

Stereoscopic Imaging for Slow-Moving
Autonomous Vehicle

Project Report

By:

Alex Norton

Advisor:
Dr. Huggins

July 24th, 2012

2

Abstract

This project utilizes two cameras and OpenCV (open source computer vision) to
perform computer stereo vision for extracting 3D information from the images.
This information can then be sent to an autonomous vehicle for navigation. The
system operates using two modes: calibration mode and run mode. Calibration
mode involves calculating the intrinsic and extrinsic parameters of each camera
by using a chessboard with known geometry and easily detectable features. Run
mode involves sending a signal to have the cameras acquire images, process
the images using matrices computed via the calibration process, and then
compute distances to objects in the field of view of the cameras.

3

Table of Contents

I. Introduction 4

II. System Description 6

A. Subsystems 7
1. Camera Subsystems 7
2. Computer and Software Subsystems 7

B. Modes of Operation 8
1. Calibration Mode 8
2. Run Mode 9

III. Subsystem Requirements 11
A. Camera Requirements 11
B. Computer and Software Requirements 11
C. Computer Vision Software Requirements 11
D. Calibration Mode Requirements 11
E. Run mode requirements 12

IV. Results 13

A. Calibration Mode Results 13
B. Run Mode Results 15
C. Possible Errors 18
D. Suggestions for Future Work 19

V. Equipment List 20

VI. Related Patents 20

VII. References 21

Appendices:

A. OpenCV Code for Setting Up the Webcams 22
B. OpenCV Code for Calibration Mode 24
C. OpenCV Code for Run Mode 29

4

I. Introduction

The objective of Stereoscopic Imaging for Slow-Moving Autonomous Vehicle,
SISAV, is to develop a system that can provide an accurate terrain map to be
used for navigating an autonomous vehicle. The system uses two digital
cameras and OpenCV to perform stereoscopic imaging to obtain distance
information about objects in front of the cameras. The system has two modes of
operation: calibrate and run. Calibration mode involves calculating the intrinsic
and extrinsic parameters of each camera by using a chessboard with known
geometry and easily detectable features. Run mode involves sending a signal to
have the cameras acquire images, process the images using matrices computed
via the calibration process, and then compute distances to objects in the field of
view of the cameras. This information can be used by the control algorithm
running an autonomous vehicle to determine the direction in which to move.

Disparity is a fundamental concept that underlies extracting 3D information from
2D projections onto camera imaging planes. The book Learning OpenCV has an
excellent section on using pin hole cameras to use disparity measurements on
pages 415-418 [1]. An ideal configuration is shown in Fig. 1 which is extracted
from page 419 of Learning OpenCV. The ideal configuration is characterized by
two identical pinhole cameras with coplanar image planes and parallel optic axis.
The optical axis is the ray from the center of projection O through the principal
point c and is also known as the principal ray. As shown in Fig. 1, the optical
axes are a distance of T apart, which is the same as the distance between the
cameras. The cameras are assumed to have equal focal lengths fl = fr=f. Another
assumption made it that cx

left and cx
right have the same pixel coordinates in their

respective left and right images after the cameras have been properly calibrated.
The principal points cx

left and cx
right are where the principal rays from their

respective cameras intersect the imaging plane of their respective camera. This
intersection depends on the optical axis of the lens. The image plane is rarely
aligned exactly with the lens and so the center of the imager is almost never
exactly aligned with the principal point [1].

5

Figure 1: The above figure is figure 12-4 from Learning OpenCV [1]. With

perfectly undistorted, aligned stereo rig and known correspondence, the depth Z
can be found by similar triangles; the principal rays of the imagers begin at the

centers of projection Ol and Or and extend through the principal points of the two
image planes at cl and cr [1, pp.416].

It is further assumed that the images of both cameras have been rectified,
therefore making them row-aligned, and the pixels along a row of one camera’s
image are aligned with the corresponding row of pixels in the other camera’s
image. Such a camera arrangement is called frontal parallel, and is one of the
results of properly calibrating the two cameras. Using cameras that are in a
frontal parallel arrangement, it can be assumed that any point in the physical
world in the left and right images, at point pl in the left camera image and point pr
in the right camera image, will have the same vertical coordinates yl and yr, and
will only differ in horizontal coordinates, xl and xr.

In this case, it can be shown that the depth to an object in the left and right
images is inversely proportional to the disparity between the two images. Here,
disparity is defined as d = xl – xr, where xl and xr are the horizontal coordinates of
the points in the left and right images respectively. This situation is shown in
Figure 1, where it can be seen that the depth Z can be easily derived by using
similar triangles. Referring to the figure, this gives:

 Eqn. 1

6

II. System Description

The system consists of two digital cameras, a mount for the cameras, and a
computer running OpenCV. The two cameras are attached to a stable platform
that, in turn, will be attached to the vehicle. There are two modes of operation:
calibration mode and run mode. During calibration mode, a calibration rig is used
to obtain the extrinsic and intrinsic parameters of each camera which are used to
correct for distortion in images captured during run mode [1, pp.378]. After the
cameras are calibrated, the system enters run mode. Run mode involves
sending a signal to have the cameras acquire images, process the images using
matrices determined via the calibration process, and then compute distances to
objects in the field of view of the cameras. This information can be used by the
control algorithm running an autonomous vehicle to determine the direction in
which to move.

Figure 2: System Block Diagram

7

A. Subsystems

As shown in figure 2, the system is made up of 2 subsystems: the camera
subsystem and the computer subsystem.

1. Camera Subsystem

The camera subsystem, shown in Fig. 3, consists of two digital cameras mounted
on a stable platform. The cameras convert photons of light into binary data each
time they receive signals to capture images. The data consists of 8-bit arrays,
three from each camera, containing values from 0 to 255 for the RGB values of
each pixel. The color information is then converted to grayscale using a built-in
OpenCV function. A value of 0 corresponds to black and a value of 255
corresponds to white. These data are then sent to OpenCV to be processed
further. The cameras function in an identical fashion in both the calibration mode
and run mode.

Figure 3: Camera Subsystem

2. Computer and Software Subsystems

The computer subsystem, shown in Fig. 4, runs the necessary software to
capture and process the images from the cameras and generate the data for
input to the navigation software of an autonomous vehicle. The computer vision
software, running on the computer, simultaneously acquires images from the
cameras which are then downloaded to the computer via a USB connection. The
software then computes the correspondence between pixel groups in the set of
images. Here, correspondence is the measure of the similarity between
corresponding pixel groups in the set of images. The correspondence values are
used to compute the disparity between the corresponding pixel groups, and
finally computes distances based on the disparity map, in which the disparity is
the offset in pixels between corresponding pixel groups in the left and right

8

cameras. These distances can then be used by the vehicle control system for
navigation

CPUUser Input

Camera 1 Image capture signal

Movement instructions

Display 3D map on screen

Camera 2 Image capture signal

Figure 4: Computer Subsystem

B. Operational Modes
There are two modes of operation, calibration mode and run mode. These modes
are described in more detail below.

1. Calibration Mode

Calibration mode is the initial mode of operation for the system. Its primary
function is to correct for deviations of the actual camera system from an ideal pin
hole camera system. The deviations are due to internal and external properties of
the physical cameras. Once the system is powered on, the software waits for
user input to enter calibration mode. In this mode, the software prompts a user
to place a chessboard target in an arbitrary position and orientation(within limits)
and then the system will acquire an image from each camera. This is repeated in
additional positions and orientation as needed by the calibration software
algorithm to be used. Once an appropriate number of images, normally 10, are
acquired, the calibration determines the calibration matrices to be used to correct
distortions in the images acquired in run mode. The flow chart for the
Calibration mode software is shown in Fig. 5.

9

Figure 5: Calibration Mode Flow Chart
2. Run Mode

Run mode is entered upon successful calibration of the two cameras. In this
mode, the user can set up the computer vision software to respond to commands
from the user or from an automated prompt from the navigation control software.
In both instances, the computer vision software acquires the images from the
cameras. The software then uses OpenCV libraries to compute the
correspondence between pixel groups in the set of images, uses the
correspondence values to compute the disparity between the corresponding pixel
groups, and finally computes distances based on the disparity map. These
distances can then be used by the vehicle control system for navigation. Run
mode is exited by closing the computer vision software. The flow chart for the run
mode software is shown below in Fig. 6

Figure 6: Run Mode Flow Chart

III. Subsystem Requirements

Each subsystem, as well as each mode of operation, will be expected to perform
according to certain specifications. These specifications are described in the
following sections.

A. Camera Subsystem Requirements

• The cameras shall have a field of view of at least 45 degrees
• The cameras shall have a depth of view from 1 meter to 10 meters
• The cameras shall be calibrated and focused after startup to ensure

accurate image data
• In order to maximize speed for the system, the cameras shall output

images at a resolution of 320x240
• The cameras shall be secured to a mount to ensure they do not move out

of alignment during operation
• The cameras shall not have any face-tracking software built into them
• The cameras shall interface with the computer via USB connections
• The cameras shall be compatible with Windows 7.

B. Computer Subsystem Requirements

• The computer shall have at least two USB ports to interface with the two
cameras

• In order to run Microsoft Visual Studio 2010, the computer shall have2 GB
of RAM, 5 GB of memory, 32-bit or 64-bit Windows, a 1.6 GHz or faster
processor, a 5400 RPM or higher hard disk drive, a DirectX 9 capable
video card running at 1024 x 768 or higher-resolution display, and a DVD-
ROM drive [2]

C. Computer Vision Software Requirements

• The software shall use OpenCV and be split into two modes of operation;
calibration mode and run mode.

D. Calibration Mode Requirements

• Once the system is powered on, it shall wait for user input to enter
calibration mode

• The calibration mode shall be compatible with a chessboard type
calibration rig

• The calibration mode software shall compensate for internal and external
distortion effects.

• The calibration shall compensate for internal and external distortions of
the camera system so distance information calculated in run mode is
accurate to 5% in specified operating range.

12

• The calibration mode software shall transmit appropriate parameters to
the run mode software.

E. Run Mode Requirements

• Run mode shall be entered upon successful calibration of the two
cameras

• The cameras shall receive signals from the navigation control software of
an autonomous vehicle or a user to acquire a pair of images for
processing.

• The software shall complete all image processing within 5 seconds of
receiving the images from the cameras

• The run mode software shall determine distances to objects with 5%
accuracy

• The run mode software shall complete an image acquisition and
computation cycle in less than 5 seconds.

• The run mode software shall present distance information as a text file for
use by navigation control software.

• The run mode software shall be capable of displaying the detected edges,
disparity map, or distance information on the monitor based on user input.

13

IV. Results

This year, significant progress was made on the project in two areas. The
OpenCV libraries and functions were successfully used to create and run code
for both modes of operation for the project. This allowed significantly more
progress to be made in terms of calibrating the cameras than in all other prior
stereo vision projects attempted at Bradley. In addition to these major
accomplishments, some progress was made in implementing the “run mode”
portion of the project in that maps were generated in real time that had some
correlation to disparity.

A. Calibration Mode Results

After the program sets up the webcams to capture sets of images, the user has
to calibrate the camera by analyzing multiple images of a chessboard of known
dimensions. The user must input the number of internal corners and dimension
of the squares of the chessboard. The user also can choose the number of
images for processing, which has 10 for this project. Though the chessboard can
be placed in many orientations at various distances from the cameras, there are
limits. For example, the images shown in Fig. 7 are what are displayed on the
screen if the software fails to detect all the corners on the chessboard.

Figure 7: Display when chessboard corners are not found

14

Saving at least one set of chessboard images such as these will result in the
command window in fig. 8 being displayed after saving the required number of
sets of images.

Figure 8: Command window display when chessboard corners are not found

On the other hand, when the software is able to find all the chessboard corners in
a pair of chessboard images, colored lines are displayed as shown in Fig. 9,
indicating valid images for calibration.

Figure 9: Display when chessboard corners are found

15

Once the required number of valid chessboard image pairs are saved, the
command window in fig. 10 will be displayed.

Figure 10: Command window when chessboard corners are found in all images

The Software then proceeds to run the calibration mode software, which is listed
in appendix C. Once the calibration is finished, the code will display any pair of
rectified chessboard images as requested by the user. However, due to errors
present in the system, the sets of images are not always rectified properly. This
is shown in Fig. 11.

Figure 11: Output set of chessboard images from calibration mode

B. Run Mode Results

After the cameras have been calibrated, the program enters run mode, where the
user can capture a pair of images by pressing the “enter” key twice. Once a set

16

of images is captured, the software will use the calibration mode results to rectify
the set of images so they appear as though captured by identical pinhole
cameras. However, as stated before, due to errors present in the system, the
sets of images are not always rectified properly, and possible reasons for this are
given in Section C: Possible Errors on page 18. Below in fig. 12 is a set of
images of me seen by the cameras.

Figure 12: Output set of images obtained in run mode

Once the set of images has been rectified, the software uses the
“cvFindStereoCorrespondenceBM” function to find the corresponding pixel
groups and then compute the disparity between them. The functions uses a
block matching algorithm [1, pp.444]. The disparity between corresponding pixel
groups are stored in a matrix. This matrix is then displayed to show the disparity
map obtained from the set of images, which is shown in Fig. 13 along with a
window that is used to adjust the values that change the way the disparity map is
computed. The parameters are: preFilterSize, the nxn size of the filters used to
normalize the input images; preFilterCap, the number of those filters;
minDisparity, the minimum disparity, usually 0; SADWindowSize, the linear
size of the blocks compared by the algorithm, larger block size implies smoother,
though less accurate disparity map while smaller block size gives more detailed
disparity map, but there is higher chance for algorithm to find a wrong
correspondence; numberOfDisparities, difference between the maximum
disparity and minimum disparity; textureThreshold, sets the minimum threshold,
under which areas with no texture are ignored; uniquenessRatio, which is used
to filter out pixels if there are other close matches; speckleWindowSize, which is
the maximum area of speckles to remove; and speckleRange, which is the
acceptable range of disparity variation in each connected component internal
data.

The values the bars are set to are the values that produce the best disparity map
that could be determined, and were obtained through trial and error by changing
the values on the slidebars and noting what changes were seen.

17

Figure 13: Disparity map computed from a set of images obtained in run mode

Once the disparity map is obtained, the distance to each pixel in the image can
be computed by using the Eqn 2 [1, pp 417]

 z = (B*F)/D Eqn. 2

This equation is essentially the same as equation 1, with the only differences
being that the variables f and T are replaced by F and B, and xl – xr is replaced
by D. Here, z is the distance to a given pixel in meters, B is the distance between
the two cameras in meters, F is the focal length of the cameras (in pixels), and D
is the disparity, the horizontal difference in pixels between the corresponding
pixel groups in left and right images. However, the disparity map obtained from
sets of images shown in Fig. 13 is not the correct disparity map, and therefore
any distance calculations performed will also be incorrect. If the map was
showed the correct disparity, the young man visible in fig. 12 would also be easily
visible in fig. 12, and the region would be lighter. Other terrain configurations
were also investigated with similar errors. A correct disparity map is shown in
Fig. 14 [3, pp. 4].

18

Figure 14: One images from a set of stereo images (left), the disparity map

obtained from that set of images (right) [3, pp. 4]

Clearly, the person in the image on the left is easily visible in the image on the
right, and is represented by higher values of disparity due to being closer to the
cameras than the background behind him. Such results were what were desired
for this project, but errors present made the system unable to achieve those
results.

C. Possible Errors

Since OpenCV has been successfully used for stereoscopic imaging, it is
clear that there must be some errors present in the methods or codes that were
used in this project. One possible source of error is that the calibration results are
incorrect. Theoretically, the calibration is supposed to convert the actual images
into images that perfectly oriented pinhole cameras would have captured. One
characteristic of the rectified images is that corresponding pixels in each set of
images should lie on parallel horizontal lines. This makes the correspondence
determination of pixel groups to be efficient. However, this was not the case for
most calibration attempts. Points in one image do not line up with the
corresponding points in the other image on the same line, and instead also have
a vertical offset as well. The vertical offset in the rectified images could be due to
subtle errors in the code implemented or parameters used by the function that
were not set correctly. In any case, the disparity map function assumes that the
images input have been rectified so that points in one image line up with the
corresponding points in the other image. Failure to rectify the images will result in
a wrong disparity map due to errors in the correspondence determination.

Another possible error is that the cameras could have internal flaws that
cannot be corrected with sufficient accuracy by the calibration process. This
could be a wide range of flaws, such as a flaw in the lenses that the calibration
software fails to take into account, or possible a flaw in the image sensor within
the webcams. Due to the age of the cameras, it is very possible that the internal
electronics of the cameras are not performing as well as they should be, which
could be causing images taken by the cameras to contain errors that cannot be

19

corrected for. It is possible that the cameras being used simply cannot be
calibrated.

D. Suggestions for Future Work

Although the project was not completely successful this year, significant
progress was made, which means there is still some work that should be done in
the future. In particular, there are two main areas that the next group should
focus on. First, they should investigate the mathematics underlying the OpenCV
functions. OpenCV is a very complex collection of many different image
processing functions, with many of those functions using multiple parameters and
having underlying mathematics that is also very complex. Therefore, in order to
make better use of the functions within OpenCV’s libraries, it is necessary to
obtain a better understanding of the math that makes the functions work. Doing
so will allow them to write better, more efficient code with those functions, and
may also reveal what errors were made in this project,

 The other area the next group should focus on is developing methods to
find and correct for errors that occur as a result of incorrect calibrations and/or
correspondence computations. This is something that would have been
attempted for this project; however, there was not enough people working on the
project, and also not enough time to accomplish it. As a result, the code used has
no way to actively detect for and correct errors that result from incorrect
calibrations or correspondence computations. If a future group if able to
implement this into their system, it is very likely that they will be successful in
completing the goals of the project, therefore error detection and correction
should be one of the main focuses in the future.

20

V. Equipment List

• Two Logitech Quickcam Express webcams
• Dell Optiplex 755 computer
• Microsoft Visual Studio 2008

o OpenCV 2.3

VI. Patents and Standards

Patents
Although there are many patents related to stereoscopic imaging and
autonomous navigation, these are the ones most related to our project.

Table 2: Related Patents

Patent Number Brief Description
6728582 System and method for determining the position of an object in

three dimensions using a machine vision system with two
cameras

6137893 Machine vision calibration targets and methods of determining
their location and orientation in an image

7680323 Method and apparatus for three-dimensional object segmentation
5383013 Stereoscopic computer vision system
6392688 High accuracy stereo vision camera system
6807295 Stereoscopic imaging apparatus and method
6661449 Object detection device for autonomous vehicle

Standards
Applicable standards for our project are those related to the JPEG and PNG image
formats, USB 2.0 and 3.0, and OpenCV versions 2.1 and 2.3.

The JPEG standard can be viewed at
http://www.stanford.edu/class/ee398a/handouts/papers/Wallace%20-%20JPEG%20-
%201992.pdf
The PNG standard can be viewed at http://www.libpng.org/pub/png/spec/iso/index-
object.html#1Scope.
The USB 2.0 and 3.0 standards can be viewed at http://www.usb.org/developers/docs/.
Documentation for OpenCV 2.1 can be found at
http://opencv.willowgarage.com/documentation/cpp/index.html
Documentation for OpenCV 2.3 can be found at http://opencv.itseez.com/.

21

References Cited

[1] Gary Bradski and Adrian Kaehler. “Learning OpenCV”:
Internet:
http://www.cse.iitk.ac.in/users/vision/dipakmj/papers/OReilly
%20Learning%20OpenCV.pdf, 2008 [Sept. 20, 2011]

[2] Microsoft. “Visual Studio 2010 System Requirements”:
Internet: http://www.microsoft.com/visualstudio/en-
us/products/2010-editions/professional/overview, 2011 [Nov
28, 2011]

[3] Kurt Konolige. “Small Vision Systems: Hardware and
Implementation”: Internet:
https://willowgarage.com/sites/default/files/ISRR%201997%2
0-%20Small%20vision%20systems.pdf, 1997 [May 10,
20012]

References for Additional Information

Jean-Yves Bouguet. “Camera Calibration Toolbox for
Matlab”: Internet:
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/exam
ple.html, 2010 [Nov 13, 2011]

Martin Peris. “OpenCV: Stereo Camera Calibration”:
Internet: http://blog.martinperis.com/2011/01/opencv-stereo-
camera-calibration.html, 2011 [Oct 5, 2011]

Digital-Tutors. “Stereo 3D Disparity Maps”: Internet:
http://www.digitaltutors.com/dtlabs/?p=645, 2010 [Nov 13,
2011]

Appendix A

OpenCV Code for Setting Up the Webcams

//--- ------------------//
 //Library declarations and webcams setup
//--- ------------------//

#include "cv.h"
#include "cxmisc.h"
#include "highgui.h"
#include "cvaux.h"
#include <vector>
#include <string>
#include <algorithm>
#include <stdio.h>
#include <ctype.h>
using namespace std;

int main(void)
{
 CvCapture* capture = cvCaptureFromCAM(0);
 CvCapture* capture2 = cvCaptureFromCAM(1);
 int displayCorners = 0; //if 1, displays each chessboard image with corners found in them
 int showUndistorted = 0; //if 1, diplays each pair of chessboard images, rec tified
 bool isVerticalStereo = false ; //Cameras are horizontally aligned
 int numChessBoards = 10; //number of chessboard images to be taken
 int nx = 9; //number of chessboard corner along X axis
 int ny = 6; //number of chessboard corner along Y axis
 int c = 0;
 int i, j, lr, nframes, n = nx*ny, N = 0;
 int Exit = 0;
 int focal = 500;
 double base = 0.0925;
 vector<CvPoint2D32f> temp(n);
 vector<uchar> active[2];
 int count = 0, result=0;
 const char * imageList = "list_10.txt" ; //Filename can be changed depending on numChessboar ds
 char loc2[10];
 char loc3[10] = ".jpeg" ; //filetype extension
 if (!capture) {
 fprintf(stderr, "ERROR: capture is NULL \n");
 getchar();
 return -1;
 }
 if (!capture2) {
 fprintf(stderr, "ERROR: capture2 is NULL \n");
 getchar();
 return -1;
 }
 // Create windows to run the code
 cvNamedWindow("CameraLeft" , CV_WINDOW_AUTOSIZE);
 cvNamedWindow("CameraRight" , CV_WINDOW_AUTOSIZE);
 while (c < numChessBoards) {
 char locR1[30] = "imagelist/imageR" ;
 char locL1[30] = "imagelist/imageL" ;
 IplImage* imgR = cvQueryFrame(capture);

23

 IplImage* imgL = cvQueryFrame(capture2);
 cvShowImage("CameraRight" , imgR);
 cvShowImage("CameraLeft" , imgL);
 //The next 10 lines were added 4-12-2012 to make ca libration easier to do

//They draw the chessboard corners on the images cu rrently being taken by the
//cameras. This allows you to know you'll have a go od set of chessboard images

 //Before you actually save them
 IplImage* timgR = imgR; //temp image for right camera
 IplImage* timgL = imgL; //temp image for left camera
 result = cvFindChessboardCorners(timgR, cvSize(n x, ny),
 &temp[0], &count, CV_CALIB_CB_ADAPTIVE_THRESH | C V_CALIB_CB_NORMALIZE_IMAGE);
 cvDrawChessboardCorners(timgR, cvSize(nx, ny), & temp[0],count, result);
 result = cvFindChessboardCorners(timgL, cvSize(n x, ny),
 &temp[0], &count, CV_CALIB_CB_ADAPTIVE_THRESH | C V_CALIB_CB_NORMALIZE_IMAGE);
 cvDrawChessboardCorners(timgL, cvSize(nx, ny), & temp[0], count, result);
 cvShowImage("corners right" , timgR);
 cvShowImage("corners left" , timgL);
 //When the "enter" key is pressed, save the current set of chessboard images
 if (cvWaitKey(10) == 13){
 c++;
 _itoa(c, loc2, 10);
 strcat(locR1, loc2);
 strcat(locR1, loc3);
 strcat(locL1, loc2);
 strcat(locL1, loc3);
 IplImage* imgR = cvQueryFrame(capture);
 IplImage* imgL = cvQueryFrame(capture2);
 cvSaveImage(locR1, imgR); //saves right camera image to imageRc.jpeg
 cvSaveImage(locL1, imgL); //saves left camera image to imageLc.jpeg
 printf("Number of sets of images saved: %d" , c);
 printf("\n");
 }
 if (cvWaitKey(10) == 27){
 Exit = 1; //sets a flag to skip over the code
 break ;
 }

 }

24

Appendix B
OpenCV Code for Calibration Mode

Note: The following code is still a part of the sam e main() function created in the code in
appendix B. This code, and the code in the followin g appendix, are all a part of the same file,
and also the same main() function.

//--- --//
 // Run the calibration code
//--- --//
 if (Exit == 0){
 int GoodChessBoardImages = 0;
 const int maxScale = 1;
 const float squareSize = 1.0;
 FILE* f = fopen(imageList, "rt");
 vector<string> imageNames[2];
 vector<CvPoint3D32f> objectPoints;
 vector<CvPoint2D32f> points[2];
 vector< int > npoints;
 CvSize imageSize = {0,0};
 // ARRAY AND VECTOR STORAGE:
 double M1[3][3], M2[3][3], D1[5], D2[5];
 double R[3][3], T[3], E[3][3], F[3][3];
 double Q[4][4];
 CvMat _M1 = cvMat(3, 3, CV_64F, M1);
 CvMat _M2 = cvMat(3, 3, CV_64F, M2);
 CvMat _D1 = cvMat(1, 5, CV_64F, D1);
 CvMat _D2 = cvMat(1, 5, CV_64F, D2);
 CvMat _R = cvMat(3, 3, CV_64F, R);
 CvMat _T = cvMat(3, 1, CV_64F, T);
 CvMat _E = cvMat(3, 3, CV_64F, E);
 CvMat _F = cvMat(3, 3, CV_64F, F);
 CvMat _Q = cvMat(4, 4, CV_64F, Q);
 CvMat part;
 if (displayCorners)
 cvNamedWindow("corners" , 1);
 // READ IN THE LIST OF CHESSBOARDS:
 if (!f)
 {
 fprintf(stderr, "can not open file %s\n" , imageList);
 return 0;
 }
 for (i=0;;i++)
 {
 char buf[1024];
 lr = i % 2;
 vector<CvPoint2D32f>& pts = points[lr];
 if (!fgets(buf, sizeof (buf)-3, f))
 break ;
 size_t len = strlen(buf);
 while (len > 0 && isspace(buf[len-1]))
 buf[--len] = '\0' ;
 if (buf[0] == '#')
 continue ;
 IplImage* img = cvLoadImage(buf, 0);

25

 if (!img)
 break ;
 imageSize = cvGetSize(img);
 imageNames[lr].push_back(buf);
 //FIND CHESSBOARDS AND CORNERS THEREIN:
 for (int s = 1; s <= maxScale; s++)
 {
 IplImage* timg = img;
 if (s > 1)
 {
 timg = cvCreateImage(cvSize(img->width*s,img->heig ht*s),
 img->depth, img->nChannels);
 cvResize(img, timg, CV_INTER_CUBIC);
 }
 result = cvFindChessboardCorners(timg, cvSize(nx, ny),
 &temp[0], &count,
 CV_CALIB_CB_ADAPTIVE_THRESH |
 CV_CALIB_CB_NORMALIZE_IMAGE);
 if (timg != img)
 cvReleaseImage(&timg);
 if (result || s == maxScale)
 for (j = 0; j < count; j++)
 {
 temp[j].x /= s;
 temp[j].y /= s;
 }
 if (result)
 break ;
 }
 if (displayCorners)
 {
 printf("%s\n" , buf);
 IplImage* cimg = cvCreateImage(imageSize, 8, 3);
 cvCvtColor(img, cimg, CV_GRAY2BGR);
 cvDrawChessboardCorners(cimg, cvSize(nx, ny), &te mp[0],
 count, result);
 cvShowImage("corners" , cimg);
 cvReleaseImage(&cimg);
 if (cvWaitKey(0) == 27) //Allow ESC to quit
 exit(-1);
 }
 else
 putchar('.');
 N = pts.size();
 pts.resize(N + n, cvPoint2D32f(0,0));
 active[lr].push_back((uchar)result);
 //assert(result != 0);
 if (result)
 {
 GoodChessBoardImages++;
 //Calibration will suffer without subpixel interpol ation
 cvFindCornerSubPix(img, &temp[0], count,
 cvSize(11, 11), cvSize(-1,-1),
 cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,
 30, 0.01));
 copy(temp.begin(), temp.end(), pts.begin() + N);
 }

26

 cvReleaseImage(&img);
 }
 fclose(f);
 printf("\n");
 // HARVEST CHESSBOARD 3D OBJECT POINT LIST:
 nframes = active[0].size(); //Number of good chessboads found
 objectPoints.resize(nframes*n);
 for (i = 0; i < ny; i++)
 for (j = 0; j < nx; j++)
 objectPoints[i*nx + j] =
 cvPoint3D32f(i*squareSize, j*squareSize, 0);
 for (i = 1; i < nframes; i++)
 copy(objectPoints.begin(), objectPoints.begin() + n,
 objectPoints.begin() + i*n);
 npoints.resize(nframes,n);
 N = nframes*n;
 CvMat _objectPoints = cvMat(1, N, CV_32FC3, &objec tPoints[0]);
 CvMat _imagePoints1 = cvMat(1, N, CV_32FC2, &point s[0][0]);
 CvMat _imagePoints2 = cvMat(1, N, CV_32FC2, &point s[1][0]);
 CvMat _npoints = cvMat(1, npoints.size(), CV_32S, &npoints[0]);
 cvSetIdentity(&_M1);
 cvSetIdentity(&_M2);
 cvZero(&_D1);
 cvZero(&_D2);
 printf("Number of good chessboard images: %d" , GoodChessBoardImages);
 //Since the calibrate function does not work if it can't find all chessboard corners
 //in each set of chessboard images, the following i f statement was added. It ends after
 //run mode ends.
 if (GoodChessBoardImages == (2*numChessBoards)){
 // CALIBRATE THE STEREO CAMERAS
 printf("\nRunning stereo calibration ...");
 fflush(stdout);
 cvStereoCalibrate(&_objectPoints, &_imagePoints1 ,
 &_imagePoints2, &_npoints,
 &_M1, &_D1, &_M2, &_D2,
 imageSize, &_R, &_T, &_E, &_F,
 cvTermCriteria(CV_TERMCRIT_ITER+
 CV_TERMCRIT_EPS, 100, 1e-5),
 CV_CALIB_FIX_ASPECT_RATIO +
 CV_CALIB_ZERO_TANGENT_DIST +
 CV_CALIB_SAME_FOCAL_LENGTH);
 printf(" done\n");
 // Save the matrices to text files, added 2-28-2012
 cvSave("Rotation.txt" ,&_R);
 cvSave("Translation.txt" ,&_T);
 cvSave("Fundamental.txt" ,&_F);
 cvSave("Essential.txt" ,&_E);
 cvSave("Camera1.txt" ,&_M1);
 cvSave("Camera2.txt" ,&_M2);
 cvSave("Dist1.txt" ,&_D1);
 cvSave("Dist2.txt" ,&_D2);

 // CALIBRATION QUALITY CHECK
 // because the output fundamental matrix implicitly
 // includes all the output information,
 // we can check the quality of calibration using th e
 // epipolar geometry constraint: m2^t*F*m1=0

27

 vector<CvPoint3D32f> lines[2];
 points[0].resize(N);
 points[1].resize(N);
 _imagePoints1 = cvMat(1, N, CV_32FC2, &points[0][0]);
 _imagePoints2 = cvMat(1, N, CV_32FC2, &points[1][0]);
 lines[0].resize(N);
 lines[1].resize(N);
 CvMat _L1 = cvMat(1, N, CV_32FC3, &lines[0][0]);
 CvMat _L2 = cvMat(1, N, CV_32FC3, &lines[1][0]);
 //Always work in undistorted space
 cvUndistortPoints(&_imagePoints1, &_imagePoints1 ,
 &_M1, &_D1, &_R, &_M1);
 cvUndistortPoints(&_imagePoints2, &_imagePoints2 ,
 &_M2, &_D2, &_R, &_M2);
 cvComputeCorrespondEpilines(&_imagePoints1, 1, & _F, &_L1);
 cvComputeCorrespondEpilines(&_imagePoints2, 2, & _F, &_L2);
 double avgErr = 0;
 for (i = 0; i < N; i++)
 {
 double err = fabs(points[0][i].x*lines[1][i].x +
 points[0][i].y*lines[1][i].y + lines[1][i].z)
 + fabs(points[1][i].x*lines[0][i].x +
 points[1][i].y*lines[0][i].y + lines[0][i].z);
 avgErr += err;
 }
 printf("avg err = %g\n" , avgErr/(nframes*n));
 //COMPUTE AND DISPLAY RECTIFICATION
 CvMat* mx1 = cvCreateMat(imageSize.height,
 imageSize.width, CV_32F);
 CvMat* my1 = cvCreateMat(imageSize.height,
 imageSize.width, CV_32F);
 CvMat* mx2 = cvCreateMat(imageSize.height,
 imageSize.width, CV_32F);
 CvMat* my2 = cvCreateMat(imageSize.height,
 imageSize.width, CV_32F);
 CvMat* img1r = cvCreateMat(imageSize.height,
 imageSize.width, CV_8U);
 CvMat* img2r = cvCreateMat(imageSize.height,
 imageSize.width, CV_8U);
 CvMat* disp = cvCreateMat(imageSize.height,
 imageSize.width, CV_16S);
 CvMat* vdisp = cvCreateMat(imageSize.height,
 imageSize.width, CV_8U);
 CvMat* depth = cvCreateMat(imageSize.height,
 imageSize.width, CV_32FC3);
 CvMat* pair;
 double R1[3][3], R2[3][3], P1[3][4], P2[3][4];
 CvMat _R1 = cvMat(3, 3, CV_64F, R1);
 CvMat _R2 = cvMat(3, 3, CV_64F, R2);
 // BOUGUET'S METHOD
 CvMat _P1 = cvMat(3, 4, CV_64F, P1);
 CvMat _P2 = cvMat(3, 4, CV_64F, P2);
 cvStereoRectify(&_M1, &_M2, &_D1, &_D2, imageSiz e,
 &_R, &_T,
 &_R1, &_R2, &_P1, &_P2, &_Q, 0 /*CV_CALIB_ZERO_DISPARITY*/);
 isVerticalStereo = fabs(P2[1][3]) > fabs(P2[0][3]);
 //Precompute maps for cvRemap()

28

 cvInitUndistortRectifyMap(&_M1,&_D1,&_R1,&_P1,mx1 ,my1);
 cvInitUndistortRectifyMap(&_M2,&_D2,&_R2,&_P2,mx2 ,my2);
 cvNamedWindow("Rectified" , 1);
 cvNamedWindow("Disparity");
 cvNamedWindow("Depth");
 // RECTIFY THE IMAGES AND FIND DISPARITY MAPS
 pair = cvCreateMat(imageSize.height, imageSize.w idth*2,
 CV_8UC3);
 //Setup for finding stereo correspondences

//The BMState variable consists of multiple values which affect the disparity map
//outputby the block matching stereo correspondance function

 CvStereoBMState *BMState = cvCreateStereoBMState(/*CV_STEREO_BM_BASIC*/);
 assert(BMState != 0);
 BMState->preFilterSize=11;
 BMState->preFilterCap=31;
 BMState->minDisparity=0;
 BMState->numberOfDisparities=32;
 BMState->textureThreshold=10;
 BMState->uniquenessRatio=0;
 BMState->speckleWindowSize=0;
 BMState->speckleRange=0;
 if (showUndistorted){
 for (i = 0; i < nframes; i++){
 IplImage* img1=cvLoadImage(imageNames[0][i].c_str (),0);
 IplImage* img2=cvLoadImage(imageNames[1][i].c_str (),0);
 if (img1 && img2){
 cvRemap(img1, img1r, mx1, my1);
 cvRemap(img2, img2r, mx2, my2);
 cvFindStereoCorrespondenceBM(img1r, img2r, disp, BMState); //calculate disparities
 //cvNormalize(disp, vdisp, 0, 256, CV_MINMAX); // normalize the disparities
 cvShowImage("Disparity" , disp);
 cvReprojectImageTo3D(disp, depth, &_Q);

 cvShowImage("Depth" , depth);
 cvGetCols(pair, &part, 0, imageSize.width);
 cvCvtColor(img1r, &part, CV_GRAY2BGR);
 cvGetCols(pair, &part, imageSize.width,
 imageSize.width*2);
 cvCvtColor(img2r, &part, CV_GRAY2BGR);
 for (j = 0; j < imageSize.height; j += 16)
 cvLine(pair, cvPoint(0,j),
 cvPoint(imageSize.width*2,j),
 CV_RGB(0,255,0));
 cvShowImage("Rectified" , pair);
 if (cvWaitKey() == 27)
 break ;
 }
 cvReleaseImage(&img1);
 cvReleaseImage(&img2);
 }
 }
 cvDestroyWindow("corners");
 cvDestroyWindow("corners right");

 cvDestroyWindow("corners left");

29

Appendix C
OpenCV Code for Run Mode

//--- --//
 // Run the run mode code
//--- --//

//Creates a window to change the BMState values whi le running the program
 cvNamedWindow("Values" , CV_GUI_EXPANDED);

 cvCreateTrackbar("Pre-Filter Size" , "Values" , &BMState->preFilterSize, 100, NULL);
 cvCreateTrackbar("Pre-Filter Cap" , "Values" , &BMState->preFilterCap, 63, NULL);
 cvCreateTrackbar("SADWindow Size" , "Values" , &BMState->SADWindowSize, 100, NULL);
 cvCreateTrackbar("Minimum Disparity" , "Values" , &BMState->minDisparity, 100, NULL);

cvCreateTrackbar("Number of Disparities" , "Values" , &BMState->numberOfDisparities, 256,
NULL);

 cvCreateTrackbar("Texture Threshold" , "Values" , &BMState->textureThreshold, 100, NULL);
 cvCreateTrackbar("Uniqueness Ratio" , "Values" , &BMState->uniquenessRatio, 100, NULL);

cvCreateTrackbar("Speckle Window Size" , "Values" , &BMState->speckleWindowSize, 100,
NULL);

 cvCreateTrackbar("Speckle Range" , "Values" , &BMState->speckleRange, 100, NULL);
 /*A few notes about the constraints of the values:
 preFilterSize must be odd and from 5 to 255,
 preFilterCap must 1 to 63, it can be odd or even,
 SADWindowSize must be odd and from 5 to 255,
 numberOfDisparities must be positive and evenly di visable by 16 (16, 32, 64, 128, etc)*/
 while (1){
 if (cvWaitKey() == 13){ //captures images when "enter" key is pressed
 IplImage* imgR = cvQueryFrame(capture);
 IplImage* imgL = cvQueryFrame(capture2);
 //IplImage* imgR = cvLoadImage("TsukubaLeft.jpg"); //test image
 //IplImage* imgL = cvLoadImage("TsukubaRight.jpg"); //test image
 imageSize = cvGetSize(imgR);
 //create matrices for rectified images
 CvMat* imgRrect = cvCreateMat(imageSize.height,
 imageSize.width, CV_8U);
 CvMat* imgLrect = cvCreateMat(imageSize.height,
 imageSize.width, CV_8U);
 CvMat* disp = cvCreateMat(imageSize.height,
 imageSize.width, CV_16S);
 CvMat* vdisp = cvCreateMat(imageSize.height,
 imageSize.width, CV_8U);
 CvMat* depth = cvCreateMat(imageSize.height,
 imageSize.width, CV_32FC3);
 //convert unrectified images to grayscale
 IplImage* imgRgray = cvCreateImage(imageSize, 8 , 1);
 IplImage* imgLgray = cvCreateImage(imageSize, 8 , 1);
 cvCvtColor(imgR, imgRgray, CV_RGB2GRAY);
 cvCvtColor(imgL, imgLgray, CV_RGB2GRAY);
 cvShowImage("CameraLeft" , imgLgray);
 cvShowImage("CameraRight" , imgRgray);
 //use matrices from calibration to rectify the imag es
 cvRemap(imgRgray, imgRrect, mx1, my1);
 cvRemap(imgLgray, imgLrect, mx2, my2);
 //compute disparity of rectified images
 cvFindStereoCorrespondenceBM(imgLrect, imgRrect, disp, BMState);
 cvNormalize(disp, vdisp, 0, 256, CV_MINMAX);

30

 cvShowImage("Disparity" , vdisp);
 //compute depth map from disparity map
 cvReprojectImageTo3D(vdisp, depth, &_Q);
 cvShowImage("Depth" , depth);
 //steps needed to combine the 2 rectified images in to a single image
 cvGetCols(pair, &part, 0, imageSize.width);
 cvCvtColor(imgRrect, &part, CV_GRAY2BGR);
 cvGetCols(pair, &part, imageSize.width, imageSi ze.width*2);
 cvCvtColor(imgLrect, &part, CV_GRAY2BGR);
 for (j = 0; j < imageSize.height; j += 16)
 cvLine(pair, cvPoint(0,j),
 cvPoint(imageSize.width*2,j),
 CV_RGB(0,255,0));
 cvShowImage("Rectified" , pair);
 }
 if (cvWaitKey() == 27) //exit when ESC key is pressed
 break ;
 }
 cvReleaseStereoBMState(&BMState);
 cvReleaseMat(&mx1);
 cvReleaseMat(&my1);
 cvReleaseMat(&mx2);
 cvReleaseMat(&my2);
 cvReleaseMat(&img1r);
 cvReleaseMat(&img2r);
 cvReleaseMat(&disp);
 }
 else
 printf("\nInvalid calibration images.\n");
 }
 else
 printf("\nProgram has been exited by user. Please run agai n.\n");
 // Release the capture device housekeeping and clos e all windows
 cvReleaseCapture(&capture);
 cvReleaseCapture(&capture2);
 cvDestroyAllWindows();
 return 0;

