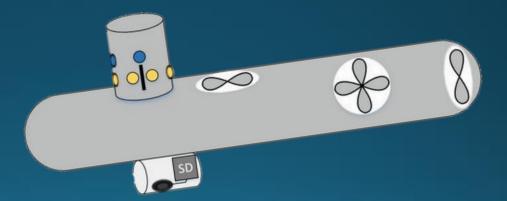
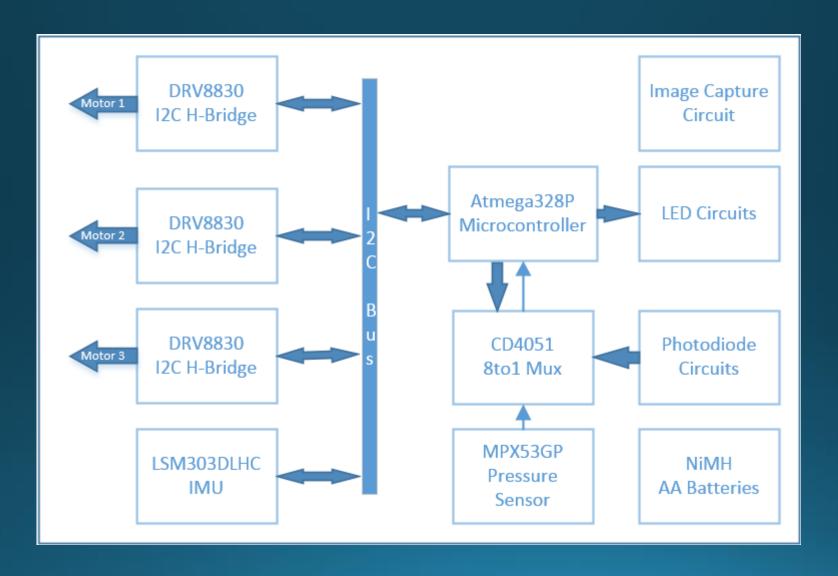
Autonomous Underwater Robots Progress Presentation


RYAN LIPSKI, CAMERON PUTZ, AND NICK SIKKEMA ADVISOR: DR. JOSEPH DRISCOLL

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, BRADLEY UNIVERSITY


NOVEMBER 20, 2014

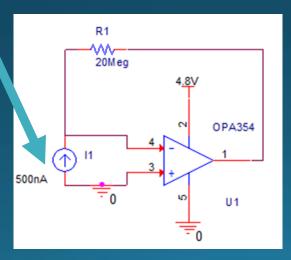
Project Objectives

- Map underwater terrain
 - Swarm of UAV's
 - Avoid obstacles
 - Generate final image

System Block Diagram

Original Gantt Chart – Cameron Putz

		PERCENT	October						November								
ACTIVITY	DURATION	COMPLETE	2	7	9	14	16	21	23	28	30	4	6	11	13	18	20
Detection Array Simulation and Testing	27	0%															
Circuit and System Layout	8	0%															
Assemble and Test Single Submarine	34	0%															
Fall Progress Presentation																	◊
								Plan			% Co	mplete	е				


Experiment

- Amplifier testing
 - Amplifier Design

Model of photodiode

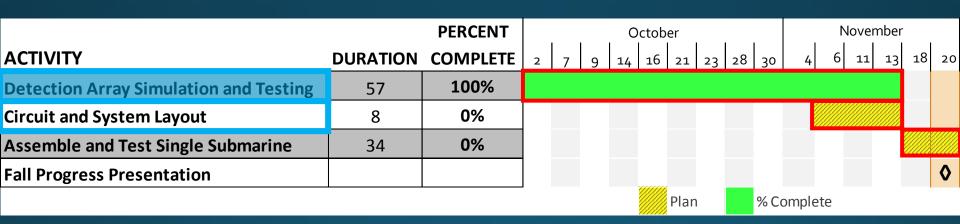
Osram photodiode [1]

Everlight photodiode [2]

Results

Photodiode testing

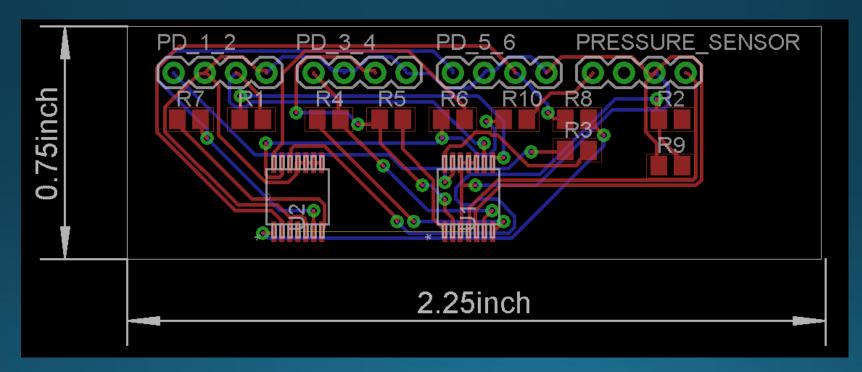
Osram photodiode [1]



Everlight photodiode [2]

Saturation	36 inches – 4.9 Volts	4 inches – 4.89 Volts
Max Distance	180 inches – 0.6 Volts	132 Inches 0.120 Volts
Linearity	Linear	Non-Linear
Ambient Light	100% Saturation	29% Saturation
Price	\$8.85	\$0.59

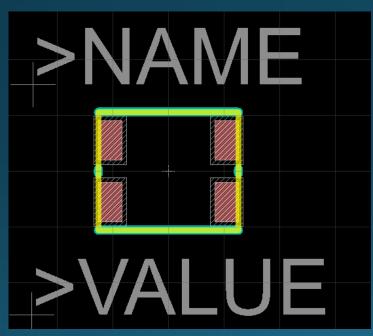
Updated Gantt Chart – Cameron Putz


Task 2

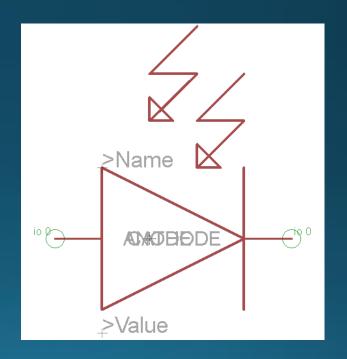
Task 2: Circuit Layout

Results

- Eagle 7.1.0
 - Dr. Driscoll has experience

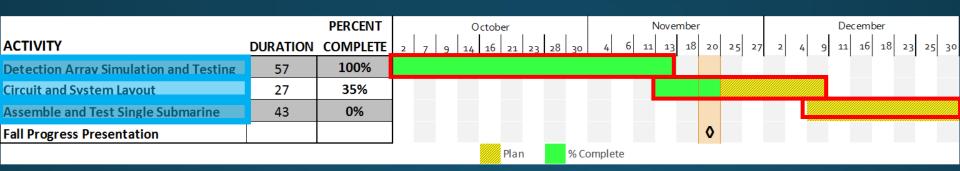


First iteration of the detection array surface mount board


Task 2: Circuit Layout

Results

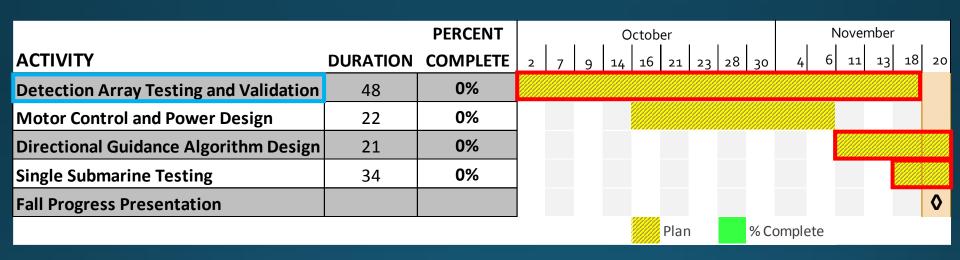
- Eagle 7.1.0
 - Still a lot to learn



First library symbol Everlight photodiode

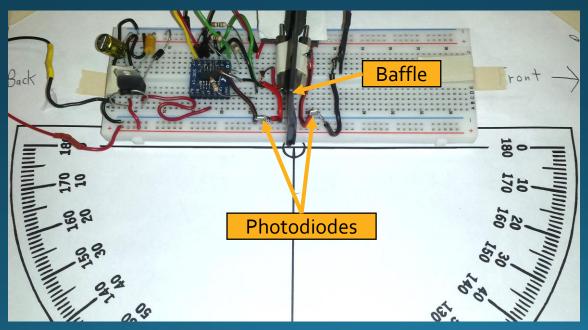
Updated Gantt Chart – Cameron Putz

Future work

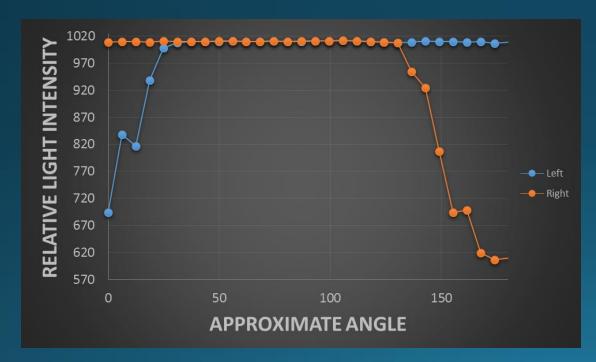


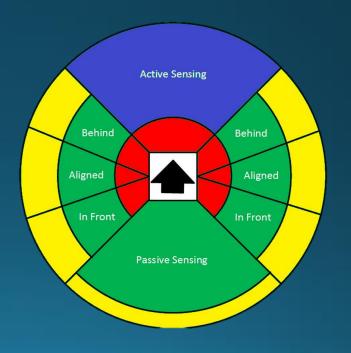
Original Gantt Chart – Ryan Lipski

												N							
		PERCENT	October							N	November								
ACTIVITY	DURATION	COMPLETE	2	7	9	14	16	21	23	28	30	4	6	11	13	18	20		
Motor Control and Power Design	22	0%																	
Detection Array Testing and Validation	15	0%																	
Directional Guidance Algorithm Design	21	0%																	
Single Submarine Testing	34	0%																	
Fall Progress Presentation																	◊		
								Plan			% C	omple ⁻	te						


Updated Gantt Chart – Ryan Lipski

Task 1

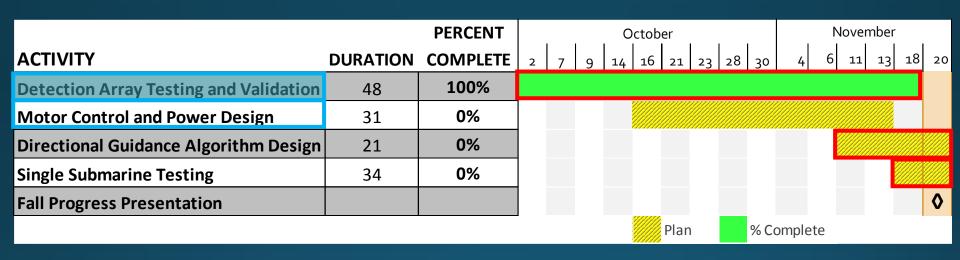

Experiment


- Bench top detection array
 - Baffle configuration testing
 - Baffle protrusion distance and LED distance experimented with
 - LED swept from 0 to 180° while recording light intensity

Results

- Bench top detection array
 - Baffle configuration testing
 - 12cm LED distance

Left vs right photodiode (5 mm baffle)


Detection zones

Experiment

- Additional related work
 - Detection array testing/validation
 - Assisted Cameron with testing different op-amp/photodiode combinations
 - Both in lab testing and off campus/through water testing

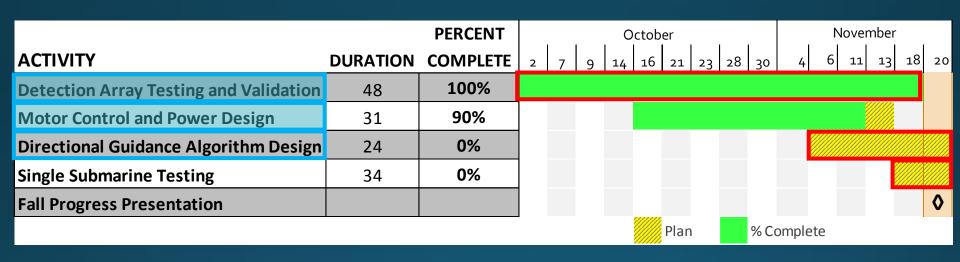
Updated Gantt Chart – Ryan Lipski

Task 2

Design and Experiment

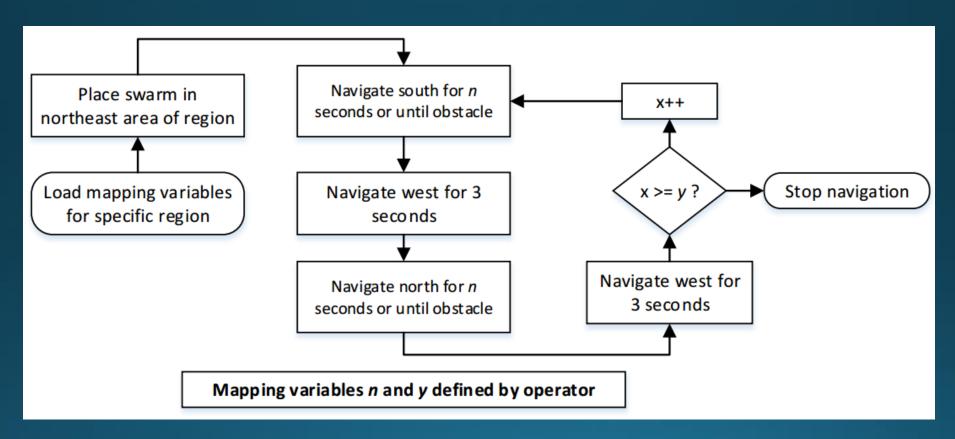
- 3 DC brushed motors (x, y, z configuration)
 - Y motor highest current draw: 860 mA peak draw
 - Recorded with only rear propeller submerged
 - X and y motor feedback: IMU
 - Z motor feedback: pressure sensor

- •12C h-bridge (DRV8830)
 - Single channel, PWM controlled h-bridge
 - 1 A, 2.75 6.8 V
 - Cost: \$2.44
 - Total cost per submarine: \$2.44 * 3 = \$7.32


- H-bridge and I2C PWM generator
 - H-Bridge (SN754410)
 - 1.1 A
 - Cost: \$2.57
 - I2C PWM generator (PCA9685)
 - Cost: \$2.47
 - Requires more PCB surface area
 - Total cost per submarine: \$2.57*2 + \$2.47 = \$7.61

- PID control
 - All 3 motors in same interrupt control loop
 - ECE467 PID code used as starting point
 - Updated to work with the I2C h-bridge (DRV8830)

- Power
 - 4 NIMH AA batteries
 - 1.2 V per cell
 - 2500 mAh
 - Battery life estimation
 - Estimated average current draw: 1770 mA
 - Estimated run time: 1.4 hours


Updated Gantt Chart – Ryan Lipski

Task 3

Task 3: Directional Guidance Algorithm

Design

Directional Guidance Flowchart

Updated Gantt Chart – Ryan Lipski

Future work

	PLAN	PLAN		PERCENT	October	November	December
ACTIVITY	START	FINISH	DURATION	COMPLETE	2 7 9 14 16 21 23 28 30	4 6 11 13 18 20 25 27	2 4 9 11 16 18 23 25 30
Detection Array Testing and Validation	10/2/2014	11/18/2014	48	100%			
Motor Control and Power Design	10/16/2014	11/15/2014	31	90%			
Directional Guidance Algorithm Design	11/6/2014	11/29/2014	24	20%			
Single Submarine Testing	12/9/2014	1/22/2015	45	0%			
Fall Progress Presentation						O	

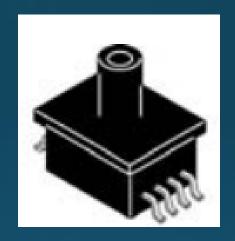
Original Gantt Chart – Nick Sikkema

		PERCENT	October									November							
ACTIVITY	DURATION	COMPLETE	2	7	9	14	16	21	23	28	30	4	6	11	13	18	20		
Research Parts	13	0%																	
Multiplexer and Pressure Sensor	15	0%																	
Compass and Accelerometer	10	0%																	
Directional Guidance Algorithm	21	0%																	
Test Single Submarine	34	0%																	
Fall Progress Presentation																	◊		
			-					Plan	1		% C	omple	te			,			

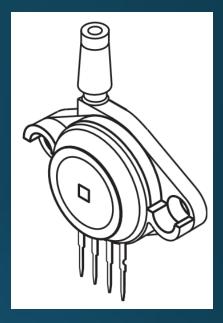
Task 1: Research Parts

Research

- Microcontroller
 - ADC
 - Multiplexer (CD4051)
 - Atmega328P

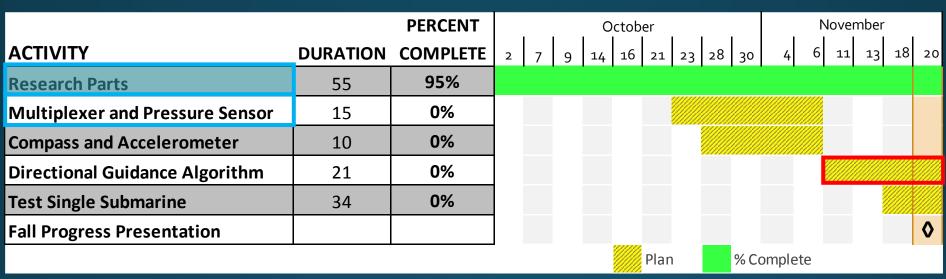


Atmega328P breakout board [3]


Task 1: Research Parts

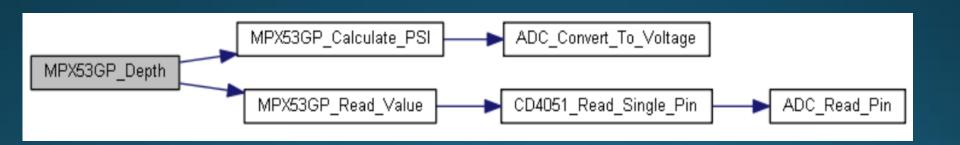
Research

- Pressure sensor
 - Package
 - Gauge vs absolute


MPAK package [4]

Unibody package [4]

Updated Gantt Chart – Nick Sikkema


Task 2

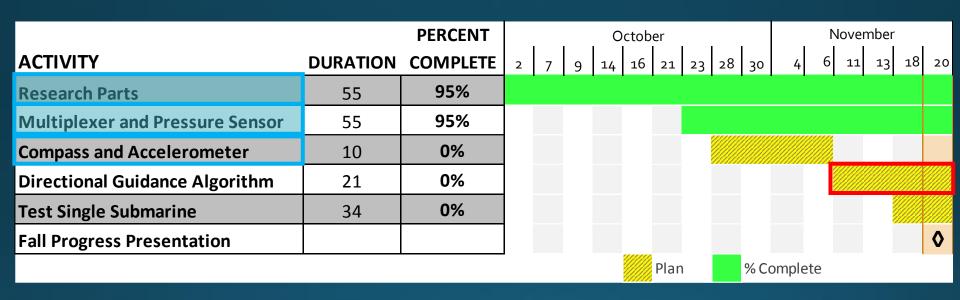
Task 2: Multiplexer and Pressure

Design and Experiment

- 8 to 1 multiplexer (CD4051)
- Pressure sensor (MPX53GP)
 - Differential output
 - Gauge vs absolute

Call graph for the depth function

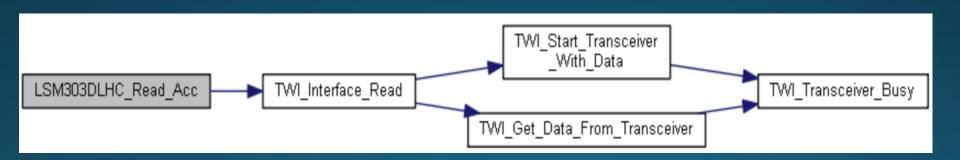
Task 2: Multiplexer and Pressure


Results

```
Send
1023, 0, 1023, 968, 1023, 0, 0, 1023 Pin 5: 1023
1023, 0, 1023, 950, 1023, 0, 0, 1022 Pin 5: 1023
1023, 0, 1023, 981, 1023, 0, 0, 1023 Pin 5: 1023
1023, 0, 1023, 977, 1023, 0, 0, 1023 Pin 5: 1023
1023, 0, 1023, 946, 1023, 0, 0, 1023 Pin 5: 1023
1023, 0, 1023, 972, 1023, 0, 0, 1023 Pin 5: 1023
1023, 0, 1023, 972, 1023, 0, 0, 1023 Pin 5: 1023
1023, 0, 1023, 970, 1023, 0, 0, 1023 Pin 5: 1023
1022, 0, 1023, 963, 1023, 0, 0, 1023 Pin 5: 1023
1023, 0, 1023, 967, 1023, 0, 0, 1023 Pin 5: 1023
1023, 0, 1023, 961, 1023, 0, 0, 1023 Pin 5: 1023
1023, 0, 1023, 972, 1023, 0, 0, 1023 Pin 5: 1023
1023, 0, 1023, 981, 1023, 0, 0, 1023 Pin 5: 1023
1023, 0, 1023, 952, 1023, 0, 0, 1023 Pin 5: 1023
                                                            No line ending
                                                                           9600 baud
   Autoscroll
```

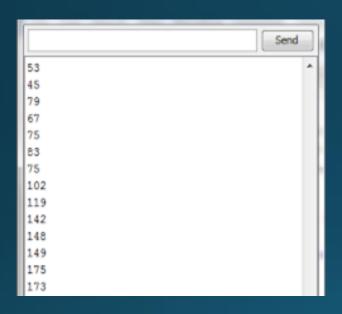
Multiplexer ADC test output

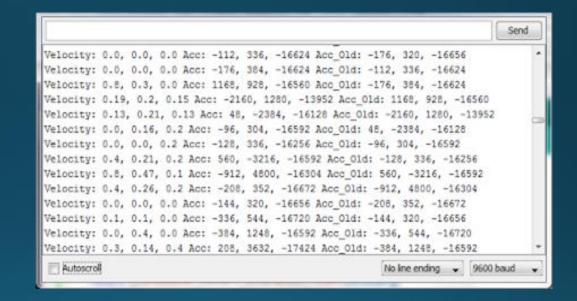
Updated Gantt Chart – Nick Sikkema


Task 3

Task 3: Compass and Accelerometer

Design and Experiment

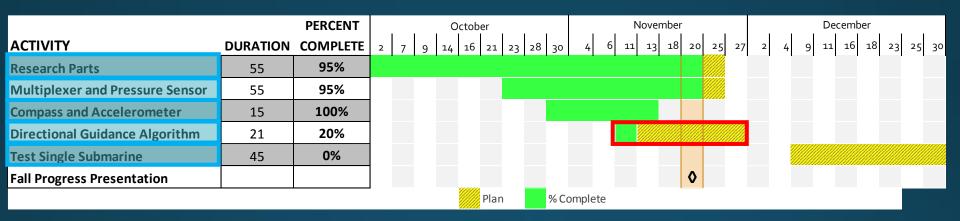

- Pololu library
 - C++ conversion
 - Code cleanup
- 12C



Call graph for the read acceleration register function

Task 3: Compass and Accelerometer

Results



Heading test output

Velocity test output

Updated Gantt Chart – Nick Sikkema

Future work

Autonomous Underwater Robots Progress Presentation

RYAN LIPSKI, CAMERON PUTZ, AND NICK SIKKEMA ADVISOR: DR. JOSEPH DRISCOLL

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, BRADLEY UNIVERSITY

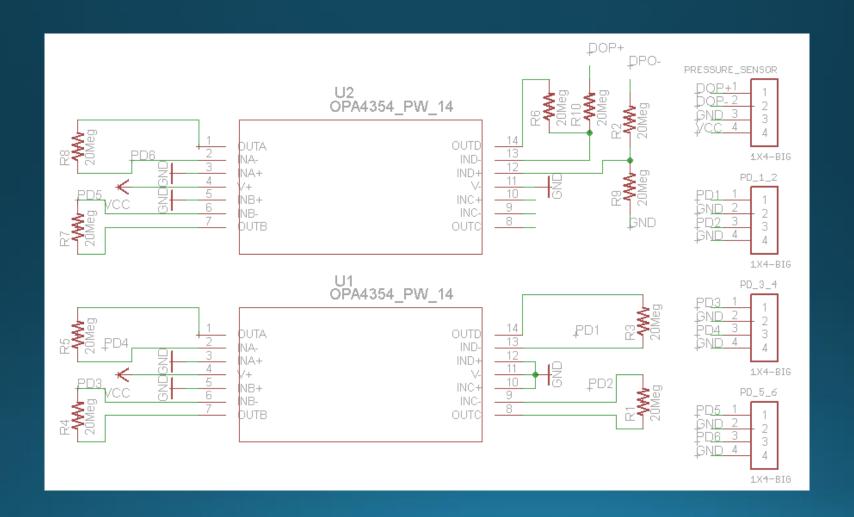
NOVEMBER 20, 2014

References

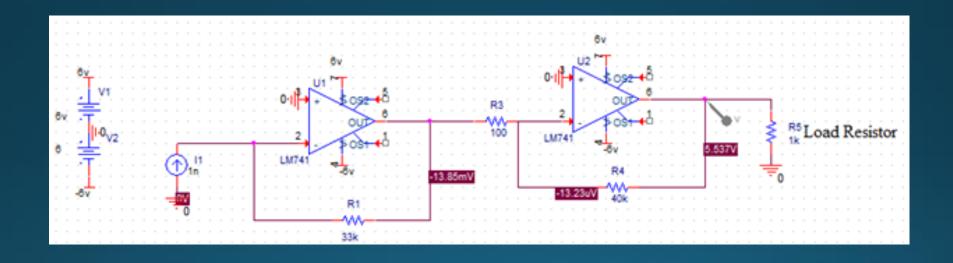
- [1] Silicon Photodiode for the Visible Spectral Range, OSRAM, [online] 2014, http://www.everlight.com/file/ProductFile/201407061648128798.pdf (Accessed: 19 November 2014).
- [2] RGB Color Light Sensor Surface Mount, Everlight, [online] 2013, http://www.everlight.com/file/ProductFile/201407061648128798.pdf (Accessed: 19 November 2014).
- [3] "Arduino," Arduino SA, [Online]. Available: http://arduino.cc/en/Main/arduinoBoardUno. [Accessed 19 11 2014].
- [4] "Freescale," 10 2012. [Online]. Available: http://cache.freescale.com/files/sensors/doc/data_sheet/MPX2202.pdf. [Accessed 19 11 2014].

Collision Detection

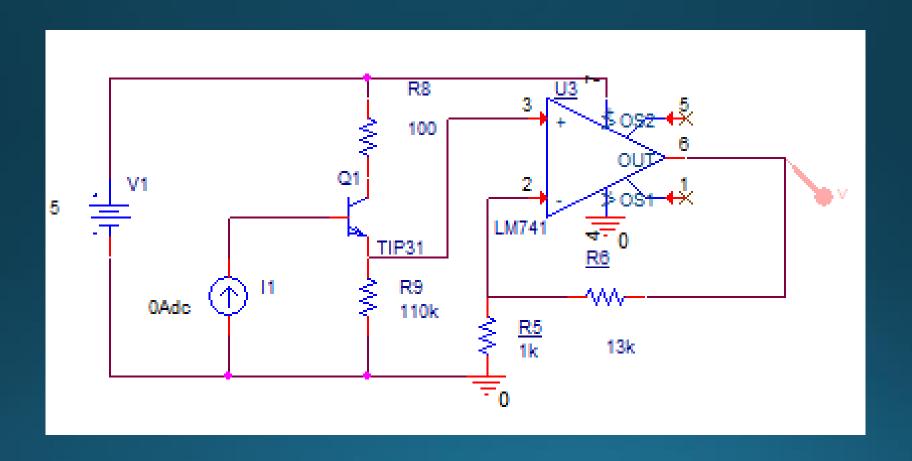
```
Collision: 0 Acc: -1744, 2272, -18000 Tilt_Acc: -1, 1, -10
Collision: 0 Acc: -1216, 304, -16640 Tilt Acc: 0, 0, -9
Collision: 1 Acc: -3552, 864, -16752 Tilt Acc: -2, 0, -9
Collision: 0 Acc: -736. -368. -16592 Tilt Acc: 0. 0. -9
Collision: 0 Acc: 1984, -336, -16320 Tilt Acc: 1, 0, -9
Collision: 3 Acc: 7664, 160, -14208 Tilt Acc: 4, 0, -7
Collision: 3 Acc: 7040, 464, -16448 Tilt Acc: 3, 0, -9
Collision: 0 Acc: -2304, -160, -13616 Tilt Acc: -1, 0, -8
Collision: 0 Acc: -1360, 288, -16768 Tilt Acc: 0, 0, -10
Collision: 1 Acc: -7760, 2384, -7024 Tilt Acc: -3, 1, -2
Collision: 1 Acc: -3904, -1392, -16944 Tilt Acc: -2, 0, -9
Collision: 4 Acc: 4176, -3296, -21360 Tilt Acc: 2, -1, -12
Collision: 0 Acc: -800, 304, -16656 Tilt Acc: 0, 0, -9
Collision: 0 Acc: -1568, 112, -16768 Tilt Acc: 0, 0, -9
Collision: 0 Acc: 1408, -32, -16608 Tilt Acc: 0, 0, -9
Collision: 0 Acc: -2464, -2160, -20992 Tilt Acc: -1, -1, -12
Collision: 0 Acc: -1456, -4368, -14160 Tilt Acc: 0, -1, -8
Collision: 0 Acc: -1440, -3600, -15216 Tilt Acc: 0, -1, -8
Collision: 0 Acc: -1088, -1584, -16864 Tilt Acc: 0, 0, -10
Collision: 0 Acc: -1424, -448, -16752 Tilt Acc: 0, 0, -9
Collision: 0 Acc: -944, 448, -16992 Tilt Acc: 0, 0, -10
```

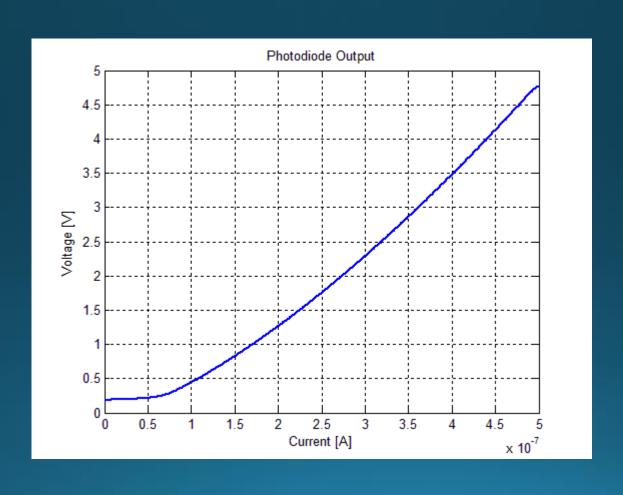

Collision detection and tilt compensation

12CTest LSM3o3DLHC


```
Send
50, 35, 8
50, 32, 71
60, 0, 12
```

Initialization I2C test


Eagle Schematic


First amplifier design

Second photodiode design

Second design iteration output

