

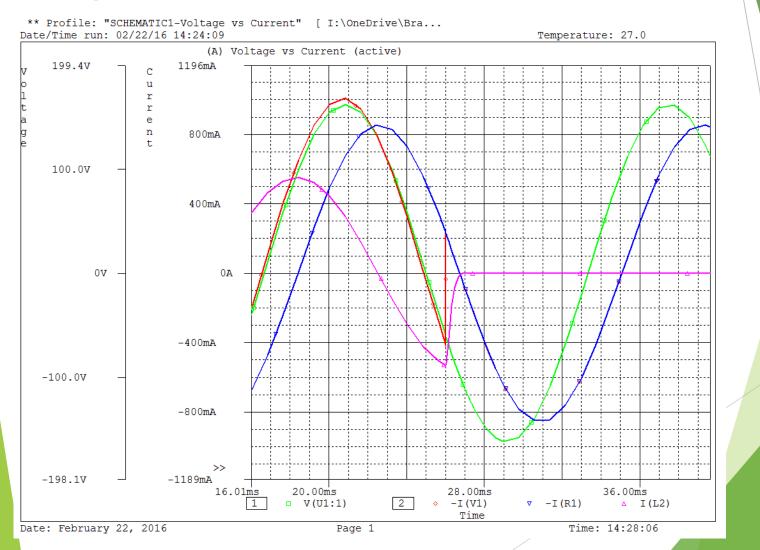
Actual Voltage (V _{rms})	Read Voltage (V _{rms})	Voltage Reading Error
101.5	101.3	0.20%
110.0	111.5	-1.36%
121.0	121.7	-0.58%
132.0	132.5	-0.38%
142.5	142.9	-0.28%
152.0	152.1	-0.07%
163.0	163.0	0.00%
169.8	169.8	0.00%
175.0	174.8	0.11%
182.2	182.4	-0.11%
189.8	189.2	0.32%
296.4	296.6	-0.07%
204.0	203.6	0.20%
210.5	210.8	-0.14%
	Average Reading Error	-0.15%

Detailed Results

Monitoring AC System

AC Current Monitoring

Actual Current (mA _{rms})	Read Current (mA _{rms})	Current Reading Error
160	162	-1.25%
230	230	0.00%
310	302	2.58%
385	378	1.82%
455	447	1.76%
518	514	0.77%
600	601	-0.17%
675	678	-0.44%
710	710	0.00%
748	746	0.27%
792	796	-0.51%
832	833	-0.12%
	Average Reading Error	0.39%


Detailed Results

Monitoring AC System


AC Power Factor Monitoring

V _s (Volts)	l _s (A)	P (Watts)	PF	PF on SEL-2411	Error
122	0.63	76	0.9888	0.99	-0.1189%
122	0.62	73	0.9651	0.97	-0.4902%
122	0.65	74	0.9332	0.92	1.3165%
122	0.51	50	0.8036	0.82	-1.6400%
122	0.6	55	0.7514	0.75	0.1366%
122	0.71	57	0.6580	0.66	-0.1953%
122	0.85	52	0.5014	0.50	0.1446%
122	0.95	36	0.3106	0.31	0.0613%
				Average Reading Error	-0.0982%

Simulation in OrCAD adding 2µF capacitor

Simulation Phase Shift

Simulation Response

Derived Capacitance Calculation

- $\bar{Q} = \bar{S} \, \sin \theta \tag{1}$
- $\bar{Q} = V_s I_s \sin\theta \tag{2}$
- $\bar{Q}_{cor} = -\bar{Q} \tag{3}$
- $\bar{S}_{cor} = \bar{Q}_{cor} \tag{4}$

$$\bar{I}_{cor}^{*} = \frac{\bar{S}_{cor}}{\bar{V}_{cor}} = \frac{\bar{S}_{cor}}{\bar{V}_{s}}$$
(5)

$$\bar{X}_{cor} = \frac{\bar{V}_{s}}{\bar{I}_{cor}} = \frac{\bar{V}_{s} \cdot \bar{V}_{s}}{\bar{S}_{cor}} = \frac{\bar{V}_{s}^{2}}{\bar{Q}_{cor}}$$
(6)

$$C_{cor} = \frac{1}{2\pi f \bar{X}_{cor}} \tag{7}$$

$$C_{cor} = \frac{\bar{Q}_{cor}}{2\pi f \bar{V}_s^2} \left[\frac{VAR}{V^2} \right]$$
(8)