

Active Noise Cancellation System

Final Report

BY

Jessica Arbona & Christopher Brady

Department of Electrical and Computer Engineering

Bradley University

Advisors: Dr. Yufeng Lu and Dr. In Soo Ahn

Peoria, Illinois
May 2012

 ii

ACKNOWLEDGEMENT

We would like to express our sincere gratitude and appreciation to our advisors who helped us all along the way

with our project. Their help was invaluable as we progressed through the project. We would also like to

acknowledge all the professors who helped us. Dr. Jose Sanchez provided us with additional resources and support.

Dr. James Irwin provided us with helpful insight into the intricacies of acoustics needed to perform real-world active

noise cancellation. Finally we would like to thank our parents and families for supporting us in our education

careers.

 iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT ... ii

LIST OF TABLES ... v

LIST OF FIGURES ... vi

ABSTRACT ... viii

CHAPTER

1. INTRODUCTION .. 1

1.1 OBJECTIVE ... 1
1.2 SIGNIFICANCE... 1
1.3 ADAPTIVE FILTER.. 1
1.4 FOUR FUNDAMENTALS CLASSES...................................... 2

2. PROJECT APPROACH ... 5

2.1 HIGH LEVEL BLOCK DIAGRAM .. 5
2.2 FUNCTIONAL REQUIREMENT LIST.................................... 6
2.3 PERFORMANCE SPECIFICATIONS 7
2.4 TECHINICAL METHODS .. 7

3. PROJECT SIMULATION... 9

3.1 LMS & RLS SPECIFICATIONS... 10
3.2 LMS RESULTS.. 12
3.3 RLS RESULTS... 15
3.3 THE DIFFERENCE BETWEEN RLS AND LMS 19

4. PROJECT HARDWARE DESIGN .. 19

4.1 ACTIVE NOISE CANCELLATION SYSTEM DESIGN......... 20
4.2 DIFFERENT STRUCTURES OF FIR 25
4.3 DSP/FPGA IMPLEMENTATION 31

 iv

5. SUMMARY... 36

6. CONCLUSION.. 37

APPENDIX

A. LMS ALGORITHM CODE ... 38

B. RLS ALGORITHM CODE .. 39

C. FILTER USING THE LMS ALGORITHM CODE................................ 40

D. FILTER USING THE RLS ALGORITHM CODE................................. 41

E. SIMULATE INTERFERENCE FOR REFERENCE SIGNAL CODE... 42

F. DISPLAY RESULTS CODE .. 43

BIBLIOGRAPHY .. 45

 v

LIST OF TABLES

Table Page

Table 1 Number of taps vs. LMS Mean Square Error Evaluation.......................... 12

Table 2 Number of taps vs. RLS Mean Square Error Evaluation........................... 16

Table 3 Difference between RLS and LMS.. 19

Table 4 System Components for the XtremeDSP Board.. 21

Table 5 System Components for the SingalWave Board.. 32

 vi

LIST OF FIGURES

Figure Page

Figure 1 Adaptive Filter.. 2

Figure 2 Adaptive Identification... 3

Figure 3 Adaptive Inverse... 3

Figure 4 Adaptive Predictor.. 4

Figure 5 Adaptive Noise Cancellation.. 4

Figure 6 High Level Block Diagram of an Adaptive Filter 6

Figure 7 Target Signal .. 10

Figure 8 Interference Signal.. 10

Figure 9 Reference Signal... 10

Figure 10 Target Signal Spectrum .. 11

Figure 11 Interference Signal Spectrum ... 11

Figure 12 Reference Signal Spectrum .. 11

Figure 13 Number of taps vs. LMS Mean Square Error... 13

Figure 14 Converge of LMS Coefficients .. 14

Figure 15 LMS Desired and Recovered Signals... 14

Figure 16 LMS Desired and Recovered Signals Spectra.. 15

Figure 17 Number of taps vs. RLS Mean Square Error.. 16

Figure 18 Converge of RLS Coefficients ... 17

Figure 19 RLS Desired and Recovered Signals.. 18

Figure 20 RLS Desired and Recovered Spectra ... 18

Figure 21 Active Noise Cancellation System for the XtremeDSP Board 22

 vii

Figure 22 LMS Adaptive for the XtremeDSP Board.. 22

Figure 23 Adaptive Coefficients for the XtremeDSP Board 23

Figure 24 FIR Filter for the XtremeDSP Board.. 23

Figure 25 Oscilloscope Results... 24

Figure 26 Comparison of the Output Signal Plots .. 24

Figure 27 Standard Form .. 26

Figure 28 Standard Form Results ... 26

Figure 29 Transpose Form.. 27

Figure 30 Transpose Form Results ... 28

Figure 31 Systolic Form.. 29

Figure 32 Systolic Form Results... 29

Figure 33 Systolic Pipeline Form ... 30

Figure 34 Systolic Pipeline Form Results... 31

Figure 35 Active Noise Cancellation System for the XtremeDSP Board 33

Figure 36 LMS Adaptive for the SignalWave Board ... 34

Figure 37 Adaptive Coefficients for the SignalWave Board 34

Figure 38 FIR Filter for the SignalWave Board ... 35

Figure 39 LMS Desired and Recovered Signals... 35

Figure 40 LMS Desired and Recovered Signals Spectra 36

 viii

 ABSTRACT

An active noise cancellation system has been designed and implemented. Both speech

and ultrasound data were used to verify the system. MATLAB/Simulink was used to design and

test a least mean square (LMS) and a recursive least square (RLS) adaptive filter for the project.

Once the filters were successfully simulated and verified, the Xilinx block set was used for

hardware/software co-simulation and hardware implementation. This Xilinx filter model was

subject to finite precision due to fixed-point arithmetic. It required careful verification via

numerous simulations. Results obtained with the finite precision Xilinx model were compared

with those from the MATLAB model to fine-tune the filter. Four types of FIR structures were

investigated. After testing and validation using hardware/software co-simulation, the system was

downloaded to a DSP/FPGA board for real-time processing of various signals.

1

CHAPTER 1

INTRODUCTION

1.1 OBJECTIVE

The goal of the project was to design and implement an active noise cancellation system

using an adaptive finite impulse response (FIR) filter. This active noise cancellation system

would be used to increase the signal-to-noise ratio (SNR) of a signal by decreasing the power of

the noise. Two applications studied in this project were ultrasonic data and an audio signal with

simulated interference.

1.2 SIGNIFICANCE

The study of active noise cancellation is a rapidly developing area. With the concern for

noise pollution on the rise, methods of reducing noise are in greater demand. Active noise

cancellation systems with adaptive filters are considered an effective method for reducing

unwanted information (i.e., noise).

1.3 ADAPTIVE FILTERS

Adaptive filters consist of the three basic components: the adaptive filter, ; the error ,

; and the adaptation function: and as shown in

Figure 1. The goal of the system in Figure 1 is to adapt the filter in such a way that the input

digital signal, , is filtered to produce an output signal, , that will minimize the error

signal , , when subtracted from the desired signal, . The arrow through the adaptive

filter is standard notation to indicate that the filter is adaptive. This means that all of the filter

coefficients can be adjusted in such a way that the mean square error is to be minimized. The

2

adaptive filter can be an FIR or IIR filter or even a non-linear system. To ensure the stability of

the adaptive algorithm, most adaptive filters use an FIR type.[1]

Figure 1. Adaptive Filter

The adaptive filters are widely used in areas such as control systems, communications,

signal processing, acoustics, and others to deal with random signals with stationary or

quasistationary statistics. Although these applications are quite different, they have input, output,

error, and reference signals. The applications of the adaptive filters can be classified into four

fundamental classes based on the architecture of the implementation: adaptive identification,

adaptive inverse, adaptive prediction, and active noise cancellation. [1]

1.4 FOUR FUNDAMENTAL CLASSES

Adaptive Identification

The adaptive identification is an approach to model an unknown system. As seen in

Figure 2, the unknown system is in parallel with an adaptive filter, and both are receiving the

input signal. The output of the unknown system provides the reference signal for the adaptive

digital filter. Applications for adaptive identification include room acoustic identification,

channel estimation, echo cancellation and so on. [2]

Adaptive Filter,

3

Figure 2. Adaptive Identification

Adaptive Inverse

In the architecture of adaptive inverse as shown in Figure 3, the adaptive digital filter is

used to provide the inverse model for an unknown system. The inverse model realizes the

reciprocal of the unknown system’s transfer function. The combination of the two would then

constitutes an ideal transmission medium. Applications that use adaptive inverse include

equalization in digital communications, predictive deconvolution, blind equalization, adaptive

control systems, and others. [2]

Figure 3. Adaptive Inverse

Adaptive Predictor

In the prediction architecture as shown in Figure 4, the adaptive filter is used to provide a

prediction of the value of a random input signal. Depending on the application, the system can

operate as a predictor if the output of the adaptive filter predicts the output of the system in

advance. However, the system can also operate as a prediction error filter if the prediction error

4

signal is used as the output of the system. Applications of adaptive predictors include predictive

noise suppression, periodic signal extraction, linear predictive coding, and others.
[2]

Figure 4. Adaptive Predictor

Active Noise Cancellation

Active noise cancellation increases the signal-to-noise ratio of a signal by decreasing the

noise power in the signal by attempting to cancel noise signals. Applications consist of adaptive

noise cancellation, echo cancellation, adaptive beamforming, biomedical signal processing, and

others. [2]

Figure 5. Adaptive Noise Cancellation

5

CHAPTER 2

PROJECT APPROACH

In order to complete the project, a series of design tasks was undertaken. First, a high

level block diagram was made to represent the functionality of the system. After this, a

functional requirements list was made to describe how the system would function. Performance

specifications were then made to describe the ultimate goal of the system. The basics of two

adaptive filters, recursive least square (RLS) and least mean square (LMS), were then researched

to provide a method for designing the active noise cancellation system.

2.1 HIGH LEVEL BLOCK DIAGRAM

Figure 6 shows the configuration of the high level block diagram for the system. There

are two inputs in the system: reference and interference signals. The reference signal, d(n),

contains the target signal and an interference signal. The interference signal, x(n), contains just

an interference signal similar to that contained in the reference signal. When the interference

signal is passed through the adaptive filter, the output, y(n), is generated so that when it is

subtracted from the reference signal the error signal, e(n), is obtained. The error signal is then

used to update the coefficients of the filter.

6

Figure 6. High Level Block Diagram of an Adaptive Filter

2.2 FUNCTIONAL REQUIREMENTS LIST

The project used two different types of data: ultrasound and speech. To process these

data, two types of hardware boards were used in the project to process the different types of data.

An XtremeDSP board was selected to analyze the results of the ultrasound data. The main reason

to use this board was to output the results to an oscilloscope for visual inspection. A SignalWave

DSP/FPGA board was used to analyze the audio data tapping to its audio Codec hardware, which

allowed the signals to be heard.

The ultrasound data was acquired with a 5 MHz transducer and 100 MSPS sampling rate

in an ultrasonic nondestructive data acquisition system. The adaptive filter was designed using a

Xilinx system generator, an FPGA design tool incorporated in the MATLAB/Simulink

environment. An XtremeDSP development kit from Nallatch was used as a platform to

implement the adaptive filter. The FPGA device used in the project was the Virtex 4 XC4SX35-

10FF668. Two 14-bit DAC onboard channels (AD9772 DAC devices) were used to probe the

input and output of the adaptive filtering system.

For audio signal processing, a SignalWave DSP/FPGA board from Lyrtech was used to

test the adaptive filtering system. An onboard audio CODEC (sampling rate varies from 8 kSPS

7

to 48 kSPS) was used for processing signals. Real-time workshop and the Xilinx system

generator in MATLAB/Simulink were used to compile the design.

2.3 PERFORMANCE SPECIFICATIONS

The system is designed to accommodate a sampling rate conversion of at least 44.1kSPS

for audio signals and be able to increase the SNR by at least 20 decibels (dB).

2.4 TECHINICAL METHODS

Mathematical Approach

Adaptive filters operate by attempting to reduce a cost function. One of the most popular

cost functions to use is known as the Least Square Error equation. It uses the mean square error

as the cost function and attempts to reduce the cost function. Various adaptive algorithms can be

obtained based on how to minimize the cost function. The cost function (J) can be represented as

follows:

 (1)

The error signal of the system can be expressed as:

 , (2)

 where f is the filter coefficients and)(nX which is a column vector of the filter input

signal

The cost function becomes:

 (3)

 (4)

By setting the gradient if J equal to zero and solving, for the filter coefficient f, we find that:

(5)

)()()()()(nXfndnyndne T−=−=

}))()({()}({ 22 nXfndEneEJ T ⋅−==

})()()()(2)({ 2 fnXnXfnXfndndEJ TTT ⋅⋅⋅+⋅⋅+=

opt
T fnXnXEnXndE)}()({)}()({ ⋅=⋅

)}({ 2 neEJ =

8

Solving for the optimum coefficients results in the following equation:

 (6)

Least Mean Square

 The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff, is an

adaptive algorithm. LMS algorithm uses the estimates of the gradient vector from the available

data. The LMS incorporates an iterative procedure that makes corrections to the weight vector in

the direction of the negative of the gradient vector which eventually leads to the minimum mean

square error. Compared to other algorithms, the LMS algorithm is considered simpler because it

does not require correlation function calculations nor does it require matrix inversions.

Mathematical Approach

The Widrow-Hoff LMS Algorithm attempts to approximate the Wiener-Hopf equation by

updating the filter coefficients by a factor of the negative of the gradient of the cost function as

follows:

 (7)

The gradient is then calculated using the partial derivative of the cost function with respect to

the filter coefficients. It can be shown that the gradient is represented by the following:

 (8)

When the gradient (8) is plugged into the Wiener-Hopf equation (7), the result is the

following equation for updating the filter coefficient:

 , (9)

where µ is the step size or learning factor for the filter. In order for the filter coefficients to

converge to an optimum value, a value for µ must be carefully chosen. For this LMS algorithm,

it can be shown that µ must satisfy the following constraint in order for the system to converge:

dXXXopt rRf ⋅= −1

)(
2

)()1(nnfnf ∇−=+ µ

)()()()1(nXnenfnf ⋅+=+ µ

)()(2)(nXnen ⋅−=∇

9

 , (10)

Where XXr is autocorrelation and L is the number of taps of the filter

Recursive Least Square

Recursive least square (RLS) is another algorithm for adaptive filters. This algorithm

attempts to directly update the auto and cross-correlation matrices in order to approach the

Wiener-Hopf equation.

Mathematical Approach

The RLS algorithm attempts to directly update its estimate of the optimum coefficients to

approach the Wiener-Hopf equation.

 (11)

 (12)

Using these to update our values for each new input, we calculate the filter coefficients

with the following:

 (13)

CHAPTER 3

PROJECT SIMLUATION

MATLAB simulations of both LMS and RLS were used to investigate the effectiveness of the

adaptive filters for recovery a signal corrupted with noise. The theoretical results were later compared to

the hardware results in order to ensure effectiveness. Simulation results were also used to investigate the

differences between LMS and RLS, to determine which would be better suited to be implemented in

hardware.

)0(3

2
0

XXrL ⋅⋅
≤≤ µ

)()()()1(nXnXnRnR T
XXXX ⋅+=+

)()()()1(nXndnrnr dXdX ⋅+=+

)1()1()1(1 +⋅+=+ − nrnRnf dXXX

10

3.1 LMS & RLS SPECIFICATIONS

Two audio signals were used in the simulations. A speech sample artificially corrupted

with car engine noise was used as the reference signal for the adaptive filter, and a similar

version of the engine noise was used as the interference signal.

Input Signals

 Figure 7. Target Signal Figure 8. Interference Signal

Figure 9. Reference Signal

Figure 7 shows the target signal, a speech sample of a woman saying “Give me the pen”.

Figure 8 shows the engine noise. Finally, Figure 9 is the reference signal, which is the speech

signal corrupted with the interference signal. A moving average process was used on the engine

noise signal before being added to the speech signal to simulate an environment where the

11

interference signal was reflected several times. The process ensures that the filter input was not

exactly the same noise that was corrupting the speech data. It can be seen that the signal in

Figure 10 is smaller compared to signal in figure 11. This is expected due to the signal in Figure

11 being the interference signal.

Input Signals Spectral

 Figure 10. Target Signal Spectrum Figure 11. Interference Signal Spectrum

Figure 12. Reference Signal Spectrum

 Figure 10 is the spectral content of the speech signal. Figure 11 is the spectral content

of the engine noise. Finally, Figure 12 is the spectral content of the reference signal, which is the

target signal with the interference signal.

12

3.2 LMS RESULTS

A comparison of different LMS filters was conducted to determine an appropriate filter to

be used. The LMS adaptive filter was implemented first due to its simplicity. As explained

before, LMS does not require correlation function calculation nor does it require matrix inversions.

MATLAB simulations show that a reduction of 20 db can be achieved by tuning the step size of

the LMS algorithm.

Least Mean Square Taps Evaluation

Figure 13 shows that as the number of taps in the filter increased, the noise reduction

increased as well. This became less noticeable as the number of taps exceeded 10. As seen in

Table 1, there is no significant difference when the numbers of taps varied from 10 to 20.

Because of this observation, and in order to simplify process of hardware design, it was decided

to implement ten taps. The rest of the results were achieved using a 10 tap adaptive filter.

Table 1. Number of taps vs. LMS Mean Square Error Evaluation

Taps (L) Mean Square Error (J) Reduction [dB]

4 0.011600 -9.96
6 0.003400 -15.29
8 0.001500 -18.84
10 0.001100 -20.19
12 0.000936 -20.89
14 0.000896 -21.08
16 0.000876 -21.18
18 0.000864 -21.24
20 0.000856 -21.28

Note: The original mean square error (J) is 0.114844.

13

Figure 13. Number of taps vs. LMS Mean Square Error

LMS MATLAB Code

The code in Appendix A was used to perform the LMS algorithm. The first several

samples from each signal were not processed to give the algorithm a starting point from which it

could accurately recover the target signal. The number of samples skipped was one fewer than

the number of taps used. This is done to account for the fact that there was insufficient data for

these samples to be filtered. For each sample after that, the current input vector was used to

calculate the filter output by using matrix multiplication. The recovered signal was then

calculated and used to update the filter coefficients for the next sample. This process was

continued until all the samples had been filtered.

LMS MATLAB Results

It can be seen in Figure 14 that the coefficients of the LMS required 0.5 seconds to

converge. These coefficients were used to filter the signal to reduce the error. The LMS

coefficients took 1.3 seconds to become stable.

14

Figure 14. Convergence of LMS Coefficients

With ten taps, the LMS algorithm was able to reduce the mean square error from 0.114844 to

0.0011. This is a reduction of more than 20.0 dB, which allowed the target signal to be

recovered, as seen in Figure 15 and Figure 16. The MATLAB audio results can be heard clearly.

However, the results of the implementation allowed a small part of the noise of the engine motor

to be heard in the background of the output signal.

Figure 15. LMS Desired and Recovered Signals

15

Figure 16. LMS Desired and Recovered Signal Spectra

3.3 RLS RESULTS

Recursive least square is another algorithm for the adaptive filter. This algorithm

attempts to directly update the auto- and cross-correlation matrices in order to approach the

Wiener-Hopf equation. A recursive least square (RLS) adaptive filter was implemented second.

MATLAB simulation was conducted to compare results with LMS.

Recursive Least Square Taps Evaluation

Table 2 shows that as the number of taps in the filter increased, the dB reduction

increased as well. This became less severe as the number of taps exceeded 12. As seen in Table

2, the reduction from 12 to 20 taps was minimal. It was decided from the MATLAB result to use

10 Taps, even though the difference between taps 10 and 12 was 5 dB. The main reason was to

have accurate comparisons between LMS and RLS. The rest of the results were achieved by a

ten tap adaptive filter.

16

Table 2. Number of taps vs. RLS Mean Square Error Evaluation

Taps (L) Mean Square Error (J) Reduction [dB]
4 0.008618 -11.25
6 0.001755 -18.16
8 0.000430 -24.26
10 0.000082 -31.44
12 0.000024 -36.81
14 0.000034 -35.27
16 0.000013 -39.58
18 0.000013 -39.31
20 0.000016 -38.68

Note: The original means Square Error (J) is 0.114844

Figure 17. Number of taps vs. RLS Mean Square Error

RLS MATLAB Code

The code in Appendix B was used to perform the RLS algorithm. The first several samples

from each signal were not processed to give the algorithm a starting point from which it could

accurately recover the target signal. The number of samples skipped was one fewer than the

number of taps used. This was done to account for the fact there was insufficient data for these

samples to be filtered. For each sample, the current input vector was determined and used to

calculate the filter output. It used matrix multiplication to determine the output and the recovered

signal was then calculated. Two matrices were needed to perform the RLS algorithm. The

autocorrelation matrix was set to a small, non-zero value initially to prevent any possible

17

singularity condition of the matrix. Both the autocorrelation and cross correlation matrices were

updated and used to determine the filter coefficients for the next sample.

RLS MATLAB Results

The RLS coefficients settled in less than half a second and remained steady throughout

the simulation. The spectral content of the recovered signal was much closer to that of the

desired signal than that obtained from the LMS algorithm.

Figure 18. Convergence of RLS Coefficients

With ten taps, the RLS algorithm was able to reduce the mean square error from

0.114844 to 0.000082. This is a reduction of more than 31 dB. This reduction was enough to be

able to recover the target signal, as seen in Figure 19 and Figure 20. The MATLAB audio results

can be heard clearly without any engine noise in the background.

18

Figure 19. RLS Desired and Recovered Signals

Figure 20. RLS Desired and Recovered Signals Spectra

19

3.4 THE DIFFERENCE BETWEEN RLS AND LMS

Table 3. Difference between RLS and LMS

Algorithm Original Mean Square Error (J) Mean Square Error (J) Reduction [dB]
RLS 0.114844 0.000082 -31.44
LMS 0.114844 0.001100 -20.19

The RLS algorithm was able to achieve an additional 11 dB reduction in the mean square

error over the LMS algorithm as shown in Table 3. In spite of this fact, the LMS is more widely

used due to the complexity inherent in the RLS algorithm. The RLS algorithm requires a matrix

inverse calculation at every time step. Although QR decomposition can be used for the matrix

inversion, it was not added to the project because of its implementation complexity in a fixed

point system. Inverse matrix calculations are difficult to perform on embedded system. For this

reason, the LMS algorithm was chosen to be implemented in hardware.

CHAPTER 4

PROJECT HARDWARE DESIGN

After simulating the LMS and RLS design in MATLAB, the active noise cancellation

system was implemented in hardware. There were three main steps taken: design and verify the

active noise cancellation using an LMS adaptive filter, compare different FIR structures for

efficiency in hardware implementation, and implement the design on an embedded system. The

two FPGA boards were used: the SignalWave board was used for all the speech data, while the

XtremeDSP Development Kit – Virtex-4 Edition, was used for the ultrasound data.

20

4.1 ACTIVE NOISE CANCELLATION SYSTEM DESIGN

Active Noise Cancellation System Design Specification for XtremeDSP

The active noise cancellation system design for the XtremeDSP had three specifications

which needed to be fulfilled:

• The active noise cancellation system would resemble Figure 6. It contained an input

signal, output signal, reference signal, error signal, and adaptive filter to behave as an

adaptive noise cancellation system.

• The system would contain an LMS adaptive filter even though it was shown previously

that RLS was more effective. The reason for choosing LMS over RLS was due to the

simplicity of LMS versus the complexity of RLS.

• Six Taps would be used. This was done because the data for this part was ultrasound data

instead of audio data. The ultrasound data was obtained from a MATLAB file provided

by an advisor, Dr. Yufeng Lu. His results proved having a six tap FIR filter for the

adaptive filter was sufficient for this data.

21

Active Noise Cancellation System Design for Xtreme DSP

Using the Xilinx blocks, the LMS with Adaptive Filter was designed. It consists of:

Table 4. System Components for the XtremeDSP Board

System Components Quantity Xilinx Blocks Description

ROM Block

2

Each block contains the

information extracted from the
ultrasound MATLAB

simulation

Multiplexer

2

The oscilloscope can only

receive two inputs. This block
is used to have control over the
signals. Of which two signals
out of the four signals (x(n),
y(n), d(n), and e(n)) will be

outputted to the oscilloscope.

Adaptive Filter Block

1

It’s a sub-block that contains
all the adaptive filter design

Xtreme Dsp Block

1

This block converts the entire
design into a bit stream for the

purpose of communication
with the FPGA Board.

Active Noise Cancellation with an LMS Adaptive Filter for the XtremeDSP Board

The system in Figure 21 was designed to resemble the system in Figure 6. It contained an

input signal, output signal, reference signal, error signal, and adaptive filter to behave as an

active noise cancellation system. The interference and reference signals were ultrasound data that

had been evaluated in MATLAB and input into the system by using two ROM blocks.

Ultrasound data was chosen to test the hardware design by comparing MATLAB simulation

results to the output of the design in Figure 21.

22

Figure 21. Active Noise Cancellation System for the XtremeDSP Board

LMS Adaptive Filter for the XtremeDSP Board

The adaptive filter shown in Figure 22 was designed to separate the adaptive coefficients

and FIR filter so it would be easier to change between the different structures of FIR filters.

These structures will be discussed later in the report.

Figure 22. LMS Adaptive for the XtremeDSP Board

23

Adaptive Coefficients for the XtremeDSP Board

The design to calculate the adaptive coefficients for XtremeDSP board shown in Figure

23 used the standard LMS algorithm to update the coefficients with the error signal and the filter

input signal.

Figure 23. Adaptive Coefficients for the XtremeDSP Board

FIR Filter for the XtremeDSP Board

The design in Figure 24 is a standard form FIR filter. The input signal is delayed and

multiplied by the filter coefficients. All the products are then added together to form the output.

Figure 24. FIR Filter for the XtremeDSP Board

24

Result of the Active Noise Cancellation System Design for the XtremeDSP Board

Figure 25 displays the reference signal (orange) and the output signal (blue), which were

plotted using MATLAB to verify the results.

Figure 25. Oscilloscope Results

In Figure 26, Simulation Output Signal (y) (bottom graph) is the output of the hardware

design for the active noise cancellation system design. The signal was compared to the top graph,

Hardware Output Signal (y), to ensure that the design was working.

Figure 26. Comparison of the Output Signal Plots

25

4.2 DIFFERENT STRUCTURE OF FIR

The different representations of FIR filter structures (Standard, Transpose, Systolic, and

Systolic Pipeline) were analyzed. The first step was to verify that changing the structure of the

FIR portion of the adaptive filter would not change the output of the entire system. The structure

would affect memory, timing, and cost in the hardware aspect. The reason to test these four

different types of structure was to determine which was the most efficient with our active

noise cancellation system when applied to the board. This was done by verifying that the

structure worked with the LMS algorithm, observing the critical path latency, and calculating the

maximum clock frequency for which the system was still operable.

Standard Form

The FIR designs of the project were mapped in a parallel architecture. As seen in Figure

27, the delay blocks were on the top while the addition blocks were parallel to them. That was

what gave them a parallel form. The reason to place the blocks in this form was to have the

maximum clock rate determined by the critical path latency. The critical path is considered the

longest combinational delay path in a circuit. As seen in Figure 27, the arrow indicates the

critical path latency. The red block shows where it starts, and the blue blocks represent the

blocks that have an effect on the critical path. The latency for standard form is calculated by

counting one multiplication and five additions. [4]

26

Figure 27. Standard Form

Standard Form Results

After finding the latency, the next step was to verify the validity of the FIR structure with

the active noise cancellation system. To do so, the system shown in Figure 27, Standard Form,

was placed into the overall system design shown in Figure 21, Active Noise Cancellation System

Filter for the XtremeDSP Board. The system was run and the results were recorded in

MATLAB. The second graph, Hardware Output Signal (y) in Figure 28, represents the output of

the system with Figure 27, Standard Form FIR structure. It can be seen, by comparing the

hardware results with those obtained with MATLAB, that the structure works.

Figure 28. Standard Form Results

27

Transpose Form

As seen in Figure 29, the delay and addition blocks at the bottom were parallel with the

multiplication blocks; this was what gave them a parallel form. The reason the blocks were

placed in such a form was to have the maximum clock rate determined by the critical path

latency. As seen in Figure 29 the arrow marks the critical path latency. The red block shows

where it starts, and the blue blocks represent the blocks that are used to determine the critical

path. The latency for transpose form is caused by one addition and one multiplication. [4]

Figure 29. Transpose Form

Transpose Form Results

After finding the latency, the next step was to verify that this FIR structure performed

correctly with the system. To do so, the system in Figure 29, Transpose Form, was placed into

the overall system design shown in Figure 21, Active Noise Cancellation System Filter for the

XtremeDSP Board. The system was run and the results were recorded in MATLAB. The second

graph, Hardware Output Signal (y) in Figure 30 represented the output of system with Figure 29,

Transpose Form, FIR structure. By comparing these results with those obtained with MATLAB,

28

it can be seen that this structure did not work. The reason it failed to perform properly was that

the adaptive filter algorithm updated each filter coefficient after each new input. Transpose form

used the coefficient before storing it in the delay block. This resulted in the filter coefficients

being delayed as well. Therefore the adaptive filter algorithm failed to function. [3]

 Figure 30. Transpose Form Results

Systolic Form

The FIR designs of the project were mapped in a parallel architecture. As seen in figure

31, the delays in the top were parallel with the addition blocks; this was what gave them a

parallel form. The reason to place the blocks in such form was to have the maximum clock rate

determined by the critical path latency. As seen in Figure 31, the arrow marks the critical path

latency. The red block shows where it starts, and the blue blocks represents the blocks that

determine the critical path. The latency is due to one addition and one multiplication.
[4]

29

Figure 31. Systolic Form

Systolic Form Results

After finding the latency, the next step was to verify that the FIR structure actually

worked with the system. To do so, the system in Figure 31, Systolic Form, was placed into the

system design shown in Figure 21, Active Noise Cancellation System Filter for the XtremeDSP

Board. The system was run and the results were recorded in MATLAB. The second graph,

Hardware Output Signal (y), in Figure 32, represents the output of system Systolic Form, FIR

structure. As seen by comparing the results obtained from hardware with the MATLAB result

that this structure worked.

Figure 32. Systolic Form Results

30

Systolic Pipeline Form

 The FIR designs of the project were mapped in a parallel architecture. As seen in Figure

33, the delays in the top are parallel with the addition blocks; this was what gave them parallel

form. The reason to place the blocks in such form was to have the maximum clock rate

determined by the critical path latency. As seen in Figure 33, the arrow marks the critical path

latency. The red block shows where it starts, and the blue blocks represents the blocks that

determine the critical path. The latency is seen to be the greater of the following: one addition or

one multiplication. [4]

Figure 33. Systolic Pipeline Form

Systolic Pipeline Results

 After finding the latency, the next step was to verify that the FIR structure worked with

the system. To do so, the system in Figure 33, Systolic Pipeline Form, was placed into the

system design shown in Figure 21, Active Noise Cancellation System Filter for the XtremeDSP

Board. The system was run and the results were recorded in MATLAB. The second graph,

Hardware Output Signal (y), in Figure 34 represents the output of system with Figure 33,

31

Systolic Pipeline Form, FIR structure. It can be seen by comparing the hardware results with

those obtained with MATLAB, that this structure works.

Figure 34. Systolic Pipeline Form Results

FIR Structure Results

The standard form was chosen to be implemented in the final designs. It was chosen

because it was the simplest form and used the fewest hardware elements among the four forms

examined. While the systolic forms had improved latency, it was determined that this was not a

significant enough improvement to justify the added hardware elements.

4.3 DSP/FPGA IMPLEMENTATION

 Two algorithms for adaptive filters, LMS and RLS, were successfully simulated in

MATLAB. An active noise cancellation system with an LMS adaptive filter was successfully

designed. An FIR structure for the system was determined. After all of these were accomplished,

a hardware implementation was designed to perform real-time noise cancellation.

32

Active Noise Cancellation Design Specifications for the SignalWave Board

The active noise cancellation system design for the Signal Waveboard had three

specifications:

• The active noise cancellation system would resemble Figure 6. It contained an

input signal, output signal, reference signal, error signal, and adaptive filter to

behave as an adaptive noise cancellation system.

• The system would contain an LMS adaptive filter. The reason for choosing LMS

over RLS was due to the simplicity of LMS compared to RLS.

• The FIR filter would have 10 taps. It followed the results of the simulation LMS

MATLAB results that using ten taps was sufficient for the requirements. The

audio data used was the same data used in the MATLAB simulation.

Active Noise Cancellation Design for the SignalWave Board

Using the Xilinx block set, the LMS adaptive filter was designed. It consisted of:

Table 5. System Components for the SignalWave Board

System Components Quantity Xilinx Blocks Description

ROM Block 2

 Each block contains the

information extracted from

the ultrasound MATLAB

simulation

Adaptive Filter Block 1

 A sub-block that contains

all the adaptive filter

design

33

Active Noise Cancellation Design with an LMS Adaptive Filter for the SignalWave Board

The design in Figure 35 resembled that of Figure 6. It contained an input signal, output

signal, reference signal, error signal, and adaptive filter to behave as an active noise cancellation

system. For the input and reference signals, a microphone was used to record the two audio data

that were used previously: a woman saying “give me a pen” and a car motor. These two audio

samples were then mixed to simulate the target signal being corrupted by background noise. A

simple moving average process was used to corrupt the target audio signal. It was chosen to

simulate the noise echoing and being recorded several times at different intensities. The original

noise file was then used as the filter input signal. These signals were then output through the

audio jack on a PC into the SignalWave Board. The SignalWave board then used the real-time

active noise cancellation to recover the target audio signal and output it to a speaker.

Figure 35. Active Noise Cancellation System for the XtremeDSP Board

LMS Adaptive Filter Design for the SignalWave Board

The adaptive filter in Figure 36 resembled the adaptive filter design used on the FPGA

board in Figure 22. It contained the adaptive coefficient design and FIR standard form design.

34

Figure 36. LMS Adaptive Filter for the Signal Wave Board

Adaptive Coefficients Design for the Signal Wave Board

The model in Figure 37 was designed similarly to that in Figure 23. The main difference

was the number of taps was increased to 10. This was done because, as it was explained in the

Software LMS Results, ten taps provided the desired results for an active noise cancellation

system.

Figure 37. Adaptive Coefficients for the Signal Wave Board

35

FIR Filter Design for the Signal Wave Board

The design shown in Figure 38 is a standard form FIR filter. It was chosen due to the

findings in the section on FIR filter forms. It closely resembles the design shown in Figure 27.

The main difference is the number of taps is increased to 10.

Figure 38. FIR Filter for the Signal Wave Board

Result of the Active Noise Cancellation Design for the Signal Wave Board

The results obtained for the hardware implementation, Figure 39 and 40, show slightly

more engine noise remaining in the recovered signal. The engine noise was still significantly

reduced. The audio signal can be clearly heard, but only a 14.6 dB reduction in noise was

obtained.

Figure 39. LMS Desired and Recovered Signals

36

Figure 40. LMS Desired and Recovered Signals Spectra

CHAPTER 5

SUMMARY

A Least Mean Square (LMS) adaptive filter was implemented first. A MATLAB simulation

was conducted to determine a step size for an acceptable performance. Simulink models were

designed to generate .bit files to program the FPGA devices. Various pre-defined step sizes were

chosen for data sets from different applications. Different structures for FIR filters were designed

and compared in terms of maximum frequency (minimal delay) and usage of logic resources.

Hardware implementation of on-line step size calculation was implemented as a comparison. A

recursive least square (RLS) adaptive filter was then implemented.

37

CHAPTER 6

CONCLUSION

An active noise cancellation system was successfully simulated and implemented. The

system met all requirements. The ultra-sound data was properly filtered, and the audio data was

adequately filtered to recover the target signal. These requirements were accomplished in both

simulation and hardware.

Some difficulty was encountered with the SignalWave board. There was some difficulty in

programming of the FPGA side of the board to communicate with the DSP side. This led to the

final hardware implementation to be done entirely on the DSP side of the board. In the future,

students may wish to determine the cause for this problem and find a solution.

Also, the hardware could be designed into a real-time platform using microphones and

speakers to detect the audio signals and perform the filtering on them. The speakers could then

be used to generate a sound wave to negate the noise. This approach would require extensive

study into acoustics, which was unavailable to us at the time of the project.

38

APPENDIX A

CODE FOR LMS ALGORITHM

function [recov f_out f_coef] = LMS_forgetting(ref,f_in,Tap,alpha,delta)

N = length(ref);
f_coef = zeros(Tap,N);
f_out = zeros(N,1);
recov = zeros(N,1);
P = zeros(N,1);
f_in_init = [f_in(Tap-1:-1:1)' 0]';
P(Tap-1) = f_in_init' * f_in_init;
for i = Tap : N-1
 f_in_vec = f_in(i:-1:i-(Tap-1));
 f_out(i) = f_coef(:,i)'*f_in_vec;
 recov(i) = ref(i) - f_out(i);
 P(i) = alpha*P(i-1) + f_in(i) * f_in(i);
 mu = delta;
 f_coef(:,i+1) = f_coef(:,i) + mu * recov(i) * f_in_vec;
end

39

APPENDIX B

CODE FOR RLS ALGORITHM

function [recov f_out f_coef] = RLS_brute_forgetting(ref,f_in,Tap,delta,Auto_corr_lamda, Cross_corr_lamda)
N = length(ref);
f_coef = zeros(Tap,N);
f_out = zeros(N,1);
recov = zeros(N,1);
Auto_corr = delta * eye(Tap);
Cross_corr = zeros(Tap,1);
for i = Tap : N-1
 f_in_vec = [f_in(i:-1:i-(Tap-1))];
 f_out(i) = f_coef(:,i)'*f_in_vec;
 recov(i) = ref(i) - f_out(i);
 Auto_corr = Auto_corr_lamda* Auto_corr + f_in_vec * f_in_vec';
 Cross_corr = Cross_corr_lamda* Cross_corr + ref(i).* f_in_vec;

 f_coef(:,i+1) = Auto_corr \ Cross_corr; %%%inv(Auto_corr) * Cross_corr;
end

40

APPENDIX C

CODE USED TO FILTER USING THE LMS ALGORITHM

close all
clc

Fs = 22050;
T = 1/Fs;

x = wavread('Race Car Idle.wav');
y = wavread('Jesvoiceref.wav');

[target ref f_in t P] = c2signalsetup(x, y, Fs);

Tap = 100;

 delta = 12*2/(3*Tap^2*P);
 alpha = 1;
[recov f_out f_coef] = LMS_forgetting(ref,f_in,Tap,alpha,delta);

 orig_error = y(1:length(recov)) - ref;
 error = y(1:length(recov)) - recov;

plot_adaptive_sim(target,ref,f_in,f_out, recov, error, orig_error, f_coef, t, Fs);

J = sum((error .* error))/length(error);
orig_J = sum((orig_error .* orig_error)) / length(orig_error);

 soundsc(ref, Fs)
 soundsc(recov, Fs)

41

APPENDIX D

CODE USED TO FILTER USING THE RLS ALGORITHM

clc
clear all
close all

Fs = 22050;
T = 1/Fs;

x = wavread('Race Car Idle.wav');
y = wavread('Jesvoiceref.wav');

[target ref f_in t P] = c2signalsetup(x, y, Fs);
 Tap = 100;
 Cross_corr_lamda = 1;
 Auto_corr_lamda = 1;
 delta = 0.05;
 [recov f_out f_coef] = RLS_brute_forgetting(ref,f_in,Tap,delta,Auto_corr_lamda, Cross_corr_lamda);

 orig_error = y(1:length(recov)) - ref;
 error = y(1:length(recov)) - recov;

plot_adaptive_sim(target,ref,f_in,f_out, recov, error, orig_error, f_coef, t, Fs);

J = sum((error .* error))/length(error);

 soundsc(ref, Fs)
 soundsc(recov, Fs)

42

APPENDIX E

CODE USED TO SIMULATE INTERFERENCE FOR REFERENCE SIGNAL

function [target ref f_in t P] = c2signalsetup(noise_file, target_file, Fs)

T = 1/Fs;
NSamples = Fs * 2.5;

target = target_file(1:NSamples);
f_in = noise_file(NSamples+11:2*NSamples+10);
den = [1 -.5 .44 .33 -.19];
num = [1 .7 .5 .24 .01];
Add = filter(num, den, noise_file(NSamples+1:2*NSamples));
ref = target + Add;

t = 0:T:(NSamples-1)*T;
w_t = 0:NSamples-1;
w_t = w_t/NSamples/1000*Fs;

f_in_FFT = fft(f_in);
target_FFT = fft(target);
ref_FFT = fft(ref);

figure;
plot(w_t(1:length(w_t)/2), abs(ref_FFT(1:length(w_t)/2)));grid on;
xlabel('Frequency(kHz)'); ylabel('Amplitude')
figure;
plot(w_t(1:length(w_t)/2), abs(target_FFT(1:length(w_t)/2)));grid on;
xlabel('Frequency(kHz)'); ylabel('Amplitude')
figure;
plot(w_t(1:length(w_t)/2), abs(f_in_FFT(1:length(w_t)/2)));grid on;
xlabel('Frequency(kHz)'); ylabel('Amplitude')
figure;
subplot(3,1,1);
plot(t, target_FFT);
subplot(3,1,2);
plot(t, f_in_FFT);
subplot(3,1,3);
plot(t, ref_FFT);
%soundsc(ref, Fs)
correlate = xcorr(f_in, ref);
figure;
plot(correlate);

pow = xcorr(f_in, f_in);
P = max(pow)/length(pow);

43

APPENDIX F

CODE USED TO DISPLAY RESULTS

function plot_adaptive_sim(target,ref,f_in,f_out,recov, error, orig_error,f,t, Fs)

N = length(ref);

display_offset = 1;
f_in_norm = f_in;
ref_norm = ref;
recov_norm = recov;
f_out_norm = f_out;

fft_f_in = fft(f_in_norm,N);
fft_ref = fft(ref_norm,N);
fft_recov= fft(recov_norm,N);
fft_f_out = fft(f_out_norm,N);

f_vector = 0:1:N-1;
f_vector = 100*f_vector./N;

figure;
subplot(3,2,1);
plot(abs(f_in_norm));grid on;

 title('f_i_n-norm');
subplot(3,2,2);
plot(f_vector,abs(fft_f_in));grid on;
title('f_i_n-norm FFT');
xlim([0 20]); subplot(3,2,3);

plot(abs(ref_norm));grid on;

 title('ref-norm');
subplot(3,2,4);
plot(f_vector,abs(fft_ref));grid on;
title('ref-norm FFT');
xlim([0 20]);

subplot(3,2,5);
plot(abs(recov_norm));grid on;

title('recov-norm');
subplot(3,2,6);
plot(f_vector,abs(fft_recov));grid on;
title('recov-norm FFT');
xlim([0 20]);

[f_row f_col] =size(f);
%
figure;
for i = 1 : f_row

44

subplot(f_row,1,i);
plot(f(i,:));grid on;
title(['Adaptive filter coefficients; f(' num2str(i) ') ']);
xlim([f_row+5 f_col]) ;
end

figure;
plot(t, f);grid on; xlabel('Time(s)'); ylabel('Amplitude');

recov_fft = fft(recov);
target_fft = fft(target);
ref_fft = fft(ref);
f_in_fft = fft(f_in);
recov_fft = recov_fft(1:length(recov_fft)/2);
target_fft = target_fft(1:length(target_fft)/2);
ref_fft = ref_fft(1:length(ref_fft)/2);
f_in_fft = f_in_fft(1:length(f_in_fft)/2);
f2_vector = f_vector(1:length(f_vector)/2)/100;

figure;
plot(t, recov, t, target);grid on; xlabel('Time(s)');ylabel('Amplitude'); axis([0 2.5 -1 1])

figure;
plot(f2_vector*Fs/1000, abs(recov_fft), f2_vector*Fs/1000, abs(target_fft));grid on;
xlabel('Frequency(kHz)'); ylabel('Amplitude')

figure;
plot(t,orig_error, t, error); grid on; xlabel('Time(s)');ylabel('Amplitude');
figure;
plot(t, recov, t, target, t, error);grid on; xlabel('Time(s)');ylabel('Amplitude');

45

BIBLIOGRAPHY

[1] Benesty, Jacob, and Yiteng Huang. Adaptive Signal Processing: Applications to Real-world
Problems. Berlin: Springer, 2003. Print.

[2] Cowan, C. F. N., Peter M. Grant, and P. F. Adams. Adaptive Filters. Englewood Cliffs, NJ:
Prentice-Hall, 1985. Print.

[3] "DSP for FPGAs Retiming Signal Flow Graphs." XILINX. Lecture.

[4] Honig, Michael L., and David G. Messerschmitt. Adaptive Filters: Structures, Algorithms,
and Applications. Boston: Kluwer, 1984. Print.

