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Abstract 
 

This project utilizes two cameras and OpenCV (open source computer vision) to 
perform computer stereo vision for extracting 3D information from the images.  
This information can then be sent to an autonomous vehicle for navigation. The 
system operates using two modes: calibration mode and run mode.  Calibration 
mode involves calculating the intrinsic and extrinsic parameters of each camera 
by using a chessboard with known geometry and easily detectable features.  Run 
mode involves sending a signal to have the cameras acquire images, process 
the images using matrices computed via the calibration process, and then 
compute distances to objects in the field of view of the cameras.   
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I. Introduction 
 
The objective of Stereoscopic Imaging for Slow-Moving Autonomous Vehicle, 
SISAV, is to develop a system that can provide an accurate terrain map to be 
used for navigating an autonomous vehicle.  The system uses two digital 
cameras and OpenCV to perform stereoscopic imaging to obtain distance 
information about objects in front of the cameras.  The system has two modes of 
operation: calibrate and run. Calibration mode involves calculating the intrinsic 
and extrinsic parameters of each camera by using a chessboard with known 
geometry and easily detectable features. Run mode involves sending a signal to 
have the cameras acquire images, process the images using matrices computed 
via the calibration process, and then compute distances to objects in the field of 
view of the cameras.  This information can be used by the control algorithm 
running an autonomous vehicle to determine the direction in which to move.  
 
Disparity is a fundamental concept that underlies extracting 3D information from 
2D projections onto camera imaging planes.  The book Learning OpenCV has an 
excellent section on using pin hole cameras to use disparity measurements on 
pages 415-418 [1].  An ideal configuration is shown in Fig. 1 which is extracted 
from page 419 of Learning OpenCV.  The ideal configuration is characterized by 
two identical pinhole cameras with coplanar image planes and parallel optic axis.  
The optical axis is the ray from the center of projection O through the principal 
point c and is also known as the principal ray. As shown in Fig. 1, the optical 
axes are a distance of T apart, which is the same as the distance between the 
cameras. The cameras are assumed to have equal focal lengths fl = fr=f. Another 
assumption made it that cx 

left and cx 
right have the same pixel coordinates in their 

respective left and right images after the cameras have been properly calibrated. 
The principal points cx 

left and cx 
right are where the principal rays from their 

respective cameras intersect the imaging plane of their respective camera. This 
intersection depends on the optical axis of the lens. The image plane is rarely 
aligned exactly with the lens and so the center of the imager is almost never 
exactly aligned with the principal point [1]. 
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Figure 1: The above figure is figure 12-4 from Learning OpenCV [1]. With 

perfectly undistorted, aligned stereo rig and known correspondence, the depth Z 
can be found by similar triangles; the principal rays of the imagers begin at the 

centers of projection Ol and Or and extend through the principal points of the two 
image planes at cl and cr [1, pp.416]. 

 
It is further assumed that the images of both cameras have been rectified, 
therefore making them row-aligned, and the pixels along a row of one camera’s 
image are aligned with the corresponding row of pixels in the other camera’s 
image. Such a camera arrangement is called frontal parallel, and is one of the 
results of properly calibrating the two cameras. Using cameras that are in a 
frontal parallel arrangement, it can be assumed that any point in the physical 
world in the left and right images, at point pl in the left camera image and point pr 
in the right camera image, will have the same vertical coordinates yl and yr, and 
will only differ in horizontal coordinates, xl and xr.   
 
In this case, it can be shown that the depth to an object in the left and right 
images is inversely proportional to the disparity between the two images. Here, 
disparity is defined as d = xl – xr, where xl and xr are the horizontal coordinates of 
the points in the left and right images respectively. This situation is shown in 
Figure 1, where it can be seen that the depth Z can be easily derived by using 
similar triangles. Referring to the figure, this gives: 
 

 
  
 Eqn. 1 
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II. System Description  

 
The system consists of two digital cameras, a mount for the cameras, and a 
computer running OpenCV. The two cameras are attached to a stable platform 
that, in turn, will be attached to the vehicle.  There are two modes of operation: 
calibration mode and run mode. During calibration mode, a calibration rig is used 
to obtain the extrinsic and intrinsic parameters of each camera which are used to 
correct for distortion in images captured during run mode [1, pp.378]. After the 
cameras are calibrated, the system enters run mode.  Run mode involves 
sending a signal to have the cameras acquire images, process the images using 
matrices determined via the calibration process, and then compute distances to 
objects in the field of view of the cameras.  This information can be used by the 
control algorithm running an autonomous vehicle to determine the direction in 
which to move.  
 
 
    
 

 
 

Figure 2: System Block Diagram 
 
 



 
 

7 

 
A. Subsystems 
 
As shown in figure 2, the system is made up of 2 subsystems: the camera 
subsystem and the computer subsystem.  
 
1. Camera Subsystem 
 
The camera subsystem, shown in Fig. 3, consists of two digital cameras mounted 
on a stable platform. The cameras convert photons of light into binary data each 
time they receive signals to capture images. The data consists of 8-bit arrays, 
three from each camera, containing values from 0 to 255 for the RGB values of 
each pixel.  The color information is then converted to grayscale using a built-in 
OpenCV function. A value of 0 corresponds to black and a value of 255 
corresponds to white. These data are then sent to OpenCV to be processed 
further. The cameras function in an identical fashion in both the calibration mode 
and run mode.    
 

 
 

Figure 3: Camera Subsystem 
 
 
2. Computer and Software Subsystems 
 
The computer subsystem, shown in Fig. 4, runs the necessary software to 
capture and process the images from the cameras and generate the data for 
input to the navigation software of an autonomous vehicle.  The computer vision 
software, running on the computer, simultaneously acquires images from the 
cameras which are then downloaded to the computer via a USB connection.  The 
software then computes the correspondence between pixel groups in the set of 
images. Here, correspondence is the measure of the similarity between 
corresponding pixel groups in the set of images. The correspondence values are 
used to compute the disparity between the corresponding pixel groups, and 
finally computes distances based on the disparity map, in which the disparity is 
the offset in pixels between corresponding pixel groups in the left and right 



 
 

8 

cameras. These distances can then be used by the vehicle control system for 
navigation  
 
 
 

CPUUser Input

Camera 1 Image capture signal

Movement instructions

Display 3D map on screen

Camera 2 Image capture signal

 
Figure 4: Computer Subsystem 

 
 
 
B. Operational Modes 
There are two modes of operation, calibration mode and run mode. These modes 
are described in more detail below. 
 
1. Calibration Mode 
 
Calibration mode is the initial mode of operation for the system. Its primary 
function is to correct for deviations of the actual camera system from an ideal pin 
hole camera system. The deviations are due to internal and external properties of 
the physical cameras. Once the system is powered on, the software waits for 
user input to enter calibration mode.  In this mode, the software prompts a user 
to place a chessboard target in an arbitrary position and orientation( within limits) 
and then the system will acquire an image from each camera.  This is repeated in 
additional positions and orientation as needed by the calibration software 
algorithm to be used. Once an appropriate number of images, normally 10, are 
acquired, the calibration determines the calibration matrices to be used to correct 
distortions in the images acquired in run mode.   The flow chart for the 
Calibration mode software is shown in Fig. 5. 
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Figure 5: Calibration Mode Flow Chart 
2. Run Mode 
 
Run mode is entered upon successful calibration of the two cameras.  In this 
mode, the user can set up the computer vision software to respond to commands 
from the user or from an automated prompt from the navigation control software.  
In both instances, the computer vision software acquires the images from the 
cameras.  The software then uses OpenCV libraries to compute the 
correspondence between pixel groups in the set of images, uses the 
correspondence values to compute the disparity between the corresponding pixel 
groups, and finally computes distances based on the disparity map. These 
distances can then be used by the vehicle control system for navigation.  Run 
mode is exited by closing the computer vision software. The flow chart for the run 
mode software is shown below in Fig. 6



 
 

Figure 6: Run Mode Flow Chart 
 



III. Subsystem Requirements 
 
Each subsystem, as well as each mode of operation, will be expected to perform 
according to certain specifications. These specifications are described in the 
following sections.  
 
A. Camera Subsystem Requirements 
 

• The cameras shall have a field of view of at least 45 degrees  
• The cameras shall have a depth of view from 1 meter to 10 meters  
• The cameras shall be calibrated and focused after startup to ensure 

accurate image data  
• In order to maximize speed for the system, the cameras shall output 

images at a resolution of 320x240 
• The cameras shall be secured to a mount to ensure they do not move out 

of alignment during operation 
• The cameras shall not have any face-tracking software built into them 
• The cameras shall interface with the computer via USB connections  
• The cameras shall be compatible with Windows 7.  

 
B. Computer Subsystem Requirements  
 

• The computer shall have at least two USB ports to interface with the two 
cameras 

• In order to run Microsoft Visual Studio 2010, the computer shall have2 GB 
of RAM, 5 GB of memory, 32-bit or 64-bit Windows, a 1.6 GHz or faster 
processor, a 5400 RPM or higher hard disk drive, a DirectX 9 capable 
video card running at 1024 x 768 or higher-resolution display, and a DVD-
ROM drive [2] 

 
C. Computer Vision Software Requirements 
 

• The software shall use OpenCV and be split into two modes of operation; 
calibration mode and run mode. 

 
D. Calibration Mode Requirements 
 

• Once the system is powered on, it shall wait for user input to enter 
calibration mode 

• The calibration mode shall be compatible with  a  chessboard type 
calibration rig 

• The calibration mode software shall compensate for internal and external 
distortion effects. 

• The calibration shall compensate for internal and external distortions of 
the camera system so distance information calculated in run mode is 
accurate to 5% in specified operating range.   
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• The calibration mode software shall transmit appropriate parameters to 
the run mode software.  

 
E. Run Mode Requirements 
 

• Run mode shall be entered upon successful calibration of the two 
cameras 

• The cameras shall receive signals from the navigation control software of 
an autonomous vehicle or a user to acquire a pair of images for 
processing.   

• The software shall complete all image processing within 5 seconds of 
receiving the images from the cameras 

• The run mode software shall determine distances to objects with 5% 
accuracy  

• The run mode software shall complete an image acquisition and 
computation cycle in less than 5 seconds.  

• The run mode software shall present distance information as a text file for 
use by navigation control software. 

• The run mode software shall be capable of displaying the detected edges, 
disparity map, or distance information on the monitor based on user input.   
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IV. Results 
 
This year, significant progress was made on the project in two areas. The 
OpenCV libraries and functions were successfully used to create and run code 
for both modes of operation for the project. This allowed significantly more 
progress to be made in terms of calibrating the cameras than in all other prior 
stereo vision projects attempted at Bradley.  In addition to these major 
accomplishments, some progress was made in implementing the “run mode” 
portion of the project in that maps were generated in real time that had some 
correlation to disparity.   
 
A. Calibration Mode Results 
 
After the program sets up the webcams to capture sets of images, the user has 
to calibrate the camera by analyzing multiple images of a chessboard of known 
dimensions.  The user must input the number of internal corners and dimension 
of the squares of the chessboard.  The user also can choose the number of 
images for processing, which has 10 for this project.  Though the chessboard can 
be placed in many orientations at various distances from the cameras, there are 
limits.  For example, the images shown in Fig. 7 are what are displayed on the 
screen if the software fails to detect all the corners on the chessboard.   
 

 
Figure 7: Display when chessboard corners are not found 
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Saving at least one set of chessboard images such as these will result in the 
command window in fig. 8 being displayed after saving the required number of 
sets of images.   
  
 
 

 
Figure 8: Command window display when chessboard corners are not found 

 
On the other hand, when the software is able to find all the chessboard corners in 
a pair of chessboard images, colored lines are displayed as shown in Fig. 9, 
indicating valid images for calibration.   

 

 
Figure 9: Display when chessboard corners are found 
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Once the required number of valid chessboard image pairs are saved, the 
command window in fig. 10 will be displayed. 
 
 
 

 
Figure 10: Command window when chessboard corners are found in all images 

 
The Software then proceeds to run the calibration mode software, which is listed 
in appendix C. Once the calibration is finished, the code will display any pair of 
rectified chessboard images as requested by the user. However, due to errors 
present in the system, the sets of images are not always rectified properly. This 
is shown in Fig. 11. 
 

 
Figure 11: Output set of chessboard images from calibration mode 

 
 
B. Run Mode Results 
 
After the cameras have been calibrated, the program enters run mode, where the 
user can capture a pair of images by pressing the “enter” key twice. Once a set 
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of images is captured, the software will use the calibration mode results to rectify 
the set of images so they appear as though captured by identical pinhole 
cameras. However, as stated before, due to errors present in the system, the 
sets of images are not always rectified properly, and possible reasons for this are 
given in Section C: Possible Errors on page 18. Below in fig. 12 is a set of 
images of me seen by the cameras.  
 

 
Figure 12: Output set of images obtained in run mode 

 
Once the set of images has been rectified, the software uses the 
“cvFindStereoCorrespondenceBM” function to find the corresponding pixel 
groups and then compute the disparity between them.  The functions uses a 
block matching algorithm [1, pp.444]. The disparity between corresponding pixel 
groups are stored in a matrix. This matrix is then displayed to show the disparity 
map obtained from the set of images, which is shown in Fig. 13 along with a 
window that is used to adjust the values that change the way the disparity map is 
computed. The parameters are: preFilterSize, the nxn size of the filters used to 
normalize the input images; preFilterCap, the number of those filters; 
minDisparity, the minimum disparity, usually 0; SADWindowSize, the linear 
size of the blocks compared by the algorithm, larger block size implies smoother, 
though less accurate disparity map while smaller block size gives more detailed 
disparity map, but there is higher chance for algorithm to find a wrong 
correspondence; numberOfDisparities, difference between the maximum 
disparity and minimum disparity; textureThreshold, sets the minimum threshold, 
under which areas with no texture are ignored; uniquenessRatio, which is used 
to filter out pixels if there are other close matches; speckleWindowSize, which is 
the maximum area of speckles to remove; and speckleRange, which is the 
acceptable range of disparity variation in each connected component internal 
data. 
 
The values the bars are set to are the values that produce the best disparity map 
that could be determined, and were obtained through trial and error by changing 
the values on the slidebars and noting what changes were seen.  
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Figure 13: Disparity map computed from a set of images obtained in run mode 

 
Once the disparity map is obtained, the distance to each pixel in the image can 
be computed by using the Eqn 2 [1, pp 417] 
 
    z = (B*F)/D  Eqn. 2 
 
This equation is essentially the same as equation 1, with the only differences 
being that the variables f and T are replaced by F and B, and xl – xr is replaced 
by D. Here, z is the distance to a given pixel in meters, B is the distance between 
the two cameras in meters, F is the focal length of the cameras (in pixels), and D 
is the disparity, the horizontal difference in pixels between the corresponding 
pixel groups in left and right images. However, the disparity map obtained from 
sets of images shown in Fig. 13 is not the correct disparity map, and therefore 
any distance calculations performed will also be incorrect. If the map was 
showed the correct disparity, the young man visible in fig. 12 would also be easily 
visible in fig. 12, and the region would be lighter.  Other terrain configurations 
were also investigated with similar errors.  A correct disparity map is shown in 
Fig. 14 [3, pp. 4].   
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Figure 14: One images from a set of stereo images (left), the disparity map 

obtained from that set of images (right) [3, pp. 4] 
 

Clearly, the person in the image on the left is easily visible in the image on the 
right, and is represented by higher values of disparity due to being closer to the 
cameras than the background behind him. Such results were what were desired 
for this project, but errors present made the system unable to achieve those 
results. 
 
 
C. Possible Errors 
 

Since OpenCV has been successfully used for stereoscopic imaging, it is 
clear that there must be some errors present in the methods or codes that were 
used in this project. One possible source of error is that the calibration results are 
incorrect. Theoretically, the calibration is supposed to convert the actual images 
into images that perfectly oriented pinhole cameras would have captured.  One 
characteristic of the rectified images is that corresponding pixels in each set of 
images should lie on parallel horizontal lines.  This makes the correspondence 
determination of pixel groups to be efficient.  However, this was not the case for 
most calibration attempts. Points in one image do not line up with the 
corresponding points in the other image on the same line, and instead also have 
a vertical offset as well. The vertical offset in the rectified images could be due to 
subtle errors in the code implemented or parameters used by the function that 
were not set correctly. In any case, the disparity map function assumes that the 
images input have been rectified so that points in one image line up with the 
corresponding points in the other image. Failure to rectify the images will result in 
a wrong disparity map due to errors in the correspondence determination. 

Another possible error is that the cameras could have internal flaws that 
cannot be corrected with sufficient accuracy by the calibration process. This 
could be a wide range of flaws, such as a flaw in the lenses that the calibration 
software fails to take into account, or possible a flaw in the image sensor within 
the webcams. Due to the age of the cameras, it is very possible that the internal 
electronics of the cameras are not performing as well as they should be, which 
could be causing images taken by the cameras to contain errors that cannot be 
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corrected for. It is possible that the cameras being used simply cannot be 
calibrated.  

 
D. Suggestions for Future Work 
 

Although the project was not completely successful this year, significant 
progress was made, which means there is still some work that should be done in 
the future. In particular, there are two main areas that the next group should 
focus on. First, they should investigate the mathematics underlying the OpenCV 
functions. OpenCV is a very complex collection of many different image 
processing functions, with many of those functions using multiple parameters and 
having underlying mathematics that is also very complex. Therefore, in order to 
make better use of the functions within OpenCV’s libraries, it is necessary to 
obtain a better understanding of the math that makes the functions work. Doing 
so will allow them to write better, more efficient code with those functions, and 
may also reveal what errors were made in this project, 

 The other area the next group should focus on is developing methods to 
find and correct for errors that occur as a result of incorrect calibrations and/or 
correspondence computations. This is something that would have been 
attempted for this project; however, there was not enough people working on the 
project, and also not enough time to accomplish it. As a result, the code used has 
no way to actively detect for and correct errors that result from incorrect 
calibrations or correspondence computations. If a future group if able to 
implement this into their system, it is very likely that they will be successful in 
completing the goals of the project, therefore error detection and correction 
should be one of the main focuses in the future. 
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V. Equipment List 
 

• Two Logitech Quickcam Express webcams 
• Dell Optiplex 755 computer 
• Microsoft Visual Studio 2008 

o OpenCV 2.3 
 
VI. Patents and Standards 
 
Patents 
Although there are many patents related to stereoscopic imaging and 
autonomous navigation, these are the ones most related to our project. 
 
Table 2: Related Patents 
 
Patent Number Brief Description 
6728582 System and method for determining the position of an object in 

three dimensions using a machine vision system with two 
cameras 

6137893 Machine vision calibration targets and methods of determining 
their location and orientation in an image 

7680323 Method and apparatus for three-dimensional object segmentation 
5383013 Stereoscopic computer vision system 
6392688 High accuracy stereo vision camera system 
6807295 Stereoscopic imaging apparatus and method 
6661449 Object detection device for autonomous vehicle 
 
Standards 
Applicable standards for our project are those related to the JPEG and PNG image 
formats, USB 2.0 and 3.0, and OpenCV versions 2.1 and 2.3. 
 
The JPEG standard can be viewed at 
http://www.stanford.edu/class/ee398a/handouts/papers/Wallace%20-%20JPEG%20-
%201992.pdf 
The PNG standard can be viewed at http://www.libpng.org/pub/png/spec/iso/index-
object.html#1Scope.  
The USB 2.0 and 3.0 standards can be viewed at http://www.usb.org/developers/docs/. 
Documentation for OpenCV 2.1 can be found at 
http://opencv.willowgarage.com/documentation/cpp/index.html  
Documentation for OpenCV 2.3 can be found at http://opencv.itseez.com/.
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Appendix A 

OpenCV Code for Setting Up the Webcams 
 

//------------------------------------------------- ------------------//    
  //Library declarations and webcams setup 
//------------------------------------------------- ------------------// 

#include  "cv.h" 
#include  "cxmisc.h" 
#include  "highgui.h" 
#include  "cvaux.h" 
#include  <vector> 
#include  <string> 
#include  <algorithm> 
#include  <stdio.h> 
#include  <ctype.h> 
using  namespace  std; 
 
int  main( void ) 
{ 
   CvCapture* capture = cvCaptureFromCAM( 0 ); 
   CvCapture* capture2 = cvCaptureFromCAM( 1 ); 
   int  displayCorners = 0; //if 1, displays each chessboard image with corners  found in them 
   int  showUndistorted = 0; //if 1, diplays each pair of chessboard images, rec tified 
   bool  isVerticalStereo = false ; //Cameras are horizontally aligned 
   int  numChessBoards = 10;  //number of chessboard images to be taken 
   int  nx = 9;  //number of chessboard corner along X axis 
   int  ny = 6;  //number of chessboard corner along Y axis 
   int  c = 0; 
   int  i, j, lr, nframes, n = nx*ny, N = 0; 
   int  Exit = 0; 
   int  focal = 500; 
   double  base = 0.0925; 
   vector<CvPoint2D32f> temp(n); 
   vector<uchar> active[2]; 
   int  count = 0, result=0; 
   const  char * imageList = "list_10.txt" ; //Filename can be changed depending on numChessboar ds 
   char  loc2[10]; 
   char  loc3[10] = ".jpeg" ; //filetype extension 
   if  ( !capture ) { 
     fprintf( stderr, "ERROR: capture is NULL \n"  ); 
     getchar(); 
     return  -1; 
   } 
    if  ( !capture2 ) { 
     fprintf( stderr, "ERROR: capture2 is NULL \n"  ); 
     getchar(); 
     return  -1; 
   } 
   // Create windows to run the code 
   cvNamedWindow( "CameraLeft" , CV_WINDOW_AUTOSIZE ); 
   cvNamedWindow( "CameraRight" , CV_WINDOW_AUTOSIZE ); 
   while  ( c < numChessBoards ) { 
  char  locR1[30] = "imagelist/imageR" ; 
  char  locL1[30] = "imagelist/imageL" ; 
  IplImage* imgR = cvQueryFrame( capture ); 
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  IplImage* imgL = cvQueryFrame( capture2 ); 
  cvShowImage( "CameraRight" , imgR ); 
  cvShowImage( "CameraLeft" , imgL ); 
  //The next 10 lines were added 4-12-2012 to make ca libration easier to do 

//They draw the chessboard corners on the images cu rrently being taken by the                   
//cameras. This allows you to know you'll have a go od set of chessboard images 

  //Before you actually save them 
  IplImage* timgR = imgR; //temp image for right camera 
  IplImage* timgL = imgL; //temp image for left camera 
  result = cvFindChessboardCorners( timgR, cvSize(n x, ny), 
  &temp[0], &count, CV_CALIB_CB_ADAPTIVE_THRESH | C V_CALIB_CB_NORMALIZE_IMAGE); 
  cvDrawChessboardCorners( timgR, cvSize(nx, ny), & temp[0],count, result ); 
  result = cvFindChessboardCorners( timgL, cvSize(n x, ny), 
  &temp[0], &count, CV_CALIB_CB_ADAPTIVE_THRESH | C V_CALIB_CB_NORMALIZE_IMAGE); 
  cvDrawChessboardCorners( timgL, cvSize(nx, ny), & temp[0], count, result ); 
  cvShowImage( "corners right" , timgR ); 
  cvShowImage( "corners left" , timgL ); 
   //When the "enter" key is pressed, save the current  set of chessboard images 
  if  ( cvWaitKey(10) == 13 ){  
   c++; 
   _itoa(c, loc2, 10); 
   strcat(locR1, loc2); 
   strcat(locR1, loc3);  
   strcat(locL1, loc2); 
   strcat(locL1, loc3); 
   IplImage* imgR = cvQueryFrame( capture ); 
   IplImage* imgL = cvQueryFrame( capture2 ); 
   cvSaveImage(locR1, imgR); //saves right camera image to imageRc.jpeg 
   cvSaveImage(locL1, imgL); //saves left camera image to imageLc.jpeg 
   printf( "Number of sets of images saved: %d" , c); 
   printf( "\n" ); 
  } 
  if  ( cvWaitKey(10) == 27){ 
   Exit = 1; //sets a flag to skip over the code 
   break ; 
  } 

   } 
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Appendix B 
OpenCV Code for Calibration Mode 

 
Note: The following code is still a part of the sam e main() function created in the code in 
appendix B. This code, and the code in the followin g appendix, are all a part of the same file, 
and also the same main() function. 
 
//------------------------------------------------- ------------------------------------------//  
      // Run the calibration code 
//------------------------------------------------- ------------------------------------------// 
   if (Exit == 0){ 
 int  GoodChessBoardImages = 0; 
 const  int  maxScale = 1; 
 const  float  squareSize = 1.0; 
 FILE* f = fopen(imageList, "rt" ); 
 vector<string> imageNames[2]; 
 vector<CvPoint3D32f> objectPoints; 
 vector<CvPoint2D32f> points[2]; 
 vector< int > npoints; 
 CvSize imageSize = {0,0}; 
 // ARRAY AND VECTOR STORAGE: 
 double  M1[3][3], M2[3][3], D1[5], D2[5]; 
 double  R[3][3], T[3], E[3][3], F[3][3]; 
 double  Q[4][4]; 
 CvMat _M1 = cvMat(3, 3, CV_64F, M1 ); 
 CvMat _M2 = cvMat(3, 3, CV_64F, M2 ); 
 CvMat _D1 = cvMat(1, 5, CV_64F, D1 ); 
 CvMat _D2 = cvMat(1, 5, CV_64F, D2 ); 
 CvMat _R = cvMat(3, 3, CV_64F, R ); 
 CvMat _T = cvMat(3, 1, CV_64F, T ); 
 CvMat _E = cvMat(3, 3, CV_64F, E ); 
 CvMat _F = cvMat(3, 3, CV_64F, F ); 
 CvMat _Q = cvMat(4, 4, CV_64F, Q); 
 CvMat part; 
 if ( displayCorners ) 
 cvNamedWindow( "corners" , 1 ); 
 // READ IN THE LIST OF CHESSBOARDS: 
 if ( !f ) 
 { 
 fprintf(stderr, "can not open file %s\n" , imageList ); 
 return  0; 
 } 
 for (i=0;;i++) 
 { 
 char  buf[1024]; 
 lr = i % 2; 
 vector<CvPoint2D32f>& pts = points[lr]; 
 if ( !fgets( buf, sizeof (buf)-3, f )) 
 break ; 
 size_t len = strlen(buf); 
 while ( len > 0 && isspace(buf[len-1])) 
 buf[--len] = '\0' ; 
 if ( buf[0] == '#' ) 
 continue ; 
 IplImage* img = cvLoadImage( buf, 0 ); 
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 if ( !img ) 
 break ; 
 imageSize = cvGetSize(img); 
 imageNames[lr].push_back(buf); 
 //FIND CHESSBOARDS AND CORNERS THEREIN: 
 for ( int  s = 1; s <= maxScale; s++ ) 
 { 
 IplImage* timg = img; 
 if ( s > 1 ) 
 { 
 timg = cvCreateImage(cvSize(img->width*s,img->heig ht*s), 
 img->depth, img->nChannels ); 
 cvResize( img, timg, CV_INTER_CUBIC ); 
 } 
 result = cvFindChessboardCorners( timg, cvSize(nx,  ny), 
 &temp[0], &count, 
 CV_CALIB_CB_ADAPTIVE_THRESH | 
 CV_CALIB_CB_NORMALIZE_IMAGE); 
 if ( timg != img ) 
 cvReleaseImage( &timg ); 
 if ( result || s == maxScale ) 
 for ( j = 0; j < count; j++ ) 
 { 
 temp[j].x /= s; 
 temp[j].y /= s; 
 } 
 if ( result ) 
 break ; 
 } 
 if ( displayCorners ) 
 { 
 printf( "%s\n" , buf); 
 IplImage* cimg = cvCreateImage( imageSize, 8, 3 );  
 cvCvtColor( img, cimg, CV_GRAY2BGR ); 
 cvDrawChessboardCorners( cimg, cvSize(nx, ny), &te mp[0], 
 count, result ); 
 cvShowImage( "corners" , cimg ); 
 cvReleaseImage( &cimg ); 
 if ( cvWaitKey(0) == 27 ) //Allow ESC to quit 
 exit(-1); 
 } 
 else 
 putchar( '.' ); 
 N = pts.size(); 
 pts.resize(N + n, cvPoint2D32f(0,0)); 
 active[lr].push_back((uchar)result); 
 //assert( result != 0 ); 
 if ( result ) 
 { 
 GoodChessBoardImages++; 
 //Calibration will suffer without subpixel interpol ation 
 cvFindCornerSubPix( img, &temp[0], count, 
 cvSize(11, 11), cvSize(-1,-1), 
 cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 
 30, 0.01) ); 
 copy( temp.begin(), temp.end(), pts.begin() + N );  
 } 
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 cvReleaseImage( &img ); 
 } 
 fclose(f); 
 printf( "\n" ); 
 // HARVEST CHESSBOARD 3D OBJECT POINT LIST: 
 nframes = active[0].size(); //Number of good chessboads found 
 objectPoints.resize(nframes*n); 
 for ( i = 0; i < ny; i++ ) 
 for ( j = 0; j < nx; j++ ) 
 objectPoints[i*nx + j] = 
 cvPoint3D32f(i*squareSize, j*squareSize, 0); 
 for ( i = 1; i < nframes; i++ ) 
 copy( objectPoints.begin(), objectPoints.begin() +  n, 
 objectPoints.begin() + i*n ); 
 npoints.resize(nframes,n); 
 N = nframes*n; 
 CvMat _objectPoints = cvMat(1, N, CV_32FC3, &objec tPoints[0] ); 
 CvMat _imagePoints1 = cvMat(1, N, CV_32FC2, &point s[0][0] ); 
 CvMat _imagePoints2 = cvMat(1, N, CV_32FC2, &point s[1][0] ); 
 CvMat _npoints = cvMat(1, npoints.size(), CV_32S, &npoints[0] ); 
 cvSetIdentity(&_M1); 
 cvSetIdentity(&_M2); 
 cvZero(&_D1); 
 cvZero(&_D2); 
 printf( "Number of good chessboard images: %d" , GoodChessBoardImages); 
 //Since the calibrate function does not work if it can't find all chessboard corners 
 //in each set of chessboard images, the following i f statement was added. It ends after 
 //run mode ends. 
 if (GoodChessBoardImages == (2*numChessBoards)){ 
  // CALIBRATE THE STEREO CAMERAS 
  printf( "\nRunning stereo calibration ..." ); 
  fflush(stdout); 
  cvStereoCalibrate( &_objectPoints, &_imagePoints1 , 
  &_imagePoints2, &_npoints, 
  &_M1, &_D1, &_M2, &_D2, 
  imageSize, &_R, &_T, &_E, &_F, 
  cvTermCriteria(CV_TERMCRIT_ITER+ 
  CV_TERMCRIT_EPS, 100, 1e-5), 
  CV_CALIB_FIX_ASPECT_RATIO + 
  CV_CALIB_ZERO_TANGENT_DIST + 
  CV_CALIB_SAME_FOCAL_LENGTH ); 
  printf( " done\n" ); 
  // Save the matrices to text files, added 2-28-2012  
  cvSave( "Rotation.txt" ,&_R); 
  cvSave( "Translation.txt" ,&_T); 
  cvSave( "Fundamental.txt" ,&_F); 
  cvSave( "Essential.txt" ,&_E); 
  cvSave( "Camera1.txt" ,&_M1); 
  cvSave( "Camera2.txt" ,&_M2); 
  cvSave( "Dist1.txt" ,&_D1); 
  cvSave( "Dist2.txt" ,&_D2); 
 
  // CALIBRATION QUALITY CHECK 
  // because the output fundamental matrix implicitly  
  // includes all the output information, 
  // we can check the quality of calibration using th e 
  // epipolar geometry constraint: m2^t*F*m1=0 
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  vector<CvPoint3D32f> lines[2]; 
  points[0].resize(N); 
  points[1].resize(N); 
  _imagePoints1 = cvMat(1, N, CV_32FC2, &points[0][ 0] ); 
  _imagePoints2 = cvMat(1, N, CV_32FC2, &points[1][ 0] ); 
  lines[0].resize(N); 
  lines[1].resize(N); 
  CvMat _L1 = cvMat(1, N, CV_32FC3, &lines[0][0]); 
  CvMat _L2 = cvMat(1, N, CV_32FC3, &lines[1][0]); 
  //Always work in undistorted space 
  cvUndistortPoints( &_imagePoints1, &_imagePoints1 , 
  &_M1, &_D1, &_R, &_M1 ); 
  cvUndistortPoints( &_imagePoints2, &_imagePoints2 , 
  &_M2, &_D2, &_R, &_M2 ); 
  cvComputeCorrespondEpilines( &_imagePoints1, 1, & _F, &_L1 ); 
  cvComputeCorrespondEpilines( &_imagePoints2, 2, & _F, &_L2 ); 
  double  avgErr = 0; 
  for ( i = 0; i < N; i++ ) 
  { 
  double  err = fabs(points[0][i].x*lines[1][i].x + 
  points[0][i].y*lines[1][i].y + lines[1][i].z) 
  + fabs(points[1][i].x*lines[0][i].x + 
  points[1][i].y*lines[0][i].y + lines[0][i].z); 
  avgErr += err; 
  } 
  printf( "avg err = %g\n" , avgErr/(nframes*n) ); 
  //COMPUTE AND DISPLAY RECTIFICATION 
  CvMat* mx1 = cvCreateMat( imageSize.height, 
  imageSize.width, CV_32F ); 
  CvMat* my1 = cvCreateMat( imageSize.height, 
  imageSize.width, CV_32F ); 
  CvMat* mx2 = cvCreateMat( imageSize.height, 
  imageSize.width, CV_32F ); 
  CvMat* my2 = cvCreateMat( imageSize.height, 
         imageSize.width, CV_32F ); 
  CvMat* img1r = cvCreateMat( imageSize.height, 
  imageSize.width, CV_8U ); 
  CvMat* img2r = cvCreateMat( imageSize.height, 
  imageSize.width, CV_8U ); 
  CvMat* disp = cvCreateMat( imageSize.height, 
  imageSize.width, CV_16S ); 
  CvMat* vdisp = cvCreateMat( imageSize.height, 
  imageSize.width, CV_8U ); 
  CvMat* depth = cvCreateMat( imageSize.height, 
           imageSize.width, CV_32FC3 ); 
  CvMat* pair; 
  double  R1[3][3], R2[3][3], P1[3][4], P2[3][4]; 
  CvMat _R1 = cvMat(3, 3, CV_64F, R1); 
  CvMat _R2 = cvMat(3, 3, CV_64F, R2); 
  // BOUGUET'S METHOD 
  CvMat _P1 = cvMat(3, 4, CV_64F, P1); 
  CvMat _P2 = cvMat(3, 4, CV_64F, P2); 
  cvStereoRectify( &_M1, &_M2, &_D1, &_D2, imageSiz e, 
  &_R, &_T, 
  &_R1, &_R2, &_P1, &_P2, &_Q, 0 /*CV_CALIB_ZERO_DISPARITY*/  ); 
  isVerticalStereo = fabs(P2[1][3]) > fabs(P2[0][3] ); 
  //Precompute maps for cvRemap() 
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  cvInitUndistortRectifyMap(&_M1,&_D1,&_R1,&_P1,mx1 ,my1); 
  cvInitUndistortRectifyMap(&_M2,&_D2,&_R2,&_P2,mx2 ,my2); 
  cvNamedWindow( "Rectified" , 1 ); 
  cvNamedWindow( "Disparity"  ); 
  cvNamedWindow( "Depth"  ); 
  // RECTIFY THE IMAGES AND FIND DISPARITY MAPS 
  pair = cvCreateMat( imageSize.height, imageSize.w idth*2, 
  CV_8UC3 ); 
  //Setup for finding stereo correspondences 

//The BMState variable consists of multiple values which affect the disparity map  
//outputby the block matching stereo correspondance  function 

  CvStereoBMState *BMState = cvCreateStereoBMState( /*CV_STEREO_BM_BASIC*/ ); 
  assert(BMState != 0); 
  BMState->preFilterSize=11; 
  BMState->preFilterCap=31; 
  BMState->minDisparity=0; 
  BMState->numberOfDisparities=32; 
  BMState->textureThreshold=10; 
  BMState->uniquenessRatio=0; 
  BMState->speckleWindowSize=0; 
  BMState->speckleRange=0; 
  if (showUndistorted){ 
  for ( i = 0; i < nframes; i++ ){ 
  IplImage* img1=cvLoadImage(imageNames[0][i].c_str (),0); 
  IplImage* img2=cvLoadImage(imageNames[1][i].c_str (),0); 
  if ( img1 && img2 ){ 
  cvRemap( img1, img1r, mx1, my1 ); 
  cvRemap( img2, img2r, mx2, my2 ); 
  cvFindStereoCorrespondenceBM( img1r, img2r, disp,  BMState); //calculate disparities 
  //cvNormalize( disp, vdisp, 0, 256, CV_MINMAX ); // normalize the disparities 
  cvShowImage( "Disparity" , disp );  
  cvReprojectImageTo3D(disp, depth, &_Q); 
 
  cvShowImage( "Depth" , depth );  
  cvGetCols( pair, &part, 0, imageSize.width ); 
  cvCvtColor( img1r, &part, CV_GRAY2BGR ); 
  cvGetCols( pair, &part, imageSize.width, 
  imageSize.width*2 ); 
  cvCvtColor( img2r, &part, CV_GRAY2BGR ); 
  for ( j = 0; j < imageSize.height; j += 16 ) 
  cvLine( pair, cvPoint(0,j), 
  cvPoint(imageSize.width*2,j), 
  CV_RGB(0,255,0)); 
  cvShowImage( "Rectified" , pair ); 
  if (cvWaitKey() == 27) 
  break ; 
  } 
  cvReleaseImage( &img1 ); 
  cvReleaseImage( &img2 ); 
  } 
  } 
  cvDestroyWindow( "corners"  ); 
  cvDestroyWindow( "corners right"  ); 

  cvDestroyWindow( "corners left"  ); 
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Appendix C 
OpenCV Code for Run Mode 

 
//------------------------------------------------- ------------------------------------------//  
      // Run the run mode code 
//------------------------------------------------- ------------------------------------------// 

//Creates a window to change the BMState values whi le running the program  
 cvNamedWindow( "Values" , CV_GUI_EXPANDED ); 
 
 cvCreateTrackbar( "Pre-Filter Size" , "Values" , &BMState->preFilterSize, 100, NULL); 
 cvCreateTrackbar( "Pre-Filter Cap" , "Values" , &BMState->preFilterCap, 63, NULL); 
 cvCreateTrackbar( "SADWindow Size" , "Values" , &BMState->SADWindowSize, 100, NULL); 
 cvCreateTrackbar( "Minimum Disparity" , "Values" , &BMState->minDisparity, 100, NULL); 

cvCreateTrackbar( "Number of Disparities" , "Values" , &BMState->numberOfDisparities, 256, 
NULL); 

 cvCreateTrackbar( "Texture Threshold" , "Values" , &BMState->textureThreshold, 100, NULL); 
 cvCreateTrackbar( "Uniqueness Ratio" , "Values" , &BMState->uniquenessRatio, 100, NULL); 

cvCreateTrackbar( "Speckle Window Size" , "Values" , &BMState->speckleWindowSize, 100, 
NULL); 

 cvCreateTrackbar( "Speckle Range" , "Values" , &BMState->speckleRange, 100, NULL); 
 /*A few notes about the constraints of the values:  
 preFilterSize must be odd and from 5 to 255, 
 preFilterCap must 1 to 63, it can be odd or even, 
 SADWindowSize must be odd and from 5 to 255, 
 numberOfDisparities must be positive and evenly di visable by 16 (16, 32, 64, 128, etc)*/ 
 while (1){ 
  if  ( cvWaitKey() == 13 ){ //captures images when "enter" key is pressed 
   IplImage* imgR = cvQueryFrame( capture ); 
   IplImage* imgL = cvQueryFrame( capture2 ); 
   //IplImage* imgR = cvLoadImage("TsukubaLeft.jpg"); //test image 
   //IplImage* imgL = cvLoadImage("TsukubaRight.jpg");  //test image 
   imageSize = cvGetSize(imgR); 
   //create matrices for rectified images 
   CvMat* imgRrect = cvCreateMat( imageSize.height,  
   imageSize.width, CV_8U );  
   CvMat* imgLrect = cvCreateMat( imageSize.height,  
   imageSize.width, CV_8U ); 
   CvMat* disp = cvCreateMat( imageSize.height, 
   imageSize.width, CV_16S ); 
   CvMat* vdisp = cvCreateMat( imageSize.height, 
   imageSize.width, CV_8U ); 
   CvMat* depth = cvCreateMat( imageSize.height, 
   imageSize.width, CV_32FC3 ); 
   //convert unrectified images to grayscale 
   IplImage* imgRgray = cvCreateImage( imageSize, 8 , 1 ); 
   IplImage* imgLgray = cvCreateImage( imageSize, 8 , 1 ); 
   cvCvtColor( imgR, imgRgray, CV_RGB2GRAY ); 
   cvCvtColor( imgL, imgLgray, CV_RGB2GRAY ); 
   cvShowImage( "CameraLeft" , imgLgray ); 
   cvShowImage( "CameraRight" , imgRgray ); 
   //use matrices from calibration to rectify the imag es 
   cvRemap( imgRgray, imgRrect, mx1, my1 ); 
   cvRemap( imgLgray, imgLrect, mx2, my2 ); 
   //compute disparity of rectified images 
   cvFindStereoCorrespondenceBM(imgLrect, imgRrect,  disp, BMState); 
   cvNormalize( disp, vdisp, 0, 256, CV_MINMAX ); 
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   cvShowImage( "Disparity" , vdisp ); 
   //compute depth map from disparity map 
   cvReprojectImageTo3D(vdisp, depth, &_Q); 
   cvShowImage( "Depth" , depth );  
   //steps needed to combine the 2 rectified images in to a single image 
   cvGetCols( pair, &part, 0, imageSize.width ); 
   cvCvtColor( imgRrect, &part, CV_GRAY2BGR ); 
   cvGetCols( pair, &part, imageSize.width, imageSi ze.width*2 ); 
   cvCvtColor( imgLrect, &part, CV_GRAY2BGR ); 
   for ( j = 0; j < imageSize.height; j += 16 ) 
   cvLine( pair, cvPoint(0,j), 
   cvPoint(imageSize.width*2,j), 
   CV_RGB(0,255,0)); 
   cvShowImage( "Rectified" , pair ); 
  } 
  if (cvWaitKey() == 27) //exit when ESC key is pressed 
   break ; 
  } 
    cvReleaseStereoBMState(&BMState); 
    cvReleaseMat( &mx1 ); 
    cvReleaseMat( &my1 ); 
    cvReleaseMat( &mx2 ); 
    cvReleaseMat( &my2 ); 
    cvReleaseMat( &img1r ); 
    cvReleaseMat( &img2r ); 
    cvReleaseMat( &disp ); 
   } 
   else 
  printf( "\nInvalid calibration images.\n" ); 
 } 
 else 
  printf( "\nProgram has been exited by user. Please run agai n.\n" ); 
   // Release the capture device housekeeping and clos e all windows 
   cvReleaseCapture( &capture ); 
   cvReleaseCapture( &capture2 ); 
   cvDestroyAllWindows(); 
   return  0;  


