Active Noise Cancellation System

Final Report

BY

Jessica Arbona & Christopher Brady

Department of Electrical and Computer Engineering

Bradley University

Advisors: Dr. Yufeng Lu and Dr. In Soo Ahn

Peoria, lllinois
May 2012

ACKNOWLEDGEMENT

We would like to express our sincere gratitude appreciation to our advisors who helped us all glibve way
with our project. Their help was invaluable as wegoessed through the project. We would also like t
acknowledge all the professors who helped us. @e BSanchez provided us with additional resourndssapport.
Dr. James Irwin provided us with helpful insightdrihe intricacies of acoustics needed to perfarat-world active

noise cancellation. Finally we would like to thaolkr parents and families for supporting us in oducation

careers.

ACKNOWLEDGEMENT

LIST OF TABLES

LIST OF FIGURES

TABLE OF CONTENTS

AB S T R A T e e e
CHAPTER
1. INTRODUCTION i
1.1 OBJECTIVE ..ot
1.2 SIGNIFICANCE........co oo ermme e
1.3 ADAPTIVE FILTER ...
1.4 FOUR FUNDAMENTALS CLASSES.........ooiiiiiiieeeeiiiiinnes
2. PROJECT APPROACH ittt

2.1 HIGH LEVEL BLOCK DIAGRAM ...
2.2 FUNCTIONAL REQUIREMENT LISTcoovviiiiimmmneeeeeeee,
2.3 PERFORMANCE SPECIFICATIONScoovviitmmmmmn e
2.4 TECHINICAL METHODS

PROJECT SIMULATION ..ottt e
3.1 LMS & RLS SPECIFICATIONS
3.2 LMS RESULTS
3.3 RLS RESULTS ...
3.3 THE DIFFERENCE BETWEEN RLS AND LMS...............

PROJECT HARDWARE DESIGN ...
4.1 ACTIVE NOISE CANCELLATION SYSTEM DESIGN.......

4.2 DIFFERENT STRUCTURES OF FIR
4.3 DSP/FPGA IMPLEMENTATION

Page

Vi

viii

P e

4N Oo o

10
12
15

19

19

5. SUMMARY ... 63

6. CONCLUSION ... e 37
APPENDIX

A. LMS ALGORITHM CODE .. e 38

B. RLS ALGORITHM CODE ... irrem e 39

C. FILTER USING THE LMS ALGORITHM CODE............cemeceiiiinnn. 40

D. FILTER USING THE RLS ALGORITHM CODE............coemvvviiiinnnnn. 41

E. SIMULATE INTERFERENCE FOR REFERENCE SIGNAL CODE.. 42

F. DISPLAY RESULTS CODEoootiiiiiiiiiiieis e 43
BIBLIOG RAPHY e 45

LIST OF TABLES

Table Page
Table 1 Number of taps vs. LMS Mean Square Err@@ation................cccc..... 12
Table 2 Number of taps vs. RLS Mean Square Err@aft&fion..................cee..... 16
Table 3 Difference between RLS and LMS.......ccccciiiiiiiiiie 19
Table 4 System Components for the XtremeDSP Board.............cccceevvevvnnnnnnn. 21
Table 5 System Components for the SingalWave Board...............cccccceeeeees 32

LIST OF FIGURES

Figure Page
Figure 1 Adaptive Filter..........oooiiiiiiiic s 2
Figure 2 Adaptive 1dentifiCationcoeereiiiieiiiiae e 3
Figure 3 AdaptiVe INVEISE.........ouuiiuiiiieeeee ettt e e e e ea e 3
Figure 4 Adaptive PrediCtor.......... ..o 4
Figure 5 Adaptive Noise Cancellation...........cccoooeiiiiiiiiiiiiiiii e 4
Figure 6 High Level Block Diagram of an Adaptivétéii..................ceevvvvueicnnnn. 6
Figure 7 Target Signalcoooiiiiiiiii e 10
Figure 8 Interference Signal.............ueeoiiiiiiii e 10
Figure 9 Reference Signal.........cooo oo 10
Figure 10 Target Signal SPectrum ..o 11
Figure 11 Interference Signal SPeCtrumccccceeiiiiiiiiiiiiii e 11
Figure 12 Reference Signal SPeCtrUumcoceeeeeiiieieieiiiiiiiieiieii e 11
Figure 13 Number of taps vs. LMS Mean Square EfOf...........cceeeeevieiveeennnns 13
Figure 14 Converge of LMS COeffiCientsSccoeeeiiiiiiiiiiiiiiiceee e 41
Figure 15 LMS Desired and Recovered SignalS............cooovvviiiiiiiiiiiiiiinenneenn. 14
Figure 16 LMS Desired and Recovered Signals Spectra..............oeeevvevveennnne 15
Figure 17 Number of taps vs. RLS Mean Square EMor............coceevvvvveiviiinnne 16
Figure 18 Converge of RLS COEffICIENESiiiiiiiiiiiiiiiie e 17
Figure 19 RLS Desired and Recovered SignalS...cccc...oooovvviiiiiiiiiiiiinnieeeeeeeee, 18
Figure 20 RLS Desired and Recovered SPeCtra .o .cooovvevieeiiiiiiiiiiiiianeeennn. 18
Figure 21 Active Noise Cancellation System for ¥teemeDSP Board 22

Vi

Figure 22 LMS Adaptive for the XtremeDSP Board.............cccceeeeevvvvvvveeiinnnnns 22

Figure 23 Adaptive Coefficients for the XtremeDS®aB]ccccceeeeeeeeeennnn. 23
Figure 24 FIR Filter for the XtremeDSP Board..........ccccceeeeeiiiieeeeiieiieeeeeiiiiiinns 23
Figure 25 OSCIlloSCOPE RESUILS........vvveiiceeeeeeiiiiiiiese e e 24
Figure 26 Comparison of the Output Signal PIOtS...........oovvvviiiiiiiiiiieeieeeeeee, 24
Figure 27 Standard FOIMuuueii e e eene e e e 26
Figure 28 Standard FOrm RESUILSommmmmmseeneiieeeeeeereeereieeeirinninnnn 26
Figure 29 TranSPOSE FOIMccoiiiiiiieeieeeiiiee s e e e e e e e e e e e e e e naanes 27
Figure 30 Transpose FOrm ReESUILSiceceeeeeeeieiiccie e 28
Figure 31 SyStoliC FOMML.......cccooiiiiiieiieceeeee e e e e e enanaennees 29
Figure 32 Systolic FOrmM RESUILS...........c s e e 29
Figure 33 Systolic Pipeline FOrmoovmeiiii e 30
Figure 34 Systolic Pipeline FOrm ReSUILS. ... cummueeeeeiieeieeeeiiieieieeeicee e 31
Figure 35 Active Noise Cancellation System for ¥teemeDSP Board 33
Figure 36 LMS Adaptive for the SignalWave Board.................ccceeevvvvvvivvinnnnns 34
Figure 37 Adaptive Coefficients for the SignalW&a@ard...............ccccceeeeeeeeennn. 34
Figure 38 FIR Filter for the SignalWave Boardccccoeeeiiiiiiiiiiiiiiieiiiiiiinns 35
Figure 39 LMS Desired and Recovered SignalS..ccccc.ccooovvviviiiiviiiiiiiiiiieeeeeen. 35
Figure 40 LMS Desired and Recovered Signals Spectra.............cccevvvvvvevnnnns 36

Vii

ABSTRACT

An active noise cancellation system has been degigmd implemented. Both speech
and ultrasound data were used to verify the sysk@ATLAB/Simulink was used to design and
test a least mean square (LMS) and a recursive dgasre (RLS) adaptive filter for the project.
Once the filters were successfully simulated andfigd, the Xilinx block set was used for
hardware/software co-simulation and hardware implaiation. This Xilinx filter model was
subject to finite precision due to fixed-point bntetic. It required careful verification via
numerous simulations. Results obtained with théefiprecision Xilinx model were compared
with those from the MATLAB model to fine-tune thitdr. Four types of FIR structures were
investigated. After testing and validation usingdveare/software co-simulation, the system was

downloaded to a DSP/FPGA board for real-time prsiogsof various signals.

viii

CHAPTER 1

INTRODUCTION

1.1 OBJECTIVE

The goal of the project was to design and implenamniactive noise cancellation system
using an adaptive finite impulse response (FIREril This active noise cancellation system
would be used to increase the signal-to-noise (&dR) of a signal by decreasing the power of
the noise. Two applications studied in this projgete ultrasonic data and an audio signal with
simulated interference.

1.2 SIGNIFICANCE

The study of active noise cancellation is a rapidéyeloping area. With the concern for
noise pollution on the rise, methods of reducingseaare in greater demand. Active noise
cancellation systems with adaptive filters are wered an effective method for reducing

unwanted information (i.e., noise).

1.3 ADAPTIVEFILTERS

Adaptive filters consist of the three basic compusethe adaptive filtefi{n}; the error ,
e(n); and the adaptation functior{n) = x{n)«h{n)} and eln) = d{n)-yn) as shown in
Figure 1. The goal of the system in Figure 1 ismdapt the filter in such a way that the input
digital signal,*{n}, is filtered to produce an output signsn), that will minimize the error

signal ,em}, when subtracted from the desired sigidi{it}. The arrow through the adaptive
filter is standard notation to indicate that thigefiis adaptive. This means that all of the filter

coefficients can be adjusted in such a way thatmiean square error is to be minimized. The

adaptive filter can be an FIR or IIR filter or evamon-linear system. To ensure the stability of

the adaptive algorithm, most adaptive filters us& iR type'™

/ \l/ d(n)

O e(n)

vin)

x(n)

Figure 1. Adaptive Filter
The adaptive filters are widely used in areas sagltontrol systems, communications,
signal processing, acoustics, and others to de#h wandom signals with stationary or
guasistationary statistic8lthough these applications are quite differengythave input, output,
error, and reference signals. The applicationshefdadaptive filters can be classified into four
fundamental classes based on the architectureeofntiplementation: adaptive identification,

adaptive inverse, adaptive prediction, and actbisencancellatio”
14 FOUR FUNDAMENTAL CLASSES

Adaptive I dentification

The adaptive identification is an approach to maaelunknown system. As seen in
Figure 2, the unknown system is in parallel withamaptive filter, and both are receiving the
input signal. The output of the unknown system mles the reference signal for the adaptive
digital filter. Applications for adaptive identifation include room acoustic identification,

channel estimation, echo cancellation and s&on.

Unknown
System

x(n) d(n)

Adapti FIR

ilter ym)

Adaptive
Filter ——e(n)
Algorithm

Figure 2. Adaptive Identification
Adaptive Inverse
In the architecture of adaptive inverse as showhigure 3, the adaptive digital filter is

used to provide the inverse model for an unknowsiesy. The inverse model realizes the
reciprocal of the unknown system’s transfer funttidbhe combination of the two would then
constitutes an ideal transmission medium. Applcai that use adaptive inverse include
equalization in digital communications, predictigdeconvolution, blind equalization, adaptive
control systems, and othef3.

”

Unknown Adaptive FIR
—X(n)= System /';'rﬂf:/ y(n)—

Adaptive
Filter —e(n){)
Algorithm

Delay d(n)

Figure 3. Adaptive Inverse
Adaptive Predictor
In the prediction architecture as shown in Figuréhé adaptive filter is used to provide a
prediction of the value of a random input signaépBnding on the application, the system can
operate as a predictor if the output of the adapfilter predicts the output of the system in

advance. However, the system can also operatgesdection error filter if the prediction error

signal is used as the output of the system. Apptina of adaptive predictors include predictive

noise suppression, periodic signal extraction din@edictive coding, and othefs.

d(n)

/4
Y
Adaptive FIR
x(nN—» Delay &ke/r/ %}Y(n)ﬁ
Adaptive e(n)
Filter I E—
Algorithm

Figure 4. Adaptive Predictor
Active Noise Cancellation
Active noise cancellation increases the signaldisa ratio of a signal by decreasing the
noise power in the signal by attempting to canoéen signals. Applications consist of adaptive

noise cancellation, echo cancellation, adaptivertbeaning, biomedical signal processing, and

others?
d(n)
vl
Adapti IR
x(n) a”p,"vj/r'/ %}v(n)a
Adaptive e(n)
Filter

Algorithm

Figure 5. Adaptive Noise Cancellation

CHAPTER 2

PROJECT APPROACH

In order to complete the project, a series of desagks was undertaken. First, a high
level block diagram was made to represent the ifomality of the system. After this, a
functional requirements list was made to describw the system would function. Performance
specifications were then made to describe the aténgoal of the system. The basics of two
adaptive filters, recursive least square (RLS)laadt mean square (LMS), were then researched

to provide a method for designing the active noeecellation system.
21 HIGHLEVEL BLOCK DIAGRAM

Figure 6 shows the configuration of the high lebleck diagram for the system. There
are two inputs in the system: reference and intemige signals. The reference sigrd(h),
contains the target signal and an interferenceasigrhe interference signat(n), contains just
an interference signal similar to that containedhia reference signal. When the interference
signal is passed through the adaptive filter, thgut, y(n), is generated so that when it is
subtracted from the reference signal the erroradjgain), is obtained. The error signal is then

used to update the coefficients of the filter.

d(n)

Reference

!

@ x(n) FIR |/:\”dt:rptive y(n) -

A

y

Adaptive Filter
Algorithm

e(n)

Figure 6. High Level Block Diagram of an Adaptivigtér

2.2 FUNCTIONAL REQUIREMENTSLIST

The project used two different types of data: glkand and speech. To process these
data, two types of hardware boards were used ipritject to process the different types of data.
An XtremeDSP board was selected to analyze thdtsesithe ultrasound data. The main reason
to use thidoard was to output the results to an oscillosdopgisual inspection. A SignalWave
DSP/FPGA board was used to analyze the audio dppang to its audio Codec hardware, which
allowed the signals to be heard.

The ultrasound data was acquired with a 5 MHz ttaosr and 100 MSPS sampling rate
in an ultrasonic nondestructive data acquisiticsteay. The adaptive filter was designed using a
Xilinx system generator, an FPGA design tool incogbed in the MATLAB/Simulink
environment. An XtremeDSP development kit from B@h was used as a platform to
implement the adaptive filter. The FPGA devicedusethe project was the Virtex 4 XC4SX35-
10FF668. Two 14-bit DAC onboard channels (AD9772M4Aevices) were used to probe the
input and output of the adaptive filtering system.

For audio signal processing, a SignalWave DSP/FBG#d from Lyrtech was used to

test the adaptive filtering system. An onboard al@dDDEC (sampling rate varies from 8 kSPS

to 48 kSPS) was used for processing signals. Real-tvorkshop and the Xilinx system

generator in MATLAB/Simulink were used to compiteetdesign.
2.3 PERFORMANCE SPECIFICATIONS

The system is designed to accommodate a samplegoaversion of at least 44.1kSPS

for audio signals and be able to increase the SN& keast 20 decibels (dB).
24 TECHINICAL METHODS

Mathematical Approach
Adaptive filters operate by attempting to reduamst function. One of the most popular
cost functions to use is known as the Least Sqhen@ equation. It uses the mean square error
as the cost function and attempts to reduce thiefgostion. Various adaptive algorithms can be
obtained based on how to minimize the cost funcfidre cost function (J) can be represented as
follows:
J = E{eXn)} (1)
The error signal of the system can be expressed as:
e(n) =d(n) - y(n) =d(n) - f " X(n) , 2)

where f is the filter coefficients and (n) which is a column vector of the filter input
signal

The cost function becomes:

J =E{e’(n)} =E{(d(n) - fT IX(n))*} 3)

J = E{d(n)® +2d(n) OF " DX (n) + f T OX(n) X (n) OF} (4)

By setting the gradient f equal to zero and solving, for the filter coeféicif, we find that:

E{d(n) X(n)} = E{X" () DX(n)} f, (5)

Solving for the optimum coefficients results in flolowing equation:
fom = Rex oy (©6)

Least Mean Square

The Least Mean Square (LMS) algorithm, introdudsd Widrow and Hoff, is an
adaptive algorithm. LMS algorithm uses the estimatethe gradient vector from the available
data. The LMS incorporates an iterative procedoae makes corrections to the weight vector in
the direction of the negative of the gradient vegtbich eventually leads to the minimum mean
square error. Compared to other algorithms, the lA¢®rithm is considered simpler because it
does not require correlation function calculations does it require matrix inversions.
Mathematical Approach

The Widrow-Hoff LMS Algorithm attempts to approxiteathe Wiener-Hopf equation by
updating the filter coefficients by a factor of thegative of the gradient of the cost function as

follows:

f(n+1) = f(n)—%D(n) @)
The gradient is then calculated using the pareaivdtive of the cost function with respect to
the filter coefficients. It can be shown that tmadient is represented by the following:
0(n) = —2e(n) [X (n) (8)
When the gradient (8) is plugged into the WienepHequation (7), the result is the
following equation for updating the filter coeffezit:
f(n+1) = f(n)+ ule(n)X(n) , (9)

where u is the step size or learning factor for the filter order for the filter coefficients to
converge to an optimum value, a value fomust be carefully chosen. For this LMS algorithm,

it can be shown thagt/ must satisfy the following constraint in order fbe system to converge:

2
< -
30y (0)

Wherer,, is autocorrelation andl is the number of taps of the filter

Sy (10)
Recursive Least Square

Recursive least square (RLS) is another algoritbomafiaptive filters. This algorithm
attempts to directly update the auto and crossetaion matrices in order to approach the
Wiener-Hopf equation.
Mathematical Approach

The RLS algorithm attempts to directly update #sreate of the optimum coefficients to
approach the Wiener-Hopf equation.

Ry (N+1) = Ry (N) + X (n) X" (n) (11)

Fo (N+1) =14 (N) +d(n) DX (N) (12)
Using these to update our values for each new jnpaitcalculate the filter coefficients

with the following:

f(n+1) = Ry, ‘(n+1) &, (n+1) (13)

CHAPTER 3

PROJECT SIMLUATION

MATLAB simulations of both LMS and RLS were useditwestigate the effectiveness of the
adaptive filters for recovery a signal corruptedhwioise. The theoretical results were later coegbao
the hardware results in order to ensure effectisen8imulation results were also used to investitjat
differences between LMS and RLS, to determine whicluld be better suited to be implemented in

hardware

10

31 LMS& RLSSPECIFICATIONS
Two audio signals were used in the simulationsp@esh sample artificially corrupted
with car engine noise was used as the referencwlsigr the adaptive filter, and a similar

version of the engine noise was used as the inggrée signal.

Input Signals

0a

0B -

Odberoeeeore Mo B e]

Arnplitude

=]

X
Arnplitude

=]

s

I i

04k

i 1 i i
i 1 i i
5 05 1 15 5 25] 05 1 el 1.5 2 25
Time(s)

08

Figure 7. Target Signal Figure 8. Interference Signal

Arnplitude

05 1I el 1‘5 é 25
Figure 9. Reference Signal

Figure 7 shows the target signal, a speech sanipdewmman saying “Give me the pen”.
Figure 8 shows the engine noise. Finally, Figuris the reference signal, which is the speech

signal corrupted with the interference signal. Aving average process was used on the engine

noise signal before being added to the speech Isignaimulate an environment where the

11

interference signal was reflected several time® pitocess ensures that the filter input was not
exactly the same noise that was corrupting thecdpeata. It can be seen that the signal in
Figure 10 is smaller compared to signal in figute This is expected due to the signal in Figure

11 being the interference signal.

Input Signals Spectral

350 T T T T 1600

300 - 1400 -

!] : : 1200
3 L O R U WU N JPOURN.. OO . SO

]
=1
=1

@

=1

=]

Amplitude
@
=]
Amplitude
@
2
=]

=
=
T
=
=1
=

m
=]
e
=1
=]

o o
0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
Mormalized Freguency Mormalized Freguency

Figure 10. Target Signal Spectrum Figure ldterference Signal Spectrum

1500

1000H -

Amplitude

500

o
0 005 01 015 02 025 03 035 04 045 05
Mormalized Freguency

Figure 12. Reference Signal Spectrum

Figure 10 is the spectral content of theesh signal. Figure 11 is the spectral content
of the engine noise. Finally, Figure 12 is the g@a¢content of the reference signal, which is the

target signal with the interference signal.

12

32 LMSRESULTS

A comparison of different LMS filters was conducteddetermine an appropriate filter to
be used. The LMS adaptive filter was implementedt fdue to its simplicity. As explained
before, LMSdoes not require correlation function calculatimr does it require matrix inversions.
MATLAB simulations show that a reduction of 20 déncbe achieved by tuning the step size of
the LMS algorithm.

L east Mean Square Taps Evaluation

Figure 13 shows that as the number of taps in ittex fncreased, the noise reduction
increased as well. This became less noticeablaeasumber of taps exceeded 10. As seen in
Table 1, there is no significant difference whee tiumbers of taps varied from 10 to 20.
Because of this observation, and in order to siiympliocess of hardware design, it was decided

to implement ten taps. The rest of the results wehgeved using a 10 tap adaptive filter.

Table 1. Number of taps vs. LMS Mean Square Erraiation

Taps (L) Mean Square Error (J) Reduction [dB
4 0.011600 -9.96
6 0.003400 -15.29
8 0.001500 -18.84
10 0.001100 -20.19
12 0.000936 -20.89
14 0.000896 -21.08
16 0.000876 -21.18
18 0.000864 -21.24
20 0.000856 -21.28

Note: The original mean square error (J) is 0.12484

13

Tap vs. LMS Mean Square Error

o
Z 10
o
S 20
3
=]
2 30
4 6 8 10 12 14 16 18 20
‘—Tap 9.96 |-15.29 | -18.84 | -20.19 | -20.89 | -21.08 | -21.18 | -21.24 | -21.28

Figure 13. Number of taps vs. LMS Mean Square Error

LMSMATLAB Code

The code in Appendix A was used to perform the LB§orithm. The first several
sampledrom each signal were not processed to give theridthgn a starting point from which it
could accurately recover the target signal. The memof samples skipped was one fewer than
the number of taps used. This is done to accourthofact that there was insufficient data for
these samples to be filtered. For each sample #ftdy the current input vector was used to
calculate the filter output by using matrix muligaltion. The recovered signal was then
calculated and used to update the filter coeffisieior the next sample. This process was

continued until all the samples had been filtered.

LMSMATLAB Results

It can be seen in Figure 14 that the coefficierftshe LMS required 0.5 seconds to
converge. These coefficients were used to filtexr signal to reduce the error. The LMS

coefficients took 1.3 seconds to become stable.

14

Amplitude

Timel(s)

Figure 14. Convergence of LMS Coefficients

With ten taps, the LMS algorithm was able to rediliemean square error from 0.114844 to
0.0011. This is a reduction of more than 20.0 dBijctv allowed the target signal to be
recovered, as seen in Figure 15 and Figure 16 M/AELAB audio results can be heard clearly.
However, the results of the implementation allovaesmall part of the noise of the engine motor

to be heard in the background of the output signal.

Amplitude

Time(s)

Figure 15. LMS Desired and Recovered Signals

15

350 T T T !

T
Recovered Signal
Desired Signal

300 |--p-------- L R Rt SRR

Amplitude

6
Frequency(kHz)

Figure 16. LMS Desired and Recovered Signal Spectra
3.3 RLSRESULTS
Recursive least square is another algorithm for adaptive filter. This algorithm
attempts to directly update the auto- and croseetaiion matrices in order to approach the
Wiener-Hopf equation. A recursive least square (Radaptive filter was implemented second.
MATLAB simulation was conducted to compare resulith LMS.

Recursive Least Square Taps Evaluation

Table 2 shows that as the number of taps in therfihcreased, the dB reduction
increased as well. This became less severe asuthban of taps exceeded 12. As seen in Table
2, the reduction from 12 to 20 taps was minimalds decided from the MATLAB result to use
10 Taps, even though the difference between tapn@l0l2 was 5 dB. The main reason was to

have accurate comparisons between LMS and RLS.r&3teof the results were achieved by a

ten tap adaptive filter.

Table 2. Number of taps vs. RLS Mean Square Ervatuation

Taps (L) Mean Square Error (J) Reduction [dB
4 0.008618 -11.25
6 0.001755 -18.16
8 0.000430 -24.26
10 0.000082 -31.44
12 0.000024 -36.81
14 0.000034 -35.27
16 0.000013 -39.58
18 0.000013 -39.31
20 0.000016 -38.68

Note: The original means Square Error (J) is 0.24248

16

4 A
Tap vs. RLS Mean Square Error

- 0

=]

% -20 e—

T -40 S

3

£ -60 _ -

a4 B 8 10 12 14 16 13 20
Tap -11.25 | -18.16 | -24.26 | -31.44 | -36.81 | -35.27 | -39.58 | -39.31 | -38.68

_ J

RLSMATLAB Code

Figure 17. Number of taps vs. RLS Mean Square Error

The code in Appendix B was used to perform the Rlgdrithm. The first several samples

from each signal were not processed to give theridign a starting point from which it could

accurately recover the target signal. The numbesanfples skipped was one fewer than the

number of taps used. This was done to accounhfofact there was insufficient data for these

samples to be filtered. For each sample, the suimput vector was determined and used to

calculate the filter output. It used matrix muligaition to determine the output and the recovered

signal was then calculated. Two matrices were reeddeperform the RLS algorithm. The

autocorrelation matrix was set to a small, non-zeatue initially to prevent any possible

17

singularity condition of the matrix. Both the aubo@lation and cross correlation matrices were

updated and used to determine the filter coeffisiéor the next sample.

RLSMATLAB Results

The RLS coefficients settled in less than half eosd and remained steady throughout
the simulation. The spectral content of the recedesignal was much closer to that of the

desired signal than that obtained from the LMS wdigon.

1

0.8

Tk |

mar] DTSSR

Amplitude

0.2

1]

0.2 F

04 i I i i
o 0.5 1 15 2 25
Timels)

Figure 18. Convergence of RLS Coefficients

With ten taps, the RLS algorithm was able to redtloe mean square error from
0.114844 to 0.000082. This is a reduction of mbent31 dB. This reduction was enough to be
able to recover the target signal, as seen in Eig@rand Figure 20. The MATLAB audio results

can be heard clearly without any engine noise enbidickground.

Anmplitude

T T T
— Recovered Signal
Desired Signal

Amplitude

Time(s)

Figure 19. RLS Desired and Recovered Signals

450 ! T ! I T

; ; : Recovered Signal
A00 [--f-mmmmmmmh oo Desired Signal H
L e -
300 ____________L___________L___________% __________________________________ _
250 _'"""""F"""""'F""'"""%"""""'T"""""'T """"" -
200 - -

Frequency(kHz)

Figure 20. RLS Desired and Recovered Signals Spectr

18

19

34 THEDIFFERENCE BETWEEN RLSAND LMS

Table 3. Difference between RLS and LMS

Algorithm Original Mean Square Error (J) Mean Square Error (J) Reduction [dB]
RLS 0.114844 0.000082 -31.44
LMS 0.114844 0.001100 -20.19

The RLS algorithm was able to achieve an additiddadiB reduction in the mean square
error over the LMS algorithm as shown in TablerBspite of this fact, the LMS is more widely
used due to the complexity inherent in the RLS rtlgmn. The RLS algorithm requires a matrix
inverse calculation at every time step. Although @#&omposition can be used for the matrix
inversion, it was not added to the project becafsiés implementation complexity in a fixed
point system. Inverse matrix calculations are diffi to perform on embedded system. For this

reason, the LMS algorithm was chosen to be impléeteim hardware.

CHAPTER 4

PROJECT HARDWARE DESIGN

After simulating the LMS and RLS design in MATLAR)e active noise cancellation
system was implemented in hardware. There were tma&n steps taken: design and verify the
active noise cancellation using an LMS adaptiveerjl compare different FIR structures for
efficiency in hardware implementation, and implemire design on an embedded system. The
two FPGA boards were used: the SignalWave boardused for all the speech data, while the

XtremeDSP Development Kit — Virtex-4 Edition, wased for the ultrasound data.

20

41 ACTIVE NOISE CANCELLATION SYSTEM DESIGN

Active Noise Cancellation System Design Specification for XtremeDSP

The active noise cancellation system design fordtiemeDSP had three specifications

which needed to be fulfilled:

The active noise cancellation system would reserfljeire 6. It contained an input
signal, output signal, reference signal, error aigand adaptive filter to behave as an
adaptive noise cancellation system.

The system would contain an LMS adaptive filterretteough it was shown previously
that RLS was more effective. The reason for chp&iMS over RLS was due to the
simplicity of LMS versus the complexity of RLS.

Six Taps would be used. This was done becauseatiagfar this part was ultrasound data
instead of audio data. The ultrasound data wasrdatgrom a MATLAB file provided
by an advisor, Dr. Yufeng Lu. His results provediihg a six tap FIR filter for the

adaptive filter was sufficient for this data.

21

Active Noise Cancellation System Design for Xtreme DSP

Using the Xilinx blocks, the LMS with Adaptive Felt was designed. It consists of:

Table 4. System Components for the XtremeDSP Board

System Components Quantity Xilinx Blocks Destioip
Each block contains the
ROM Block 2 adds! information extracted from the
ultrasound MATLAB
simulation

The oscilloscope can only
receive two inputs. This block
is used to have control over the
Multiplexer 2 40,71 signals. Of which two signals
out of the four signals (x(n),
y(n), d(n), and e(n)) will be
d1 outputted to the oscilloscope

sel

Adaptive Filter Block 1 It's a sub-block that contains
all the adaptive filter design
This block converts the entirg
| A design into a bit stream for the
Xtreme Dsp Block 1 P - purpose of communication
S with the FPGA Board.

Active Noise Cancellation with an LM S Adaptive Filter for the XtremeDSP Board

The system in Figure 21 was designed to resemblsytstem in Figure 6. It contained an
input signal, output signal, reference signal, egignal, and adaptive filter to behave as an
active noise cancellation system. The interferemmkreference signals were ultrasound data that
had been evaluated in MATLAB and input into thetsegs by using two ROM blocks.
Ultrasound data was chosen to test the hardwangrdéy comparing MATLAB simulation

results to the output of the design in Figure 21.

22

DAC 1 Sel
Resourse In »
o o timator i
’ e l"
Reinterpret .
DAG
— Pt
R
Rainterprett :ﬂ
DAG 2 Sel
o
= oot o
] > il
Reimaeet2 [
DACZ
v ot
| »
Reiniepretz
LMS Adaplive Filter
104G 1 Sel
{reme
DSF
»|0AC 2 Sel

Standard_Form_with_Adaptive_Filter
hweosim

Figure 21. Active Noise Cancellation System for ¥teemeDSP Board

LM S Adaptive Filter for the XtremeDSP Board
The adaptive filter shown in Figure 22 was desigtoeseparate the adaptive coefficients

and FIR filter so it would be easier to change leevthe different structures of FIR filters.

These structures will be discussed later in thentep

Out1H

FIR Standard Form

Lae In1
e In2
He{ In3
e et
He{ In&
e In6
e In?

F

el =
Gateway Outl
Weight 5 weorr s Bateway Duts
Waignt 1 Gatewsy Out2 Weight 2 Gateway Out? Weight 3 Gateway Outd waignt 4 Gatewsy Outs
Coe—rt
elk)
5 5 5 5 5 5
Adaptive Filter

Figure 22. LMS Adaptive for the XtremeDSP Board

23

Adaptive Coefficientsfor the XtremeDSP Board
The design to calculate the adaptive coefficieatsxtremeDSP board shown in Figure
23 used the standard LMS algorithm to update tldficeents with the error signal and the filter

input signal.

Ad

¥l
¥l
o o [Muitto o [Muit12

1

T

Figure 23. Adaptive Coefficients for the XtremeDB&ard

FIR Filter for the XtremeDSP Board
The design in Figure 24 is a standard form FIRefiltThe input signal is delayed and

multiplied by the filter coefficients. All the prodts are then added together to form the output.

1 s » ! s T » !
o a N a €4 |
i Delay2 Delayi4

Mult2
Nult11

AddSub1

Figure 24. FIR Filter for the XtremeDSP Board

24

Result of the Active Noise Cancellation System Design for the XtremeDSP Board
Figure 25 displays the reference signal (orangd)the output signal (blue), which were

plotted using MATLAB to verify the results.

Tek JL. @ Stop M Pos —1560ms AUTOSET
+* o

Mear

. I‘L!\EJ'}F":"! ‘r‘“’ ‘I?a.:#[ir'nlﬁ 1-._4;."15.‘ [RF. Y | 1|Hu .‘!'ﬁ-'li'\u:abf i

Undo
Altoset

M S0.0ms
=Mov-11 00:36
TDS 20248 - 10:33:36 AM 11/8/2011
Figure 25. Oscilloscope Results

In Figure 26, Simulation Output Signal (y) (bott@raph) is the output of the hardware
design for the active noise cancellation systengded he signal was compared to the top graph,

Hardware Output Signal (y), to ensure that thegiesias working.

Hardware Output Signal (y)

Amplitude
= =y

0 500 1000 1500 2000
Samples
Simulation Qutput Signal (y)

Amplitude

[S Lo v v vy 0y Lo v vy T
0 300 1000 1500 2000

Samples
Figure 26. Comparison of the Output Signal Plots

25

42 DIFFERENT STRUCTURE OF FIR

The different representations of FIR filter struew (Standard, Transpose, Systolic, and
Systolic Pipeline) were analyzed. The first stefs waverify that changing the structure of the
FIR portion of the adaptive filter would not charthe output of the entire system. The structure
would affect memory, timing, and cost in the hartevaspect. The reason to test these four
different types of structure was to determine whweas the most efficient with our active
noise cancellation system when applied to the boafthis was done by verifying that the
structure worked with the LMS algorithm, observthg critical path latency, and calculating the
maximum clock frequency for which the system wakmperable.

Standard Form

The FIR designs of the project were mapped in allghiarchitecture. As seen in Figure
27, the delay blocks were on the top while the @altiblocks were parallel to them. That was
what gave them a parallel form. The reason to ptheeblocks in this form was to have the
maximum clock rate determined by the critical platiency. The critical path is considered the
longest combinational delay path in a circuit. A®rs in Figure 27, the arrow indicates the
critical path latency. The red block shows wheretérts, and the blue blocks represent the
blocks that have an effect on the critical pathe Tatency for standard form is calculated by

counting one multiplication and five additioff$.

26

Critical Path Latency = 7,,,; + 5 * Tgqq

£

Figure 27. Standard Form

Standard Form Results

After finding the latency, the next step was toifyethe validity of the FIR structure with
the active noise cancellation system. To do sosystem shown in Figure 27, Standard Form,
was placed into the overall system design showFigare 21, Active Noise Cancellation System
Filter for the XtremeDSP Board. The system was amd the results were recorded in
MATLAB. The second graph, Hardware Output SignaligyFigure 28, represents the output of
the system with Figure 27, Standard Form FIR gsimectlt can be seen, by comparing the

hardware results with those obtained with MATLABat the structure works.

The Desirable Signal (d)

a2
-
=
= o
£
= 4 1 L L 1

o S00 100D 1500 2000

Samples
Hardware Output Signal (y)

as 1 T T
) I
=
= o
E— I
== _q

o S00 1000 1500 2000

Samples
Simulation Output Signal (y)

as 1 T T
.
= I 'y
= o i ¥ iy |
=
£

o S00 1000 1500 2000

Samples

Figure 28. Standard Form Results

27

Transpose Form

As seen in Figure 29, the delay and addition blatkthe bottom were parallel with the
multiplication blocks; this was what gave them aafilal form. The reason the blocks were
placed in such a form was to have the maximum clat& determined by the critical path
latency. As seen in Figure 29 the arrow marks ftitecal path latency. The red block shows
where it starts, and the blue blocks representbtbeks that are used to determine the critical

path. The latency for transpose form is causedneyamidition and one multiplicatioff

Critical Path Latency = 7,,,; + Tuuu

[R A A |

= =
Mult9 vt 2

AddSub2

) a
——a+b
b

Delsyt

AddSub10

-|<-
2 I‘

ER a+b
Delsy2 b g

Figure 29. Transpose Form

Transpose Form Results

After finding the latency, the next step was toifyethat this FIR structure performed
correctly with the system. To do so, the systerfigure 29, Transpose Form, was placed into
the overall system design shown in Figure 21, Actioise Cancellation System Filter for the
XtremeDSP Board. The system was run and the reselts recorded in MATLAB. The second
graph, Hardware Output Signal (y) in Figure 30 espnted the output of system with Figure 29,

Transpose Form, FIR structure. By comparing thesalts with those obtained with MATLAB,

28

it can be seen that this structure did not worke Téason it failed to perform properly was that
the adaptive filter algorithm updated each filteefficient after each new input. Transpose form
used the coefficient before storing it in the debdgck. This resulted in the filter coefficients

being delayed as well. Therefore the adaptiverfitgorithm failed to function’

The Desirable Signal (d)

Amplitude
=]

Samples
Hardware Output Signal (y)

Amplitude
=]

1 L L L | l L
o S00 1000 1500 2000

Samples
Simulation Output Signal (y)

WMMWMW—%%{ . e = S——
al :]

L L L
o 500 1000 1500 2000
Samples

Figure 30. Transpose Form Results

Amplitude
=]

Systolic Form

The FIR designs of the project were mapped in allghrarchitecture. As seen in figure
31, the delays in the top were parallel with theligoh blocks; this was what gave them a
parallel form. The reason to place the blocks ichsiorm was to have the maximum clock rate
determined by the critical path latency. As seefigure 31, the arrow marks the critical path
latency. The red block shows where it starts, dred lhlue blocks represents the blocks that

determine the critical path. The latency is duerie addition and one multiplicatiof.

29

Critical Path Latency = 7, + Tqaq

Delay?

Figure 31. Systolic Form

Systolic Form Results

After finding the latency, the next step was toifyethat the FIR structure actually
worked with the system. To do so, the system @1, Systolic Form, was placed into the
system design shown in Figure 21, Active Noise €Hation System Filter for the XtremeDSP
Board. The system was run and the results wererdedoin MATLAB. The second graph,
Hardware Output Signal (y), in Figure 32, represdhe output of system Systolic Form, FIR
structure. As seen by comparing the results obdafrean hardware with the MATLAB result

that this structure worked.

The Input Signal (x)

Amplitude

L L 1 L
o 500 A 00D 1500 2000
Samples
Hardware Output Signal (y)
1 T T T T
I 1 1] 1]
o S00 100D 1500 2000

Samples
Simulation Output Signal (y)

Amplitude

07 j.' —Hy P |

Amplitude

_ L L 1 L
o S00 100D 1500 2000
Samples

Figure 32. Systolic Form Results

30

Systolic Pipeline Form

The FIR designs of the project were mapped in allghiarchitecture. As seen in Figure
33, the delays in the top are parallel with theitaid blocks; this was what gave them parallel
form. The reason to place the blocks in such foras io have the maximum clock rate
determined by the critical path latency. As seefrigure 33, the arrow marks the critical path
latency. The red block shows where it starts, dved ldlue blocks represents the blocks that
determine the critical path. The latency is seebedhe greater of the following: one addition or

one multiplication!”

Critical Path Latency = max(7,1t » Tadd)

| ol 2] wl 2 wl 2| . al 2 . wl 2] _ nl 2
= — 3y L= | EZ9] | [| | s] | s |
| 3 venyl | — ey | De1ss | velavll | velayis
[| 22 | | |
yv AW ina | | |
1721 vl Multz | Mults | M |
M III m I Ml.“'ll a | l_.L‘_I ':‘ R I Mukil
el &= P S N 5 N Lo [ale
T 1 1 et =) I I N M Cbl— 7) o wby g
PL| A L l% L I I |~
SR A ST PO [|o=z=~,-19 ST P L 4 |
addegs | =9 (s | +
— ! AddSub2 | 21 |belayia —
yoo | oA — . | Adasub | | L 2 [pelavs
" hle loale LT o e Addsut® | RS L=
" =17 | elt— = farn | Faal [ale— iy |
Dalayd _ (] b ! s b a
Dialsg® b @b H
Delay? L]

Delays

Figure 33. Systolic Pipeline Form

Systolic Pipeline Results

After finding the latency, the next step was toifyethat the FIR structure worked with
the system. To do so, the system in Figure 33,08gsPipeline Form, was placed into the
system design shown in Figure 21, Active Noise €Hation System Filter for the XtremeDSP
Board. The system was run and the results wererdedoin MATLAB. The second graph,

Hardware Output Signal (y), in Figure 34 represeahts output of system with Figure 33,

31

Systolic Pipeline Form, FIR structure. It can berséy comparing the hardware results with

those obtained with MATLAB, that this structure \ksr

The Desirable Signal (d)

Amplitude
=]

Samples
Hardware Output Signal (y)

1 T T T
o WWWMII#QM‘—WW#
_1 I L L 1 L i
o 500 1000 1500 2000
Samples
Simulation Output Signal (y)
1 T T T T
_1 | 1 1 1 i 1 i
o 500 1000 1500 2000
Samples

Amplitude

Amplitude
[=]

Figure 34. Systolic Pipeline Form Results

FIR Structure Results

The standard form was chosen to be implementedanfinal designs. It was chosen
because it was the simplest form and used the tdweedware elements among the four forms
examined. While the systolic forms had improveeénal, it was determined that this was not a

significant enough improvement to justify the adtiaddware elements.
43 DSP/FPGA IMPLEMENTATION

Two algorithms for adaptive filters, LMS and RL@&gre successfully simulated in
MATLAB. An active noise cancellation system with BMS adaptive filter was successfully
designed. An FIR structure for the system was detexrd. After all of these were accomplished,

a hardware implementation was designed to perfeahtime noise cancellation.

32

Active Noise Cancellation Design Specificationsfor the SignalWave Board
The active noise cancellation system design for @ignal Waveboard had three
specifications:

* The active noise cancellation system would reseriidere 6. It contained an
input signal, output signal, reference signal, esignal, and adaptive filter to
behave as an adaptive noise cancellation system.

* The system would contain an LMS adaptive filtere Teason for choosing LMS
over RLS was due to the simplicity of LMS compatedRLS.

* The FIR filter would have 10 taps. It followecdethesults of the simulation LMS
MATLAB results that using ten taps was sufficieotr the requirements. The

audio data used was the same data used in the MBHirulation.

Active Noise Cancellation Design for the SignalWave Board

Using the Xilinx block set, the LMS adaptive filteras designed. It consisted of:

Table 5. System Components for the SignalWave Board

System Components Quantity Xilinx Blocks Descdpti

Each block contains the

information extracted fron
RO Block ’ ad::l;_r'1 the ultrasound MATLAB
simulation
A sub-block that contains
Adaptive Filter Block 1 | h all the adaptive filter

design

33

Active Noise Cancellation Design with an LM S Adaptive Filter for the SignalWave Board

The design in Figure 35 resembled that of Figurt 6ontained an input signal, output
signal, reference signal, error signal, and adedilter to behave as an active noise cancellation
system. For the input and reference signals, aopimne was used to record the two audio data
that were used previously: a woman saying “giveargen” and a car motor. These two audio
samples were then mixed to simulate the targetasilgeing corrupted by background noise. A
simple moving average process was used to corhgptarget audio signal. It was chosen to
simulate the noise echoing and being recorded aktreres at different intensities. The original
noise file was then used as the filter input sigii&lese signals were then output through the
audio jack on a PC into the SignalWave Board. Tigm&Wave board then used the real-time

active noise cancellation to recover the targetasdinal and output it to a speaker.

v
L
wER Poimcias —
SECEy
=n | 1
RO —————
— Dt | L) P —
Satemmy O —
L o >
= i = ————— e g
- | Out | Soope
Gansway Dutl rorr—
- gx-'! L __J
=) I

Figure 35. Active Noise Cancellation System for ¥teemeDSP Board

LM S Adaptive Filter Design for the SignalWave Board
The adaptive filter in Figure 36 resembled the &dadilter design used on the FPGA

board in Figure 22. It contained the adaptive ¢oefit design and FIR standard form design.

34

e

IEELE]

Figure 36. LMS Adaptive Filter for the Signal WaBeard

Adaptive Coefficients Design for the Signal Wave Board
The model in Figure 37 was designed similarly @t th Figure 23. The main difference

was the number of taps was increased to 10. Thssdeae because, as it was explained in the

Software LMS Results, ten taps provided the desie=alilts for an active noise cancellation

system.
Fpe
= = = = = = = =
ficients for the Signal Ve&oard

Figure 37. Adaptive Coef

35

FIR Filter Design for the Signal Wave Board

The design shown in Figure 38 is a standard forR filter. It was chosen due to the
findings in the section on FIR filter forms. It skly resembles the design shown in Figure 27.

The main difference is the number of taps is ineeeao 10.

: Jil i ST Dﬁ - - - :
W : L] L] L] : il Mi i ¥
et Delgy L Deiat R e] e s s T)
Froduc Producti Productl Producs

Producs Produce Progue? p—

E X X X
o nherke ke
T TR i Tl L) {3} M #
Tags Ta? Tapé
“
]
:

Figure 38. FIR Filter for the Signal Wave Board

4
4 4
4

Result of the Active Noise Cancellation Design for the Signal Wave Board
The results obtained for the hardware implemematibgure 39 and 40, show slightly
more engine noise remaining in the recovered sighia engine noise was still significantly

reduced. The audio signal can be clearly heard,obiyt a 14.6 dB reduction in noise was

obtained.

Figure 39. LMS Desired and Recovered Signals

36

450

Figure 40. LMS Desired and Recovered Signals Spectr

CHAPTERS

SUMMARY

A Least Mean Square (LMS) adaptive filter was impdated first. A MATLAB simulation
was conducted to determine a step size for an tadgepperformance. Simulink models were
designed to generatiit files to program the FPGA devices. Various prariaf step sizes were
chosen for data sets from different applicationffeient structures for FIR filters were designed
and compared in terms of maximum frequency (minidelhy) and usage of logic resources.
Hardware implementation of on-lirstep size calculation was implemented as a congraris

recursive least square (RLS) adaptive filter was implemented.

37

CHAPTER 6

CONCLUSION

An active noise cancellation system was succegshithulated and implemented. The
system met all requirements. The ultra-sound dats pvoperly filtered, and the audio data was
adequately filtered to recover the target signalese requirements were accomplished in both
simulation and hardware.

Some difficulty was encountered with the SignalWaeard. There was some difficulty in
programming of the FPGA side of the board to comicate with the DSP side. This led to the
final hardware implementation to be done entiratytbe DSP side of the board. In the future,
students may wish to determine the cause for tiolslem and find a solution.

Also, the hardware could be designed into a readtiplatform using microphones and
speakers to detect the audio signals and perfoeniiltering on them. The speakers could then
be used to generate a sound wave to negate the. Adis approach would require extensive

study into acoustics, which was unavailable totuketime of the project.

APPENDIX A

CODE FOR LMS ALGORITHM

function [recov f_out f_coef] = LMS_forgetting(réfin, Tap,alpha,delta)

N = length(ref);
f coef = zeros(Tap,N);
f out = zeros(N,1);
recov = zeros(N,1);
P = zeros(N,1);
f in_init=[f_in(Tap-1:-1:1)'0;
P(Tap-1) = f_in_init' * f_in_init;
fori=Tap:N-1
f in_vec =f_in(i:-1:i-(Tap-1));
f out(i) = f_coef(;,i)*f_in_vec;
recov(i) = ref(i) - f_out(i);
P(i) = alpha*P(i-1) + f_in(i) * f_in(i);
mu = delta;
f_coef(:,i+1) =f _coef(:,i) + mu * recov(i) * f_irvec;
end

38

APPENDIX B

CODE FOR RLS ALGORITHM

function [recov f_out f_coef] = RLS_brute_forgetinef,f_in,Tap,delta,Auto_corr_lamda, Cross_conmmda)
N = length(ref);
f coef = zeros(Tap,N);
f out = zeros(N,1);
recov = zeros(N,1);
Auto_corr = delta * eye(Tap);
Cross_corr = zeros(Tap,1);
fori=Tap:N-1
f in_vec =[f_in(i:-1:i-(Tap-1)) I;
f_out(i) =f_coef(:,i)*f_in_vec;
recov(i) = ref(i) - f_out(i);
Auto_corr = Auto_corr_lamda* Auto_corr +f_in ov&f_in_vec’;
Cross_corr = Cross_corr_lamda* Cross_corr + r&f{in_vec;

f coef(;,i+1) = Auto_corr\ Cross_corr; %%%{Auto _corr) * Cross_corr;
end

39

APPENDIX C

CODE USED TO FILTER USING THE LMS ALGORITHM

closeall
clc

Fs = 22050;
T =1/Fs;

x = wavreadRace Car ldle.wa))'
y = wavread(esvoiceref.wa);

[target ref f_in t P] = c2signalsetup(X, y, Fs);

Tap = 100;

delta = 12*2/(3*Tap”"2*P);

alpha = 1;

[recov f_out f_coef] = LMS_forgetting(ref,f_in, Tagpha,delta);

orig_error = y(1:length(recov)) - ref;
error = y(1:length(recov)) - recov;

plot_adaptive_sim(target,ref,f_in,f_out, recovoerorig_error, f_coef, t, Fs);

J = sum((error .* error))/length(error);
orig_J = sum((orig_error .* orig_error)) / lengthip error);

soundsc(ref, Fs)
soundsc(recov, Fs)

40

APPENDIX D

CODE USED TO FILTER USING THE RLS ALGORITHM

clc
clearall
closeall

Fs = 22050;
T =1/Fs;

x = wavreadRace Car Idle.wa))'
y = wavread(esvoiceref.wa);

[target ref f_in t P] = c2signalsetup(X, y, Fs);
Tap = 100;
Cross_corr_lamda = 1;
Auto_corr_lamda = 1;
delta = 0.05;
[recov f_outf coef] = RLS brute_forgetting(refif, Tap,delta,Auto_corr_lamda, Cross_corr_lamda);

orig_error = y(1:length(recov)) - ref;
error = y(1:length(recov)) - recov;

plot_adaptive_sim(target,ref,f_in,f_out, recovoerorig_error, f_coef, t, Fs);
J = sum((error .* error))/length(error);

soundsc(ref, Fs)
soundsc(recov, Fs)

41

APPENDIX E

CODE USED TO SIMULATE INTERFERENCE FOR REFERENCESSIAL
function[target ref f_in t P] = c2signalsetup(noise_filerget file, Fs)

T =1/Fs;
NSamples = Fs * 2.5;

target = target_file(1:NSamples);

f_in = noise_file(NSamples+11:2*NSamples+10);
den=[1-5 .44 .33-.19];

num=1[1.7.5.24 .01];

Add = filter(num, den, noise_file(NSamples+1:2*NSades));
ref = target + Add;

t = 0:T:(NSamples-1)*T;
w_t = 0:NSamples-1;
w_t =w_t/NSamples/1000*Fs;

f in_FFT = fft(f_in);
target FFT = fft(target);
ref FFT = fft(ref);

figure;

plot(w_t(1:length(w_t)/2), abs(ref FFT(1:length(W2)));grid on;
xlabel(Frequency(kHz); ylabel(Amplitude)

figure;

plot(w_t(1:length(w_t)/2), abs(target FFT(1:length()/2)));gridon;
xlabel(Frequency(kHz); ylabel(Amplitude)

figure;

plot(w_t(1:length(w_t)/2), abs(f_in_FFT(1:length(®/2)));grid on;
xlabel(Frequency(kHz); ylabel(Amplitude)

figure;

subplot(3,1,1);

plot(t, target FFT);

subplot(3,1,2);

plot(t, f_in_FFT);

subplot(3,1,3);

plot(t, ref FFT);

%soundsc(ref, Fs)

correlate = xcorr(f_in, ref);

figure;

plot(correlate);

pow = xcorr(f_in, f_in);
P = max(pow)/length(pow);

APPENDIX F

CODE USED TO DISPLAY RESULTS
function plot_adaptive_sim(target,ref,f_in,f_out,recowoerorig_error,f,t, Fs)
N = length(ref);

display_offset = 1;

f in_norm=f_in;
ref_norm = ref;
recov_norm = recov;
f out norm =f out;

fft f in = fft(f_in_norm,N);
fft_ref = fft(ref_norm,N);
fft_recov= fft(recov_norm,N);
fft_f out = fft(f_out_norm,N);

f vector = 0:1:N-1;
f vector = 100*f_vector./N;

figure;
subplot(3,2,1);
plot(abs(f_in_norm));grian;

titte('f_i_n-norm);

subplot(3,2,2);
plot(f_vector,abs(fft_f_in));gricn;
title('f_i_n-norm FFT);

xlim([0 20]); subplot(3,2,3);

plot(abs(ref_norm));gricn;

title(‘ref-norm);

subplot(3,2,4);
plot(f_vector,abs(fft_ref));gricn;
title('ref-norm FFT);

xlim([0 207]);

subplot(3,2,5);
plot(abs(recov_norm));gridn;

titte('recov-normny;

subplot(3,2,6);
plot(f_vector,abs(fft_recov));gridn;
titte(‘'recov-norm FFY);

xlim([0 20]);

[f_row f_col] =size(f);
%

figure;

fori=1:f row

subplot(f_row,1,i);

plot(f(i,:));grid on;

title(['Adaptive filter coefficients; f(' num2str(i)') '1);
xlim([f_row+5 f_col]) ;

end

figure;
plot(t, f);grid on; xlabel(Time(s)); ylabel(Amplitude);

recov_fft = fft(recov);

target_fft = fft(target);

ref fft = fft(ref);

f_in_fft = fft(f_in);

recov_fft = recov_fft(1:length(recov_fft)/2);
target_fft = target_fft(1:length(target_fft)/2);
ref fft = ref_fft(L:length(ref_fft)/2);

f_in_fft = f_in_fft(1:length(f_in_fft)/2);
f2_vector = f_vector(1:length(f_vector)/2)/100;

figure;
plot(t, recov, t, target);gridn; xlabel(Time(s));ylabel(Amplitude); axis([0 2.5 -1 1])

figure;
plot(f2_vector*Fs/1000, abs(recov_fft), f2_vectosfE000, abs(target_fft));griol;
xlabel(Frequency(kHz); ylabel(Amplitude)

figure;

plot(t,orig_error, t, error); gridn; xlabel(Time(s));ylabel(Amplitude);
figure;

plot(t, recov, t, target, t, error);grith; xlabel(Time(s));ylabel(Amplitude);

44

45

BIBLIOGRAPHY

[1] Benesty, Jacob, and Yiteng Huadglaptive Sgnal Processing: Applications to Real-world
Problems. Berlin: Springer, 2003. Print.

[2] Cowan, C. F. N., Peter M. Grant, and P. F. Adahdaptive Filters. Englewood Cliffs, NJ:
Prentice-Hall, 1985. Print.

[3] "DSP for FPGAs Retiming Signal Flow Graphs.'U>XNX. Lecture.

[4] Honig, Michael L., and David G. Messerschméttlaptive Filters. Sructures, Algorithms,
and Applications. Boston: Kluwer, 1984. Print.

