

Implementing Software Defined Radio – a 16-bit QAM System using the
USRP2 Board

Functional Description and Complete System Block Diagram

Patrick Ellis & Scott Jaris

Dr. In Soo Ahn & Dr. Yufeng Lu

October 16, 2010

Introduction

Radios exist in many facets of our daily life and Software Defined Radio has the
promise to revolutionize the way radios function. Most radios today have limited
flexibility in regards to cross-functionality and ease of modifications. Software Defined
Radio takes what used to be ingrained physically within the radio and provides a variety
of hardware and software alternatives that add more flexibility and functionality. We are
looking to embody this definition by using the USPR2 board and show the benefits of
Software Defined Radio by implementing a 16-bit QAM system.

Goal

The ultimate goal of this project is to implement a 16-bit QAM system onto a USPR2
board to demonstrate the power, flexibility, and advantage of doing so with Software
Defined Radio (SDR). However, a variety of smaller goals must be met in order for the
main one to be realized. These are listed below.

1. Design a 16-bit QAM system using blocks made available by the GNU

Radio companion.

2. Design a 16-bit QAM system controlled completely by a Python program

calling the block functions.

3. Design a 16-bit QAM system using blocks constructed from scratch and

run with the wrapper language, Python.

Through these short and long-term goals it is believed that a clear justification can be
made on the practicality and usability of Software Defined Radio by comparing the
results of these systems and their ease of construction with previously completed
projects without using Software Defined Radio.

High Level Block Diagram

Figure 1 shows a typical block diagram of software defined radio that demonstrates its
flexibility by allowing the designer to change or update the function of the radio as easily
as re-writing a few lines of code. The ADC/DAC are provided and carried out by the
USRP2 board while the receiving and transmitting ends utilize the DBSRX(800 MHz to
2.4 GHz Receiver) or XCVR2450 (2.4-2.5 GHz and 4.9 to 5.85 GHz Dual-band
Transceiver) daughter board respectively.

Figure 1. Software radio block diagram

System Level Flowchart

Figure 2 shows the flowchart of a general 16 bit QAM system which we hope to
implement using SDR. The processes on both sides of the channel represent each of
the “Your Code Here!” blocks in Figure 1. The RRC blocks represent root raised cosine
filters and the DFE is a decision feedback equalizer. This shows how SDR allows the
designer to implement the majority of the system in software, as close the RF ends as
possible.

Figure 2. 16 bit QAM block diagram

1

Data1
wct

sin1

wct

sin

wct

cos1

wct

cos

In1 Out1

RRC3

In1 Out1

RRC2

In1 Out1

RRC1

In1 Out1

RRC

Product3

Product2

Product1

Product

N

Noise

In1 Out1

DFE

In1 Out1

Channel

In1 Out1

16QAM
Mapper

In1 Out1

16QAM
Demapper

1

Data

Conclusion

This project requires a great amount of new, unfamiliar software which may prove to be
one of its biggest challenges. Currently, we are at a point where the direction we are
taking is not set in stone. As we continue to learn more about GNU radio, python, and
the USRP2 board we will have a better idea of where the project is headed and be able
to adjust and expand upon our goals. We look forward to learning a lot about the true
power of software defined radio and its functions.

References

[1] http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html

[2] http://www.steepestascent.com/content/mediaassets/pdf/example%2016qam.pdf

