Construction of an FM Receiver

Introduction:

GNU Radio is an open source signal processing software package that is used to implement
software defined radio. This package is designed to be used in parallel with Universal Software
Radio Peripheral products created by Ettus Research. Not much documentation exists for
beginners looking to start exploring this technology. These instructions, which double as a
tutorial, give a step by step procedure to construct a functioning software-defined FM receiver
using GNU Radio Companion. They assume that the reader has a functioning computer running
on the Ubuntu 10.04 operating system that has the most current, UHD version of GNU Radio
properly installed.

Theory of operation:

Typical FM receivers are constructed entirely using hardware that must be fabricated in a plant.
This procedure will demonstrate the power of software defined radio and how easy it is to use. A
good background in Communication Theory would provide for better understanding of this
procedure, however, these instructions are written so that such is not required to complete the
task at hand.

List of equipment:
1. USRP2 or USRP N210 board with installed UHD firmware, image file, and
daughterboard that is in the FM frequency range (WBX for example)
2. Ethernet cable, antenna attachment, power cord
3. Speakers

Procedure:

1. Connect the USRP board to the computer using the Ethernet cable.

2. Attach the antenna to the receiver end of the daughterboard and power up the board by

simply plugging in the power cord.

3. Assign the location of the Ethernet cable to the address of the board by opening a

command window and entering:

sudo Idconfig

sudo ifconfig eth0 192.168.10.1

Note: You will have to use your administrative password when using the sudo command.
4. Check to see if the location is set properly by next entering into the command window:

sudo uhd_find_devices

This should return the location of the device. If it returns that no devices were found,

repeat step 3.

5. Open another command terminal and run GNU Radio Companion by entering the

command: sudo gnuradio-companion.

6. Add the necessary blocks from the libraries on the right side of the screen and arrange
them as shown in figure 1. (Most should be self explanatory as to which menu they are
under).

Open the parameter window for the Audio sink by double clicking on the block.
8. Change the number of inputs to 2.

~

10.

11.

12.

13.

14.

Match the data types for each block, corresponding with figure 2, making the selection in
the parameter window. A blue tab represents complex and orange represents float.
Make the connections shown by clicking on the tabs marked “in” and ‘out’ on the
appropriate blocks.
Set up parameters as shown in figure 2 by opening each parameter window. Parameters
that cannot be directly determined from the figure are listed as follows.

a. Enter addr=192.168.10.2 for ‘Device Addr’ in the UHD: USRP Source.

b. Enter firdes.low_pass(1,samp_rate,100e3,1e3) for the Value in the Variable block

with ID filter_taps.
c. Enter rf_gain and usrp_freq in ChO: Gain and ChO: Center Freq parameters
respectively in the USRP Source block.

d. Enter xlate_freq in the Center Frequency parameter of the FIR Filter

e. Enter af_gain in Constant parameter for both Multiply Const blocks
Compile the program by clicking the icon. If there is an error, double check all
connections, parameters, and data types of the blocks.
Execute the flow graph buy clicking the icon. A graphic should appear similar to the one
in figure 3. If it is blank, click on the auto scale button to bring the FFT into view.
Tune into any of your local FM stations using the usrp_freq slider bar. Finer tuning can
be done using the xlate_tune slider bar. VVolume can also be adjusted using the rf_gain
and af_gain slider bars.

Figures:

© © ® *untitled - GNU Radio Companion

File Edit View Build Help

- - L
@& & &« e
test_receiver 8 FM_RX_example 8 rx_gpsk & untitled & Blocks
+ [Sources]
FFT Sink :
Options Variable Variable Variable Static Text Titte: FFT PI';t + [Sinks]
op_block ID: samp_rate | | ID: variable 0 1D: variable static_text_ 0 s.m"’h e T + [Graphical Sinks]
Value: 32k Value: 0 Default Value: 0 &
= Float Baseband Freq: 0 + [Operators]
Y per Div: 10 dB .
Variable Slider [in] Y Divs: 10 + [Type Conversions]
1D: variable_slider_0 Ref Level (dB): 50 + [Stream Conversions]
Default Value: 50 Ref Scale (p2p): 2 + [Misc Conversions]
Minimum: 0 FFT Size: 1.024k ! Ver
Maximum: 100 Refresh Rate: 30 + [Synchronizers]
Converter: Float
avorser: Ton + [Level Controls]
UHD: USRP Source Frequency Xlating FIR Filter)
Variable Slider Num Mboards: 1 Decimation: 1 WBFM Receive PLL [LoUt] + [Filters]
1D: variable_slider_2 Samp Rate (Sps): 32k Taps: Quadrature Rate: + [Modulators]
Default Value: 50 ChO: Center Freq (Hz): 0 Center Frequency: 0 Audio Decimation: \
Minimum: 0 Cho: Gain (dB): 0 Sample Rate: 32k + [Error Correction]
Maximum: 100 + [Line Coding]
Converter: Float
+ [Vocoders]
Variable Slider Variable Slider Rational Resampler + [Probes]
2 i el i Decimation: 1
ID: variable_slider_3 | | ID: variable_slider_1 o FEiEN Multiply Const + [USRP]
Default Value: 50 | | Default Value: 50 nterpolation: ot)
Minimum: 0 Minimum: 0 Taps: + [Variables]
Maximum: 100 Maximum: 100 Fractional BW: 0 + [Misc]
Converter: Float Converter: Float {UHD]
Rational Resampler Muitiply Const %
Dokt i Consta UHD: USRP Source
Interpolation: 1 UHD: USRP Sink
+ [NOAA]
+ [Pager]

showing: "/home/sjaris/Desktop/FM_RX_example.grc"
showing: "
showing: "/home/sjaris/Desktop/FM_RX_example.grc"
showing: ""
showing: "/home/sjaris/Desktop/FM_RX_example.grc"

showing: "

*untitled - GNU Radio C

Figure 1 — Blocks to be added in step 6.

Options
ID: FM_RX_example

Variable Variable
ID: samp_rate || ID: usrp_decim
Value: 500k Value: 128

Variable
1D: filter_taps
Value: firdes.low_pass(1.s...

Variable Slider
1D: usrp_freq
Default Value: 106.9M
Minimum: 88M
Maximum: 108M
Converter: Float
Grid Position: 6,0, 1,5

Variable Slider
ID: xlate_tune
Default Value: 0
Minimum: -250k
Maximum: 250k
Converter: Float
Grid Position: 7,0, 1,5

Variable Slider
1D: af_gain
Default Value: 3
Minimum: 0
Maximum: 10
Converter: Float
Grid Position: 8, 2, 1, 2

UHD: USRP Source
Device Addr: addr=...168.10.2
Num Mboards: 1
Samp Rate (Sps): 500k
ChO: Center Freq (Hz): 106.9M
ChO: Gain (dB): 15
ChO: Antenna: RX2

Variable Static Text
1D: rx_freq

Default Value: 96.5M
Converter: Float

Grid Position: 5,3, 1,1

Decimation: 1
Taps: filter_taps

Sample Rate: 500k

Frequency Xlating FIR Filter

Center Frequency: 0

FFT Sink
Title: FFT Plot
Sample Rate: 250k
Baseband Freq: 0
Y per Div: 10 dB
Y Divs: 10

=[] Ref Level (dB): 0

Ref Scale (p2p): 13.49%
FFT Size: 1.024k
Refresh Rate: 10
Average Alpha: 500m
Window Size: 1.12k, 527
Grid Position: 0,0, 5,5

WBFM Receive PLL
Quadrature Rate: 500k
Audio Decimation: 10

Variable Slider
1D: rf_gain
Default Value: 15
Minimum: 0
Maximum: 50
Converter: Float
Grid Position: 8,0, 1, 2

Decimation: 50
Interpolation: 48
Taps:

Fractional BW: 0

Decimation: 50
Interpolation: 48
Taps:

Fractional BW: 0

Rational Resampler

Multiply Const
Constant: 3

Audio Sink
Sample Rate: 48KHz

Figure 2 — Complete flowgraph with appropriate connections, data types, and parameters as
mentioned in steps 9, 10, and 11

® © ® Fm Rx Example

FFT Plot []
=120 Trace Options
Peak Hold
-140 & Average
Avg Alpha: 0.5000
-160 —— =
Persistence
180 P o oot
i WA (T L Wl AR A A e
3 plp \lN\UN 1 l ‘“l” i I‘I\‘l Trace A w
o 200
'E Trace B M
@ 220
H
-240 N :
Axis Options
260 i by dB/Div: Eu
Vel My Ref Level: .
280 ; MHA f\q\;r.f,ft\lﬁlr«ru\mﬂﬂ-‘ qﬁm“"‘”"\;\uﬂw\;\{’m\ A -
al,\/\N\ '"fﬂ‘\l'\"f W L '}I’\"pqu\"rl“\"\'
-300
-120 -100 -80 -60 -40 20 0 20 40 60 80 100 120
Frequency (kHz) L s
rx_freq: 96.5M
isrp_freq: | 105.7M
clate_tune: |0 %
f_gain: \157 | af_gain: [3

1Q Comp

Figure 3 — Spectrum plot from the FFT sink showing the filtered frequency range being received

Conclusion:
Having completed a functioning FM receiver, you should now be more comfortable working

with GNU Radio Companion and the USRP boards and hopefully are beginning to understand
the flexibility and potential of software defined radio technology.

