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 ABSTRACT 

An active noise cancellation system has been designed and implemented. Both speech 

and ultrasound data were used to verify the system. MATLAB/Simulink was used to design and 

test a least mean square (LMS) and a recursive least square (RLS) adaptive filter for the project. 

Once the filters were successfully simulated and verified, the Xilinx block set was used for 

hardware/software co-simulation and hardware implementation. This Xilinx filter model was 

subject to finite precision due to fixed-point arithmetic. It required careful verification via 

numerous simulations. Results obtained with the finite precision Xilinx model were compared 

with those from the MATLAB model to fine-tune the filter. Four types of FIR structures were 

investigated. After testing and validation using hardware/software co-simulation, the system was 

downloaded to a DSP/FPGA board for real-time processing of various signals. 
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CHAPTER 1 

INTRODUCTION 

1.1 OBJECTIVE 

The goal of the project was to design and implement an active noise cancellation system 

using an adaptive finite impulse response (FIR) filter. This active noise cancellation system 

would be used to increase the signal-to-noise ratio (SNR) of a signal by decreasing the power of 

the noise. Two applications studied in this project were ultrasonic data and an audio signal with 

simulated interference.   

1.2  SIGNIFICANCE 

The study of active noise cancellation is a rapidly developing area. With the concern for 

noise pollution on the rise, methods of reducing noise are in greater demand. Active noise 

cancellation systems with adaptive filters are considered an effective method for reducing 

unwanted information (i.e., noise). 

1.3  ADAPTIVE FILTERS 

Adaptive filters consist of the three basic components: the adaptive filter, ; the error , 

; and the adaptation function:   and  as shown in 

Figure 1. The goal of the system in Figure 1 is to adapt the filter in such a way that the input 

digital signal, , is filtered to produce an output signal, , that will minimize the error 

signal , , when subtracted from the desired signal, . The arrow through the adaptive 

filter is standard notation to indicate that the filter is adaptive. This means that all of the filter 

coefficients can be adjusted in such a way that the mean square error is to be minimized. The 
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adaptive filter can be an FIR or IIR filter or even a non-linear system. To ensure the stability of 

the adaptive algorithm, most adaptive filters use an FIR type.[1]   

                                                                     

                                                     

                                                                          

 
 
 
 

Figure 1.  Adaptive Filter 
 

The adaptive filters are widely used in areas such as control systems, communications, 

signal processing, acoustics, and others to deal with random signals with stationary or 

quasistationary statistics. Although these applications are quite different, they have input, output, 

error, and reference signals. The applications of the adaptive filters can be classified into four 

fundamental classes based on the architecture of the implementation: adaptive identification, 

adaptive inverse, adaptive prediction, and active noise cancellation. [1]    

1.4  FOUR FUNDAMENTAL CLASSES  

Adaptive Identification 
 

The adaptive identification is an approach to model an unknown system. As seen in 

Figure 2, the unknown system is in parallel with an adaptive filter, and both are receiving the 

input signal. The output of the unknown system provides the reference signal for the adaptive 

digital filter. Applications for adaptive identification include room acoustic identification, 

channel estimation, echo cancellation and so on. [2]    

 

Adaptive Filter, 
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Figure 2.  Adaptive Identification 
 

Adaptive Inverse 
 

In the architecture of adaptive inverse as shown in Figure 3, the adaptive digital filter is 

used to provide the inverse model for an unknown system. The inverse model realizes the 

reciprocal of the unknown system’s transfer function. The combination of the two would then 

constitutes an ideal transmission medium. Applications that use adaptive inverse include 

equalization in digital communications, predictive deconvolution, blind equalization, adaptive 

control systems, and others. [2]
   

 
 

Figure 3. Adaptive Inverse 
 

Adaptive Predictor 
 

In the prediction architecture as shown in Figure 4, the adaptive filter is used to provide a 

prediction of the value of a random input signal. Depending on the application, the system can 

operate as a predictor if the output of the adaptive filter predicts the output of the system in 

advance. However, the system can also operate as a prediction error filter if the prediction error 
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signal is used as the output of the system. Applications of adaptive predictors include predictive 

noise suppression, periodic signal extraction, linear predictive coding, and others. 
[2]

   

 
 

Figure 4. Adaptive Predictor 
 

Active Noise Cancellation 
 

Active noise cancellation increases the signal-to-noise ratio of a signal by decreasing the 

noise power in the signal by attempting to cancel noise signals. Applications consist of adaptive 

noise cancellation, echo cancellation, adaptive beamforming, biomedical signal processing, and 

others. [2]
   

 
 

Figure 5. Adaptive Noise Cancellation 
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CHAPTER 2 

PROJECT APPROACH 

In order to complete the project, a series of design tasks was undertaken. First, a high 

level block diagram was made to represent the functionality of the system. After this, a 

functional requirements list was made to describe how the system would function. Performance 

specifications were then made to describe the ultimate goal of the system. The basics of two 

adaptive filters, recursive least square (RLS) and least mean square (LMS), were then researched 

to provide a method for designing the active noise cancellation system.  

2.1  HIGH LEVEL BLOCK DIAGRAM 

Figure 6 shows the configuration of the high level block diagram for the system. There 

are two inputs in the system: reference and interference signals. The reference signal, d(n), 

contains the target signal and an interference signal. The interference signal, x(n), contains just 

an interference signal similar to that contained in the reference signal. When the interference 

signal is passed through the adaptive filter, the output, y(n), is generated so that when it is 

subtracted from the reference signal the error signal, e(n), is obtained. The error signal is then 

used to update the coefficients of the filter.  

 



 

 

6 

 

Figure 6. High Level Block Diagram of an Adaptive Filter 

2.2  FUNCTIONAL REQUIREMENTS LIST 

The project used two different types of data: ultrasound and speech. To process these 

data, two types of hardware boards were used in the project to process the different types of data. 

An XtremeDSP board was selected to analyze the results of the ultrasound data. The main reason 

to use this board was to output the results to an oscilloscope for visual inspection. A SignalWave 

DSP/FPGA board was used to analyze the audio data tapping to its audio Codec hardware, which 

allowed the signals to be heard. 

The ultrasound data was acquired with a 5 MHz transducer and 100 MSPS sampling rate 

in an ultrasonic nondestructive data acquisition system. The adaptive filter was designed using a 

Xilinx system generator, an FPGA design tool incorporated in the MATLAB/Simulink 

environment. An XtremeDSP development kit from Nallatch was used as a platform to 

implement the adaptive filter.  The FPGA device used in the project was the Virtex 4 XC4SX35-

10FF668. Two 14-bit DAC onboard channels (AD9772 DAC devices) were used to probe the 

input and output of the adaptive filtering system. 

For audio signal processing, a SignalWave DSP/FPGA board from Lyrtech was used to 

test the adaptive filtering system. An onboard audio CODEC (sampling rate varies from 8 kSPS 
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to 48 kSPS) was used for processing signals. Real-time workshop and the Xilinx system 

generator in MATLAB/Simulink were used to compile the design.  

2.3  PERFORMANCE SPECIFICATIONS 

The system is designed to accommodate a sampling rate conversion of at least 44.1kSPS 

for audio signals and be able to increase the SNR by at least 20 decibels (dB). 

2.4  TECHINICAL METHODS 

Mathematical Approach 
 

Adaptive filters operate by attempting to reduce a cost function. One of the most popular 

cost functions to use is known as the Least Square Error equation. It uses the mean square error 

as the cost function and attempts to reduce the cost function. Various adaptive algorithms can be 

obtained based on how to minimize the cost function. The cost function (J) can be represented as 

follows: 

                        (1) 

The error signal of the system can be expressed as: 

   ,                         (2) 

 where f   is the filter coefficients and )(nX  which is  a column vector of the filter input 

signal  

The cost function becomes: 

          (3) 

 

          (4) 

By setting the gradient if J equal to zero and solving, for the filter coefficient f, we find that: 

(5) 

)()()()()( nXfndnyndne T−=−=

}))()({()}({ 22 nXfndEneEJ T ⋅−==

})()()()(2)({ 2 fnXnXfnXfndndEJ TTT ⋅⋅⋅+⋅⋅+=
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Solving for the optimum coefficients results in the following equation:    

                 (6) 

Least Mean Square 
 

 The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff, is an 

adaptive algorithm. LMS algorithm uses the estimates of the gradient vector from the available 

data. The LMS incorporates an iterative procedure that makes corrections to the weight vector in 

the direction of the negative of the gradient vector which eventually leads to the minimum mean 

square error. Compared to other algorithms, the LMS algorithm is considered simpler because it 

does not require correlation function calculations nor does it require matrix inversions.  

Mathematical Approach 
 

The Widrow-Hoff LMS Algorithm attempts to approximate the Wiener-Hopf equation by 

updating the filter coefficients by a factor of the negative of the gradient of the cost function as 

follows: 

          (7) 

The gradient is then calculated using the partial derivative of the cost function with respect to 

the filter coefficients. It can be shown that the gradient is represented by the following: 

          (8) 

When the gradient (8) is plugged into the Wiener-Hopf equation (7), the result is the 

following equation for updating the filter coefficient: 

       ,   (9) 

where µ  is the step size or learning factor for the filter. In order for the filter coefficients to 

converge to an optimum value, a value for µ must be carefully chosen.  For this LMS algorithm, 

it can be shown that µ  must satisfy the following constraint in order for the system to converge:  

dXXXopt rRf ⋅= −1

)(
2

)()1( nnfnf ∇−=+ µ

)()()()1( nXnenfnf ⋅+=+ µ

)()(2)( nXnen ⋅−=∇
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     ,     (10) 

Where XXr is autocorrelation and L  is the number of taps of the filter 

Recursive Least Square 
 

Recursive least square (RLS) is another algorithm for adaptive filters. This algorithm 

attempts to directly update the auto and cross-correlation matrices in order to approach the 

Wiener-Hopf equation. 

Mathematical Approach 
 

The RLS algorithm attempts to directly update its estimate of the optimum coefficients to 

approach the Wiener-Hopf equation.  

          (11) 

          (12) 

Using these to update our values for each new input, we calculate the filter coefficients 

with the following: 

                           (13) 

 

CHAPTER 3 

PROJECT SIMLUATION 

MATLAB simulations of both LMS and RLS were used to investigate the effectiveness of the 

adaptive filters for recovery a signal corrupted with noise. The theoretical results were later compared to 

the hardware results in order to ensure effectiveness. Simulation results were also used to investigate the 

differences between LMS and RLS, to determine which would be better suited to be implemented in 

hardware. 

)0(3

2
0

XXrL ⋅⋅
≤≤ µ

)()()()1( nXnXnRnR T
XXXX ⋅+=+

)()()()1( nXndnrnr dXdX ⋅+=+

)1()1()1( 1 +⋅+=+ − nrnRnf dXXX
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3.1  LMS & RLS SPECIFICATIONS 

Two audio signals were used in the simulations. A speech sample artificially corrupted 

with car engine noise was used as the reference signal for the adaptive filter, and a similar 

version of the engine noise was used as the interference signal. 

Input Signals 
 

 

 

 

 
 
 

             Figure 7. Target Signal                                                                               Figure 8. Interference Signal 
 

 
 
 
 
 
 
 
 
 
 

                                  
 
 
        

Figure 9. Reference Signal 
 

Figure 7 shows the target signal, a speech sample of a woman saying “Give me the pen”. 

Figure 8 shows the engine noise. Finally, Figure 9 is the reference signal, which is the speech 

signal corrupted with the interference signal. A moving average process was used on the engine 

noise signal before being added to the speech signal to simulate an environment where the 
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interference signal was reflected several times. The process ensures that the filter input was not 

exactly the same noise that was corrupting the speech data. It can be seen that the signal in 

Figure 10 is smaller compared to signal in figure 11. This is expected due to the signal in Figure 

11 being the interference signal.  

 

Input Signals Spectral 
 
 

 

 

 

 

             Figure 10. Target Signal Spectrum                                             Figure 11. Interference Signal Spectrum 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 12. Reference Signal Spectrum           

         Figure 10 is the spectral content of the speech signal. Figure 11 is the spectral content 

of the engine noise. Finally, Figure 12 is the spectral content of the reference signal, which is the 

target signal with the interference signal.  
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3.2  LMS RESULTS 

A comparison of different LMS filters was conducted to determine an appropriate filter to 

be used. The LMS adaptive filter was implemented first due to its simplicity. As explained 

before, LMS does not require correlation function calculation nor does it require matrix inversions. 

MATLAB simulations show that a reduction of 20 db can be achieved by tuning the step size of 

the LMS algorithm. 

Least Mean Square Taps Evaluation 
 

Figure 13 shows that as the number of taps in the filter increased, the noise reduction 

increased as well. This became less noticeable as the number of taps exceeded 10. As seen in 

Table 1, there is no significant difference when the numbers of taps varied from 10 to 20. 

Because of this observation, and in order to simplify process of hardware design, it was decided 

to implement ten taps. The rest of the results were achieved using a 10 tap adaptive filter.  

 
Table 1. Number of taps vs. LMS Mean Square Error Evaluation 

 
Taps (L) Mean Square Error (J) Reduction [dB] 

4 0.011600 -9.96 
6 0.003400 -15.29 
8 0.001500 -18.84 
10 0.001100 -20.19 
12 0.000936 -20.89 
14 0.000896 -21.08 
16 0.000876 -21.18 
18 0.000864 -21.24 
20 0.000856 -21.28 

 
Note: The original mean square error (J) is 0.114844.  
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Figure 13. Number of taps vs. LMS Mean Square Error 

LMS MATLAB Code 
 

The code in Appendix A was used to perform the LMS algorithm. The first several 

samples from each signal were not processed to give the algorithm a starting point from which it 

could accurately recover the target signal. The number of samples skipped was one fewer than 

the number of taps used. This is done to account for the fact that there was insufficient data for 

these samples to be filtered. For each sample after that, the current input vector was used to 

calculate the filter output by using matrix multiplication. The recovered signal was then 

calculated and used to update the filter coefficients for the next sample. This process was 

continued until all the samples had been filtered. 

 

LMS MATLAB Results 
  

It can be seen in Figure 14 that the coefficients of the LMS required 0.5 seconds to 

converge. These coefficients were used to filter the signal to reduce the error. The LMS 

coefficients took 1.3 seconds to become stable.  
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Figure 14. Convergence of LMS Coefficients 

With ten taps, the LMS algorithm was able to reduce the mean square error from 0.114844 to 

0.0011. This is a reduction of more than 20.0 dB, which allowed the target signal to be 

recovered, as seen in Figure 15 and Figure 16. The MATLAB audio results can be heard clearly. 

However, the results of the implementation allowed a small part of the noise of the engine motor 

to be heard in the background of the output signal. 

 

 

Figure 15. LMS Desired and Recovered Signals 
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Figure 16. LMS Desired and Recovered Signal Spectra 

3.3  RLS RESULTS 

Recursive least square is another algorithm for the adaptive filter. This algorithm 

attempts to directly update the auto- and cross-correlation matrices in order to approach the 

Wiener-Hopf equation. A recursive least square (RLS) adaptive filter was implemented second. 

MATLAB simulation was conducted to compare results with LMS. 

Recursive Least Square Taps Evaluation 
 

Table 2 shows that as the number of taps in the filter increased, the dB reduction 

increased as well. This became less severe as the number of taps exceeded 12. As seen in Table 

2, the reduction from 12 to 20 taps was minimal. It was decided from the MATLAB result to use 

10 Taps, even though the difference between taps 10 and 12 was 5 dB. The main reason was to 

have accurate comparisons between LMS and RLS. The rest of the results were achieved by a 

ten tap adaptive filter. 
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Table 2. Number of taps vs. RLS Mean Square Error Evaluation 
 

Taps (L) Mean Square Error (J) Reduction [dB] 
4 0.008618 -11.25 
6 0.001755 -18.16 
8 0.000430 -24.26 
10 0.000082 -31.44 
12 0.000024 -36.81 
14 0.000034 -35.27 
16 0.000013 -39.58 
18 0.000013 -39.31 
20 0.000016 -38.68 

 

Note: The original means Square Error (J) is 0.114844 

 

Figure 17. Number of taps vs. RLS Mean Square Error 

RLS MATLAB Code 
 
The code in Appendix B was used to perform the RLS algorithm. The first several samples 

from each signal were not processed to give the algorithm a starting point from which it could 

accurately recover the target signal. The number of samples skipped was one fewer than the 

number of taps used. This was done to account for the fact there was insufficient data for these 

samples to be filtered.  For each sample, the current input vector was determined and used to 

calculate the filter output. It used matrix multiplication to determine the output and the recovered 

signal was then calculated. Two matrices were needed to perform the RLS algorithm. The 

autocorrelation matrix was set to a small, non-zero value initially to prevent any possible 
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singularity condition of the matrix. Both the autocorrelation and cross correlation matrices were 

updated and used to determine the filter coefficients for the next sample. 

 

RLS MATLAB Results 
 

The RLS coefficients settled in less than half a second and remained steady throughout 

the simulation. The spectral content of the recovered signal was much closer to that of the 

desired signal than that obtained from the LMS algorithm. 

 

Figure 18. Convergence of RLS Coefficients 

With ten taps, the RLS algorithm was able to reduce the mean square error from 

0.114844 to 0.000082. This is a reduction of more than 31 dB. This reduction was enough to be 

able to recover the target signal, as seen in Figure 19 and Figure 20. The MATLAB audio results 

can be heard clearly without any engine noise in the background. 
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Figure 19. RLS Desired and Recovered Signals 

 

Figure 20. RLS Desired and Recovered Signals Spectra 
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3.4 THE DIFFERENCE BETWEEN RLS AND LMS 

Table 3. Difference between RLS and LMS 
 

Algorithm Original Mean Square Error (J) Mean Square Error (J) Reduction [dB] 
RLS 0.114844 0.000082 -31.44 
LMS 0.114844 0.001100 -20.19 

 

The RLS algorithm was able to achieve an additional 11 dB reduction in the mean square 

error over the LMS algorithm as shown in Table 3. In spite of this fact, the LMS is more widely 

used due to the complexity inherent in the RLS algorithm. The RLS algorithm requires a matrix 

inverse calculation at every time step. Although QR decomposition can be used for the matrix 

inversion, it was not added to the project because of its implementation complexity in a fixed 

point system. Inverse matrix calculations are difficult to perform on embedded system. For this 

reason, the LMS algorithm was chosen to be implemented in hardware. 

CHAPTER 4 

PROJECT HARDWARE DESIGN  

After simulating the LMS and RLS design in MATLAB, the active noise cancellation 

system was implemented in hardware. There were three main steps taken: design and verify the 

active noise cancellation using an LMS adaptive filter, compare different FIR structures for 

efficiency in hardware implementation, and implement the design on an embedded system. The 

two FPGA boards were used: the SignalWave board was used for all the speech data, while the 

XtremeDSP Development Kit – Virtex-4 Edition, was used for the ultrasound data. 
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4.1 ACTIVE NOISE CANCELLATION SYSTEM DESIGN 

Active Noise Cancellation System Design Specification for XtremeDSP 
 

The active noise cancellation system design for the XtremeDSP had three specifications 

which needed to be fulfilled: 

• The active noise cancellation system would resemble Figure 6. It contained an input 

signal, output signal, reference signal, error signal, and adaptive filter to behave as an 

adaptive noise cancellation system.  

• The system would contain an LMS adaptive filter even though it was shown previously 

that RLS was more effective.  The reason for choosing LMS over RLS was due to the 

simplicity of LMS versus the complexity of RLS. 

• Six Taps would be used. This was done because the data for this part was ultrasound data 

instead of audio data. The ultrasound data was obtained from a MATLAB file provided 

by an advisor, Dr. Yufeng Lu. His results proved having a six tap FIR filter for the 

adaptive filter was sufficient for this data. 
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Active Noise Cancellation System Design for Xtreme DSP 
 

Using the Xilinx blocks, the LMS with Adaptive Filter was designed. It consists of:   

Table 4.  System Components for the XtremeDSP Board 
 

System Components  Quantity Xilinx  Blocks  Description  
 
 

ROM Block 

 
 
2 

  
Each block contains the 

information extracted from the 
ultrasound MATLAB 

simulation 
 
 
 
 

Multiplexer 

 
 
 
 
2 

  
The oscilloscope can only 

receive two inputs. This block 
is used to have control over the 
signals. Of which two signals 
out of the four signals (x(n), 
y(n), d(n), and e(n)) will be 

outputted to the oscilloscope. 

 
Adaptive Filter Block  

 
1 

  
It’s a sub-block that contains 
all the adaptive filter design 

 
 
 

Xtreme Dsp Block 

 
 
 
1 

  
This block converts the entire 
design into a bit stream for the 

purpose of communication 
with the FPGA Board. 

 

Active Noise Cancellation with an LMS Adaptive Filter for the XtremeDSP Board 
 

The system in Figure 21 was designed to resemble the system in Figure 6. It contained an 

input signal, output signal, reference signal, error signal, and adaptive filter to behave as an 

active noise cancellation system. The interference and reference signals were ultrasound data that 

had been evaluated in MATLAB and input into the system by using two ROM blocks. 

Ultrasound data was chosen to test the hardware design by comparing MATLAB simulation 

results to the output of the design in Figure 21. 
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Figure 21. Active Noise Cancellation System for the XtremeDSP Board 

LMS Adaptive Filter for the XtremeDSP Board 
 

The adaptive filter shown in Figure 22 was designed to separate the adaptive coefficients 

and FIR filter so it would be easier to change between the different structures of FIR filters. 

These structures will be discussed later in the report. 

 
 

Figure 22. LMS Adaptive for the XtremeDSP Board 
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Adaptive Coefficients for the XtremeDSP Board 
 

The design to calculate the adaptive coefficients for XtremeDSP  board shown in Figure 

23 used the standard LMS algorithm to update the coefficients with the error signal and the filter 

input signal. 

 

 

Figure 23. Adaptive Coefficients for the XtremeDSP Board 

FIR Filter for the XtremeDSP Board 
 

The design in Figure 24 is a standard form FIR filter. The input signal is delayed and 

multiplied by the filter coefficients. All the products are then added together to form the output. 

 

Figure 24.  FIR Filter for the XtremeDSP Board 
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Result of the Active Noise Cancellation System Design for the XtremeDSP Board 

 
Figure 25 displays the reference signal (orange) and the output signal (blue), which were 

plotted using MATLAB to verify the results. 

Figure 25.  Oscilloscope Results 

 

In Figure 26, Simulation Output Signal (y) (bottom graph) is the output of the hardware 

design for the active noise cancellation system design. The signal was compared to the top graph, 

Hardware Output Signal (y), to ensure that the design was working. 

Figure 26.  Comparison of the Output Signal Plots 
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4.2  DIFFERENT STRUCTURE OF FIR 

The different representations of FIR filter structures (Standard, Transpose, Systolic, and 

Systolic Pipeline) were analyzed. The first step was to verify that changing the structure of the 

FIR portion of the adaptive filter would not change the output of the entire system. The structure 

would affect memory, timing, and cost in the hardware aspect. The reason to test these four 

different types of structure was to determine which was the most efficient with our active 

noise cancellation system when applied to the board.  This was done by verifying that the 

structure worked with the LMS algorithm, observing the critical path latency, and calculating the 

maximum clock frequency for which the system was still operable. 

Standard Form 
 

The FIR designs of the project were mapped in a parallel architecture.  As seen in Figure 

27, the delay blocks were on the top while the addition blocks were parallel to them. That was 

what gave them a parallel form. The reason to place the blocks in this form was to have the 

maximum clock rate determined by the critical path latency. The critical path is considered the 

longest combinational delay path in a circuit. As seen in Figure 27, the arrow indicates the 

critical path latency. The red block shows where it starts, and the blue blocks represent the 

blocks that have an effect on the critical path. The latency for standard form is calculated by 

counting one multiplication and five additions. [4]   
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Figure 27.  Standard Form 

Standard Form Results 
 

After finding the latency, the next step was to verify the validity of the FIR structure with 

the active noise cancellation system. To do so, the system shown in Figure 27, Standard Form, 

was placed into the overall system design shown in Figure 21, Active Noise Cancellation System 

Filter for the XtremeDSP Board. The system was run and the results were recorded in 

MATLAB. The second graph, Hardware Output Signal (y) in Figure 28, represents the output of 

the system with Figure 27, Standard Form FIR structure. It can be seen, by comparing the 

hardware results with those obtained with MATLAB, that the structure works. 

 

 

 

 

 

 

 

Figure 28.  Standard Form Results 
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Transpose Form 
 

As seen in Figure 29, the delay and addition blocks at the bottom were parallel with the 

multiplication blocks; this was what gave them a parallel form. The reason the blocks were 

placed in such a form was to have the maximum clock rate determined by the critical path 

latency. As seen in Figure 29 the arrow marks the critical path latency. The red block shows 

where it starts, and the blue blocks represent the blocks that are used to determine the critical 

path. The latency for transpose form is caused by one addition and one multiplication. [4]   

Figure 29.  Transpose Form 

 

 
Transpose Form Results 

 
After finding the latency, the next step was to verify that this FIR structure performed 

correctly with the system. To do so, the system in Figure 29, Transpose Form, was placed into 

the overall system design shown in Figure 21, Active Noise Cancellation System Filter for the 

XtremeDSP Board. The system was run and the results were recorded in MATLAB. The second 

graph, Hardware Output Signal (y) in Figure 30 represented the output of system with Figure 29, 

Transpose Form, FIR structure. By comparing these results with those obtained with MATLAB, 
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it can be seen that this structure did not work. The reason it failed to perform properly was that 

the adaptive filter algorithm updated each filter coefficient after each new input. Transpose form 

used the coefficient before storing it in the delay block. This resulted in the filter coefficients 

being delayed as well. Therefore the adaptive filter algorithm failed to function. [3]   

 

 

 

 

 

 

    Figure 30.  Transpose Form Results                          

Systolic Form  
 

The FIR designs of the project were mapped in a parallel architecture. As seen in figure 

31, the delays in the top were parallel with the addition blocks; this was what gave them a 

parallel form. The reason to place the blocks in such form was to have the maximum clock rate 

determined by the critical path latency. As seen in Figure 31, the arrow marks the critical path 

latency. The red block shows where it starts, and the blue blocks represents the blocks that 

determine the critical path. The latency is due to one addition and one multiplication. 
[4]
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Figure 31. Systolic Form 

Systolic Form Results 
 

After finding the latency, the next step was to verify that the FIR structure actually 

worked with the system. To do so, the system in Figure 31, Systolic Form, was placed into the 

system design shown in Figure 21, Active Noise Cancellation System Filter for the XtremeDSP 

Board. The system was run and the results were recorded in MATLAB. The second graph, 

Hardware Output Signal (y), in Figure 32, represents the output of system Systolic Form, FIR 

structure. As seen by comparing the results obtained from hardware with the MATLAB result 

that this structure worked.  

 

 

 

 

 

 

 

Figure 32. Systolic Form Results 
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Systolic Pipeline Form 
 

 The FIR designs of the project were mapped in a parallel architecture. As seen in Figure 

33, the delays in the top are parallel with the addition blocks; this was what gave them parallel 

form. The reason to place the blocks in such form was to have the maximum clock rate 

determined by the critical path latency. As seen in Figure 33, the arrow marks the critical path 

latency. The red block shows where it starts, and the blue blocks represents the blocks that 

determine the critical path. The latency is seen to be the greater of the following: one addition or 

one multiplication. [4]
   

 

 
 

Figure 33. Systolic Pipeline Form 

Systolic Pipeline Results 
 

 After finding the latency, the next step was to verify that the FIR structure worked with 

the system. To do so, the system in Figure 33, Systolic Pipeline Form, was placed into the 

system design shown in Figure 21, Active Noise Cancellation System Filter for the XtremeDSP 

Board. The system was run and the results were recorded in MATLAB. The second graph, 

Hardware Output Signal (y), in Figure 34 represents the output of system with Figure 33, 
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Systolic Pipeline Form, FIR structure. It can be seen by comparing the hardware results with 

those obtained with MATLAB, that this structure works. 

 

 

 

 

 

 

 

Figure 34. Systolic Pipeline Form Results 

 

FIR Structure Results 
 

The standard form was chosen to be implemented in the final designs. It was chosen 

because it was the simplest form and used the fewest hardware elements among the four forms 

examined. While the systolic forms had improved latency, it was determined that this was not a 

significant enough improvement to justify the added hardware elements. 

4.3  DSP/FPGA IMPLEMENTATION       

 Two algorithms for adaptive filters, LMS and RLS, were successfully simulated in 

MATLAB. An active noise cancellation system with an LMS adaptive filter was successfully 

designed. An FIR structure for the system was determined. After all of these were accomplished, 

a hardware implementation was designed to perform real-time noise cancellation. 
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Active Noise Cancellation Design Specifications for the SignalWave Board 
 

The active noise cancellation system design for the Signal Waveboard had three 

specifications: 

• The active noise cancellation system would resemble Figure 6. It contained an 

input signal, output signal, reference signal, error signal, and adaptive filter to 

behave as an adaptive noise cancellation system.  

• The system would contain an LMS adaptive filter. The reason for choosing LMS 

over RLS was due to the simplicity of LMS compared to RLS. 

•  The FIR filter would have 10 taps.  It followed the results of the simulation LMS 

MATLAB results that using ten taps was sufficient for the requirements. The 

audio data used was the same data used in the MATLAB simulation. 

Active Noise Cancellation Design for the SignalWave Board  
 

Using the Xilinx block set, the LMS adaptive filter was designed. It consisted of:  

 
Table 5. System Components for the SignalWave Board 

System Components Quantity Xilinx  Blocks Description 

ROM Block 2 

 Each block contains the 

information extracted from 

the ultrasound MATLAB 

simulation 

Adaptive Filter Block 1 

 A sub-block that contains 

all the adaptive filter 

design 
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Active Noise Cancellation Design with an LMS Adaptive Filter for the SignalWave Board     

 
The design in Figure 35 resembled that of Figure 6. It contained an input signal, output 

signal, reference signal, error signal, and adaptive filter to behave as an active noise cancellation 

system. For the input and reference signals, a microphone was used to record the two audio data 

that were used previously: a woman saying “give me a pen” and a car motor. These two audio 

samples were then mixed to simulate the target signal being corrupted by background noise. A 

simple moving average process was used to corrupt the target audio signal. It was chosen to 

simulate the noise echoing and being recorded several times at different intensities. The original 

noise file was then used as the filter input signal. These signals were then output through the 

audio jack on a PC into the SignalWave Board. The SignalWave board then used the real-time 

active noise cancellation to recover the target audio signal and output it to a speaker. 

 

Figure 35. Active Noise Cancellation System for the XtremeDSP Board 

LMS Adaptive Filter Design for the SignalWave Board 
 

The adaptive filter in Figure 36 resembled the adaptive filter design used on the FPGA 

board in Figure 22. It contained the adaptive coefficient design and FIR standard form design.  
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Figure 36. LMS Adaptive Filter for the Signal Wave Board 

Adaptive Coefficients Design for the Signal Wave Board 
 

The model in Figure 37 was designed similarly to that in Figure 23. The main difference 

was the number of taps was increased to 10. This was done because, as it was explained in the 

Software LMS Results, ten taps provided the desired results for an active noise cancellation 

system. 

Figure 37. Adaptive Coefficients for the Signal Wave Board 
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FIR Filter Design for the Signal Wave Board 
 

The design shown in Figure 38 is a standard form FIR filter. It was chosen due to the 

findings in the section on FIR filter forms. It closely resembles the design shown in Figure 27. 

The main difference is the number of taps is increased to 10. 

 

Figure 38. FIR Filter for the Signal Wave Board 

 

Result of the Active Noise Cancellation Design for the Signal Wave Board 
 

The results obtained for the hardware implementation, Figure 39 and 40, show slightly 

more engine noise remaining in the recovered signal. The engine noise was still significantly 

reduced. The audio signal can be clearly heard, but only a 14.6 dB reduction in noise was 

obtained. 

 

 

 

 

 

 

 

Figure 39. LMS Desired and Recovered Signals 
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Figure 40. LMS Desired and Recovered Signals Spectra 

CHAPTER 5 

SUMMARY 

A Least Mean Square (LMS) adaptive filter was implemented first. A MATLAB simulation 

was conducted to determine a step size for an acceptable performance. Simulink models were 

designed to generate .bit files to program the FPGA devices. Various pre-defined step sizes were 

chosen for data sets from different applications. Different structures for FIR filters were designed 

and compared in terms of maximum frequency (minimal delay) and usage of logic resources. 

Hardware implementation of on-line step size calculation was implemented as a comparison. A 

recursive least square (RLS) adaptive filter was then implemented.  
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CHAPTER 6 

CONCLUSION 

An active noise cancellation system was successfully simulated and implemented. The 

system met all requirements. The ultra-sound data was properly filtered, and the audio data was 

adequately filtered to recover the target signal. These requirements were accomplished in both 

simulation and hardware.  

Some difficulty was encountered with the SignalWave board. There was some difficulty in 

programming of the FPGA side of the board to communicate with the DSP side. This led to the 

final hardware implementation to be done entirely on the DSP side of the board. In the future, 

students may wish to determine the cause for this problem and find a solution.  

Also, the hardware could be designed into a real-time platform using microphones and 

speakers to detect the audio signals and perform the filtering on them. The speakers could then 

be used to generate a sound wave to negate the noise. This approach would require extensive 

study into acoustics, which was unavailable to us at the time of the project. 

 

 

 

 

 

 



 

 

38 

APPENDIX A 

CODE FOR LMS ALGORITHM 

function [recov f_out f_coef] = LMS_forgetting(ref,f_in,Tap,alpha,delta) 
  
N = length(ref); 
f_coef = zeros(Tap,N); 
f_out = zeros(N,1); 
recov = zeros(N,1);   
P = zeros(N,1); 
f_in_init = [ f_in(Tap-1:-1:1)' 0 ]'; 
P(Tap-1) =  f_in_init' * f_in_init;   
for i = Tap : N-1  
   f_in_vec = f_in(i:-1:i-(Tap-1)); 
   f_out(i) = f_coef(:,i)'*f_in_vec; 
   recov(i) = ref(i) - f_out(i);   
   P(i) = alpha*P(i-1) +  f_in(i) * f_in(i);  
   mu = delta; 
    f_coef(:,i+1) = f_coef(:,i) +  mu * recov(i) * f_in_vec; 
end 
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APPENDIX B 

CODE FOR RLS ALGORITHM 

function [recov f_out f_coef] = RLS_brute_forgetting(ref,f_in,Tap,delta,Auto_corr_lamda, Cross_corr_lamda) 
N = length(ref); 
f_coef = zeros(Tap,N); 
f_out = zeros(N,1); 
recov = zeros(N,1); 
Auto_corr = delta * eye(Tap);  
Cross_corr = zeros(Tap,1); 
for i = Tap : N-1  
   f_in_vec = [ f_in(i:-1:i-(Tap-1)) ];   
   f_out(i) = f_coef(:,i)'*f_in_vec;     
   recov(i) = ref(i) - f_out(i);       
   Auto_corr = Auto_corr_lamda* Auto_corr + f_in_vec * f_in_vec';   
   Cross_corr = Cross_corr_lamda* Cross_corr + ref(i).* f_in_vec;  
   
   f_coef(:,i+1) =  Auto_corr \ Cross_corr;  %%%inv(Auto_corr ) * Cross_corr;  
end    
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APPENDIX C 

CODE USED TO FILTER USING THE LMS ALGORITHM 

close all 
clc 
  
Fs = 22050;   
T = 1/Fs; 
  
x = wavread('Race Car Idle.wav'); 
y = wavread('Jesvoiceref.wav'); 
  
[target ref f_in t P] = c2signalsetup(x, y, Fs); 
  
Tap = 100; 
  
 delta = 12*2/(3*Tap^2*P); 
 alpha = 1; 
[recov f_out f_coef] = LMS_forgetting(ref,f_in,Tap,alpha,delta);   
  
 orig_error = y(1:length(recov)) - ref; 
 error = y(1:length(recov)) - recov; 
   
plot_adaptive_sim(target,ref,f_in,f_out, recov, error, orig_error, f_coef, t, Fs);   
  
J = sum((error .* error))/length(error); 
orig_J = sum((orig_error .* orig_error)) / length(orig_error); 
  
 soundsc(ref, Fs) 
 soundsc(recov, Fs) 
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APPENDIX D 

CODE USED TO FILTER USING THE RLS ALGORITHM 

clc 
clear all 
close all 
  
 
Fs = 22050;  
T = 1/Fs; 
  
x = wavread('Race Car Idle.wav'); 
y = wavread('Jesvoiceref.wav'); 
  
[target ref f_in t P] = c2signalsetup(x, y, Fs); 
  Tap = 100; 
  Cross_corr_lamda = 1;  
  Auto_corr_lamda = 1;  
  delta = 0.05;  
  [recov f_out f_coef] = RLS_brute_forgetting(ref,f_in,Tap,delta,Auto_corr_lamda, Cross_corr_lamda);  
   
  orig_error = y(1:length(recov)) - ref; 
 error = y(1:length(recov)) - recov; 
   
plot_adaptive_sim(target,ref,f_in,f_out, recov, error, orig_error, f_coef, t, Fs);  
  
J = sum((error .* error))/length(error); 
  
 soundsc(ref, Fs) 
 soundsc(recov, Fs) 
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APPENDIX E 

CODE USED TO SIMULATE INTERFERENCE FOR REFERENCE SIGNAL 

function [target ref f_in t P] = c2signalsetup(noise_file, target_file, Fs) 
  
T = 1/Fs; 
NSamples = Fs * 2.5; 
  
target = target_file(1:NSamples); 
f_in = noise_file(NSamples+11:2*NSamples+10); 
den = [1 -.5 .44 .33 -.19]; 
num = [1 .7 .5 .24 .01]; 
Add = filter(num, den, noise_file(NSamples+1:2*NSamples)); 
ref = target + Add; 
  
t = 0:T:(NSamples-1)*T; 
w_t = 0:NSamples-1; 
w_t = w_t/NSamples/1000*Fs; 
  
f_in_FFT = fft(f_in); 
target_FFT = fft(target); 
ref_FFT = fft(ref); 
  
figure; 
plot(w_t(1:length(w_t)/2), abs(ref_FFT(1:length(w_t)/2)));grid on; 
xlabel('Frequency(kHz)'); ylabel('Amplitude') 
figure; 
plot(w_t(1:length(w_t)/2), abs(target_FFT(1:length(w_t)/2)));grid on; 
xlabel('Frequency(kHz)'); ylabel('Amplitude') 
figure; 
plot(w_t(1:length(w_t)/2), abs(f_in_FFT(1:length(w_t)/2)));grid on; 
xlabel('Frequency(kHz)'); ylabel('Amplitude') 
figure; 
subplot(3,1,1); 
plot(t, target_FFT); 
subplot(3,1,2); 
plot(t, f_in_FFT); 
subplot(3,1,3); 
plot(t, ref_FFT); 
%soundsc(ref, Fs) 
correlate = xcorr(f_in, ref); 
figure; 
plot(correlate); 
  
pow = xcorr(f_in, f_in); 
P = max(pow)/length(pow); 
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APPENDIX F 

CODE USED TO DISPLAY RESULTS 

function  plot_adaptive_sim(target,ref,f_in,f_out,recov, error, orig_error,f,t, Fs) 
  
N = length(ref);  
  
display_offset = 1; 
f_in_norm = f_in; 
ref_norm = ref; 
recov_norm = recov; 
f_out_norm = f_out; 
  
fft_f_in = fft(f_in_norm,N); 
fft_ref = fft(ref_norm,N); 
fft_recov= fft(recov_norm,N); 
fft_f_out = fft(f_out_norm,N); 
  
f_vector = 0:1:N-1; 
f_vector = 100*f_vector./N; 
  
figure; 
subplot(3,2,1); 
plot(abs(f_in_norm));grid on; 
  
 title('f_i_n-norm'); 
subplot(3,2,2); 
plot(f_vector,abs(fft_f_in));grid on; 
title('f_i_n-norm FFT'); 
xlim([0 20]); subplot(3,2,3); 
  
plot(abs(ref_norm));grid on; 
  
 title('ref-norm'); 
subplot(3,2,4); 
plot(f_vector,abs(fft_ref));grid on; 
title('ref-norm FFT'); 
xlim([0 20]); 
     
subplot(3,2,5); 
plot(abs(recov_norm));grid on; 
  
title('recov-norm'); 
subplot(3,2,6); 
plot(f_vector,abs(fft_recov));grid on; 
title('recov-norm FFT'); 
xlim([0 20]);         
  
[f_row f_col] =size(f); 
%  
figure; 
for i = 1 : f_row 
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subplot(f_row,1,i); 
plot(f(i,:));grid on; 
title(['Adaptive filter coefficients; f('    num2str(i)  ' ) ' ]); 
xlim([f_row+5 f_col]) ;  
end 
  
figure; 
plot(t, f);grid on; xlabel('Time(s)'); ylabel('Amplitude'); 
  
recov_fft = fft(recov); 
target_fft = fft(target); 
ref_fft = fft(ref); 
f_in_fft = fft(f_in); 
recov_fft = recov_fft(1:length(recov_fft)/2); 
target_fft = target_fft(1:length(target_fft)/2); 
ref_fft = ref_fft(1:length(ref_fft)/2); 
f_in_fft = f_in_fft(1:length(f_in_fft)/2); 
f2_vector = f_vector(1:length(f_vector)/2)/100; 
  
figure; 
plot(t, recov, t, target);grid on; xlabel('Time(s)');ylabel('Amplitude'); axis([0 2.5 -1 1]) 
  
figure; 
plot(f2_vector*Fs/1000, abs(recov_fft), f2_vector*Fs/1000, abs(target_fft));grid on; 
xlabel('Frequency(kHz)'); ylabel('Amplitude') 
  
figure; 
plot(t,orig_error, t, error); grid on; xlabel('Time(s)');ylabel('Amplitude'); 
figure; 
plot(t, recov, t, target, t, error);grid on; xlabel('Time(s)');ylabel('Amplitude'); 
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