AC System Monitoring Device

Design Review

Andrew Jarrett

Project Advisor: Professor Gutschlag Department of Electrical and Computer Engineering

March 3, 2016

Outline

- Project Overview
 - A. Project Description
 - B. Project Objectives
 - c. Proposed Solution
- II. Progress
 - A. Work Accomplished
 - Achievements
 - Problems Encountered
 - B. Work Remaining
- III. Conclusion
- IV. Q&A

Project Overview

- Project Description
 - Monitor alternating current (AC) system
 - Measure the efficiency of the AC system
 - Optimize the efficiency of the AC system through power factor correction
 - Implemented with a digital system
 - Displays AC system information on an LCD panel

Project Overview

- Project Objectives
 - Monitor AC Voltage
 - Monitor AC Current
 - Monitor AC Power Factor
 - Power Factor Correction
- Proposed Solution
 - Schweitzer Engineering Laboratories (SEL)
 - ► SEL-2411 Automation Controller
 - AC power expansion card
 - Customizable logic programming

Progress - Work Accomplished From Nov. 19 to Mar. 3

AC System Monitoring Device Schedule

- Achievements
 - Successful testing of AC voltage and current monitoring
 - Finished ahead of schedule last semester
 - Successful application of power factor calculation
 - ▶ Behind schedule on testing
 - Successful power factor correction circuit application
 - Sized the appropriate capacitance to correct power factor
 - Encountered current distortion when implementing power factor correction with the capacitor

 Problems faced - Encountering current distortion with only a capacitor used as the power factor correction device

- Analysis on the current distortion with FFT determined harmonics are being introduced by the power factor correction
 - ► Most prominent harmonics are the 7th and 11th

26 Jan 2016 14:27:13

- Proposed solution to harmonic distortion is the use of tuned harmonic filter to the 7th harmonic
- Problems faced original RLC 7th harmonic tuned filter design
 - ► Testing this circuit revealed that overcurrent fault happens when turning off the power factor correction

- Using OrCAD model of the circuit
 - Changing the closing delay of the relay switch of 1ms later determined high voltage induced by the inductance of the RLC circuit.
 - Upwards to 20kV induced causing short to ground from the relay
 - Replaced the closing contact with a capacitor to dissipate energy from the circuit being opened

Final design for the tuned 7th harmonic filter using a RLC circuit

Harmonic Filtering Testing

- Smoothing out of current distortion
 - ▶ 3rd, 5th, 7th, and 9th Harmonic still present
 - Overall current is increased due to the presence of the harmonic filter in parallel with the load

Successful work with user interface controls

Progress - Work Remaining from Mar. 3 to Apr. 21

Progress - Work Remaining

- Remaining tasks involve testing to verify the overall system operation
 - Finish testing power factor calculation
 - Finish testing power factor control
 - Finish user interface control testing
 - Final overall system testing
- Plan to complete the project before the demonstration date

Conclusion

- Currently behind schedule because of current distortion from the power factor correction
 - Research of current distortion determined that is common issue with capacitor banks and transformers
 - Too much current distortion can cause instability for electronic equipment
- Power factor correction from initial testing shows power factor correction operation
- Harmonic filter design can be improved upon to reduce the power consumed from operations

Q&A

List of Functional Requirements for the AC System Monitoring Device

Specifications	Max	Min	Tolerance	
Voltage Range	250 Vac	100 Vac	±15%	
Current Range	5 A	0 A	±15%	
Power Factor Calculation	1.0	0.3	±15%	
Refresh Rate	1000 ms	1 ms	N/A	
Control Power Factor	N/A	1 Switch	N/A	

Functional Specification of the SEL-2411 Automation controller

Specification	Max	Min	Tolerance
Power Supply	250 Vac	125 Vac	N/A
AC Voltage Input Card (300V Model)	250 Vac	100 Vac	±0.08%
AC Current Input Card (5A Model)	10.0 A	0.05A	±0.5%
Power Factor Calculation	1.0	0	±1%
Analog Output Refresh Rate	100ms	N/A	N/A
Digital Electromechanical Contact Outputs	8	N/A	N/A

Simulation in OrCAD adding 2µF capacitor

Simulation Phase Shift

Simulation Response

Detailed Gantt Chart

AC System Monitoring Device Schedule

Detailed Gantt Chart Other Activities

