

Stereoscopic Imaging for Slow-Moving
Autonomous Vehicle

Project Proposal

By:

Alex Norton

Advisor:
Dr. Huggins

December 15th, 2011

2

Introduction

The objective of Stereoscopic Imaging for Slow-Moving Autonomous Vehicle,
SISAV, is to develop a system that can provide an accurate terrain map to be
used for navigating an autonomous vehicle. The system will use two digital
cameras to perform the stereoscopic imaging to obtain a terrain map of the
objects in front of the cameras. This map will be used by the control algorithm
running the autonomous vehicle to determine the direction in which to move. The
system will have two modes of operation: calibrate and run. Calibration mode
involves calculating the intrinsic and extrinsic parameters of each camera by
using a calibration rig with known geometry and easily detectable features. Run
mode involves sending a signal to have the cameras acquire images, download
and process the images, and then compute distances to objects in the field of
view of the cameras. These distances are then used to develop a terrain map for
use by the control system of the autonomous vehicle.

Goals

• Learn theory of 3D stereoscopic imaging
• Investigate existing software (OpenCV or MATLAB)
• Control cameras
• Calibrate cameras
• Take and store images
• Process images for objects (e.g. edge detection)
• Correlate objects
• Compute distance to objects
• Compute terrain map

System Description

The system will consist of two digital cameras, a mount for the cameras, and a
laptop. The two cameras will be attached to a stable platform that, in turn, will be
attached to the vehicle. At the command of the software on the laptop, the
cameras will simultaneously acquire images which will be downloaded to the
laptop via two USB connections. The software will then identify the pertinent
objects via edge detection, correlate the detected edges, and finally compute
distances based on the disparity map. These distances will be used to generate
a terrain map the vehicle control system can use for navigation

There will be two modes of operation: calibration mode and run mode. During
calibration mode, a calibration rig will be used to obtain the extrinsic and intrinsic
parameters of each camera1 which will be used to correct for distortion in images
captured during run mode. After the cameras are calibrated, the system will enter
run mode, which implements the process of image acquisition and processing for
3D information as described earlier.

3

Figure 1: System Block Diagram

As shown in figure 1, the system will be made up of 2 subsystems: the camera
subsystem and the laptop subsystem.

Camera Subsystem

The camera subsystem, shown in Fig. 2, will consist of two digital cameras
mounted on a stable platform. The cameras will convert photons of light into
binary data each time they receive signals to capture images. The data will be 8-
bit arrays, three from each camera, containing values from 0 to 255 for the RGB
values of each pixel. The color information will then be converted to grayscale
using a built-in MATLAB or OpenCV function. A value of 0 will correspond to
black and a value of 255 will correspond to white. This data will be sent to
MATLAB or OpenCV to be processed further. The cameras function in an
identical fashion in both the calibration mode and run mode.

4

Figure 2: Camera Subsystem

Laptop and Software Subsystems

The laptop subsystem, shown in Fig. 3, will run the necessary software to
capture and process the images from the cameras and generate the data for
input to the navigation software of an autonomous vehicle. The computer vision
software, running on the laptop, will simultaneously acquire images from the
cameras which will be downloaded to the laptop via a USB connection. The
software will then identify the pertinent objects via edge detection, correlate the
detected edges, and finally compute distances based on the disparity map.
These distances will be used to generate a terrain map the vehicle control
system can use for navigation

Figure 3: Laptop Subsystem

5

Operational Modes
There are two modes of operation, calibration mode and run mode. These modes
are described in more detail below.

Calibration Mode

Calibration mode will be the initial mode of operation for the system. Its primary
function is to correct for deviations of the actual camera system from an ideal pin
hole camera system. The deviations are due to internal (e.g. lens distortion) and
external properties of the physical cameras. Once the system is powered on, the
software will wait for user input to enter calibration mode. In this mode, the
software will prompt a user to place a calibration target (e.g. a chessboard target)
in a known position and orientation and then the system will acquire an image
from each camera. This will be repeated in additional positions and orientation
as needed by the calibration software algorithm to be used2. Once an appropriate
number of images are acquired, the calibration will determine the calibration
matrices to be used to correct distortions in the images acquired in run mode.
The flow chart for the Calibration mode software is shown in Fig. 4.

Figure 4: Calibration Mode Flow Chart

6

Run Mode

Run mode is entered upon successful calibration of the two cameras. In this
mode, the user can set up the computer vision software to respond to commands
from the user or from an automated prompt from the navigation control software.
In both instances, the computer vision software acquires the images from the
cameras. The software will then identify the pertinent objects via edge detection,
correlate the detected edges, and finally compute distances based on the
disparity map. These distances will be used to generate a terrain map the
vehicle control system can use for navigation. In addition, the run mode has an
option that will allow the distance information to be displayed on the laptop
screen for analysis by the user. Run mode is exited by closing the computer
vision software. The flow chart for the run mode software is shown below in Fig.
5.

Figure 5: Run Mode Flow Chart

Camera Subsystem Requirements

• The cameras shall have a field of view of at least 45 degrees
• The cameras shall have a depth of view from 1 meter to 10 meters
• The cameras shall be calibrated and focused after startup to ensure

accurate image data

7

• In order to maximize speed for the system, the cameras shall output
images at a resolution of 320x240

• The cameras shall be secured to a mount to ensure they do not move out
of alignment during operation

• The cameras shall not have any face-tracking software built into them
• The cameras shall interface with the laptop via USB connections
• The cameras shall be compatible with Windows 7.

Laptop Subsystem Requirements

• The laptop shall have at least two USB ports to interface with the two
cameras

• In order to run MATLAB, the laptop shall have at least 1024 MB of RAM, 5
GB of memory, 64-bit Windows(Windows 7, Vista, or XP), several TCP
ports, and an Intel or AMD x86 processor supporting SSE2 instruction set

• In order to run Microsoft Visual Studio 2010, the laptop shall have2 GB of
RAM, 5 GB of memory, 32-bit or 64-bit Windows, a 1.6 GHz or faster
processor, a 5400 RPM or higher hard disk drive, a DirectX 9 capable
video card running at 1024 x 768 or higher-resolution display, and a DVD-
ROM drive

Computer Vision Software Requirements

• The software shall be split into two modes of operation, calibration mode
and run mode

Calibration Mode Requirements

• Once the system is powered on, it shall wait for user input to enter
calibration mode

• The calibration mode shall be compatible with a chessboard type
calibration rig2

• The calibration mode software shall compensate for internal and external
distortion effects.

• The calibration shall compensate for internal and external distortions of
the camera system so distance information calculated in run mode is
accurate to 5% in specified operating range.

• The calibration mode software shall transmit appropriate parameters to
the run mode software.

Run Mode Requirements

• Run mode shall be entered upon successful calibration of the two
cameras

8

• The cameras shall receive signals from the navigation control software of
an autonomous vehicle or a user to acquire a pair of images for
processing.

• The software shall complete all image processing within 5 seconds of
receiving the images from the cameras

• The run mode software shall determine distances to objects with 5%
accuracy

• The run mode software shall complete an image acquisition and
computation cycle in less than 5 seconds.

• The run mode software shall present distance information as a text file for
use by navigation control software.

• The run mode software shall be capable of displaying the detected edges,
disparity map, or distance information on the monitor based on user input.

Spring Schedule

Table 1: Schedule of tasks to complete in spring 2012

Tentative Schedule for Spring 2012
Weeks Alex Norton Matthew Foster
1 Assemble camera setup Assemble camera setup
2 Configure calibration rig Ensure OpenCV runs correctly on lab

computers
3 Begin writing OpenCV code for

calibration mode
Begin writing OpenCV code for run mode

4 Continue writing OpenCV code for
calibration mode

Continue writing OpenCV code for run mode

5 Continue writing OpenCV code for
calibration mode

Continue writing OpenCV code for run mode

6 Continue writing OpenCV code for
calibration mode

Continue writing OpenCV code for run mode

7 Test and debug calibration mode code Continue writing OpenCV code for run mode
8 Test and debug calibration mode code Continue writing OpenCV code for run mode
9 Test run mode code with calibrated

cameras
Test run mode code with calibrated cameras

10 Debug calibration mode code Debug run mode code
11 Debug calibration mode code Debug run mode code
12 Test and debug complete computer vision

code
Test and debug complete computer vision
code

13 Test and debug complete computer vision
code

Test and debug complete computer vision
code

14 Prepare for final presentation Prepare for final presentation

9

Equipment List

• Two Logitech Quickcam Express webcams
• Compaq Presario CQ60 laptop
• Mathworks Matlab
• Microsoft Visual Studio 2008

o OpenCV

• Equipment to be ordered:
o Two webcams compatible with Windows 7 and Linux

Patents and Standards

Patents
Although there are many patents related to stereoscopic imaging and
autonomous navigation, these are the ones most related to our project.

Table 2: Related Patents

Patent Number Brief Description
6728582 System and method for determining the position of an object in

three dimensions using a machine vision system with two
cameras

6137893 Machine vision calibration targets and methods of determining
their location and orientation in an image

7680323 Method and apparatus for three-dimensional object segmentation
5383013 Stereoscopic computer vision system
6392688 High accuracy stereo vision camera system
6807295 Stereoscopic imaging apparatus and method
6661449 Object detection device for autonomous vehicle

Standards
Applicable standards for our project are those related to the JPEG and PNG image
formats, USB 2.0 and 3.0, and OpenCV versions 2.1 and 2.3.

The JPEG standard can be viewed at
http://www.stanford.edu/class/ee398a/handouts/papers/Wallace%20-%20JPEG%20-
%201992.pdf
The PNG standard can be viewed at http://www.libpng.org/pub/png/spec/iso/index-
object.html#1Scope.
The USB 2.0 and 3.0 standards can be viewed at http://www.usb.org/developers/docs/.
Documentation for OpenCV 2.1 can be found at
http://opencv.willowgarage.com/documentation/cpp/index.html
Documentation for OpenCV 2.3 can be found at http://opencv.itseez.com/.

10

References

1Gary Bradski and Adrian Kaehler. “Learning OpenCV”:
Internet:
http://www.cse.iitk.ac.in/users/vision/dipakmj/papers/OReilly
%20Learning%20OpenCV.pdf, 2008 [Sept. 20, 2011]

2Jean-Yves Bouguet. “Camera Calibration Toolbox for
Matlab”: Internet:
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/exam
ple.html, 2010 [Nov 13, 2011]

[3] Martin Peris. “OpenCV: Stereo Camera Calibration”:
Internet: http://blog.martinperis.com/2011/01/opencv-stereo-
camera-calibration.html, 2011 [Oct 5, 2011]

[4] Digital-Tutors. “Stereo 3D Disparity Maps”: Internet:
http://www.digitaltutors.com/dtlabs/?p=645, 2010 [Nov 13,
2011]

[5] Mathworks. “System Requirements - Release 2011b”:
Internet:
http://www.mathworks.com/support/sysreq/current_release/,
2011 [Nov 28, 2011]

[6] Microsoft. “Visual Studio 2010 System Requirements”:
Internet: http://www.microsoft.com/visualstudio/en-
us/products/2010-editions/professional/overview, 2011 [Nov
28, 2011]

11

Appendix A
Pinhole Camera Model

The section below concerning the equations to determine the 3D position of
objects using stereoscopic imaging is taken from the Project Proposal of the
team that previously worked on this project, Adam Beach and Nick Wlaznik.
These equations are derived for a system with the cameras mounted in line a
horizontal axis, similar to how the SISMAV system will have cameras mounted in
line on a horizontal axis.

The equations to calculate the 3D position of an object in Cartesian
coordinates using locations of the object in two camera images are shown
below. This technique is known as stereoscopic imaging. Figure 10 shows
the setup of the cameras and the coordinate system to ensure the validity
of these equations. The two cameras are placed so there is an upper and
a lower camera, and the lower camera must be centered on the x-y axis.
The x-axis is assumed to be vertical, the y-axis is horizontal and
perpendicular to the line of sight from the center of the cameras, and the
z-axis is horizontal and parallel to the line of sight from the center of the
cameras. The positive z-axis is pointing toward the objects to be viewed.

In the above equations, d is the distance between the centers of the
cameras and f is the focal length of the cameras. It is assumed f is the
same for both cameras. XD is the distance in the x-axis between the object
in the lower camera and the center of the lower camera. If the object in the
lower camera is above the center of the camera the distance is positive
while if the object is below the center of the camera the distance is
negative. XU is the same as XD applied to the upper camera. The distance
in the y-axis between the object in the camera and the center of the
camera will be the same for both cameras, so YD=YU. If the object in the
cameras is to the right of the center of the cameras (facing the back of the
camera) the distance is positive while if the object is to the left of the
center the distance is negative. Figure 10 shows the sign convention for
the variables XD, XU, and YD described above. Equations 1 and 3 were
found on the Cooper University website, www.ee.cooper.edu, in the week
5 lecture notes for EE 458. The equation to calculate Y was derived using
Equation 3 and the equation for a line in the y-z plane from the origin to an
arbitrary point in 3D space.

12

Figure 6: Setup of system to ensure validity of design equations

