

Emergent Behavior Robot

Bradley University - Senior Capstone Project Fall Presentation

By: Andrew Elliott & Nick Hanauer Advisor: Joel Schipper December 8, 2009

Overview

- Introduction
- Functional Description
- Block Diagrams
- Functional Requirements
- Preliminary Work
- Parts List
- Proposed Schedule

Introduction

- Create a robot that:
 - Avoids obstacles
 - Seeks and finds beacon
 - Flees from loud sounds
 - Favors darker environments
 - Displays emergent behavior

Functional Description

- Construct a robot from the ground up
 - Less complexity
 - More experience
- Interact with the environment
 - Sensors
 - Locomotion
- Display emergent behavior
 - Multiple simple behavior modules combine to create a sophisticated, intelligent response [1]

 R. Cioarga, B. Ciubotaru, D. Chiciudean, M. Micea, V. Cretu, and V. Groza, "Emergent Behavioral Modeling Language in Obstacle Avoidance", Warsaw, Poland, May 2007.

Flock of birds

Ripple pattern in sand

Keith Tyson Mathematical Nature Painting

Romanesco

High-Level System Overview

Software - Modes and Task Priority

- Modes (all modes include obstacle avoidance)
 - Roam mode
 - Search for beacon
 - Evade mode
 - Travel quickly away from source of sound
 - Find shelter (low light area)
 - Pursuit mode
 - Travel toward beacon
- **Priority** (1 is the highest)

Task	Roam	Travel in low light	Beacon found	Detection of a	
Priority	5	4 (2 if in Evade mode)	3	1	

8

Functional Requirements

Our Robot Shall:

- Avoid all obstacles within 6 inches
- Detect a loud noise (above 80dB) and determine the direction of origination
- Reach an ultrasonic beacon within a 2 feet radius
- Determine which areas in its path are darker
- Travel at a speed of 2 feet per second normally
- Travel at a speed of 4 feet per second when evading

Preliminary Work (1)

- MAVRIC-IIB Microcontroller Board
 - Adapting to the development software
 - Writing test programs
- Testing IR Sensor and Photosensor capabilities
 - IR Sensor results are unreliable at close range
 - Photosensors are not good for directional sensing
- Selected parts to meet specifications
 - Parts have been ordered

Preliminary Work (2)

- Chassis Design
 - Using Google SketchUp

Parts List

Component	Vendor	Part Number	Crucial Spec	Unit Cost	#	Ordering Cost
MAVRIC-IIB	BDMICRO	MAV2BPH16		\$99.00	1	\$99.00
Motor	Robot Marketplace	0-BHG31	Torque & RPM	\$23.99	2	\$47.98
IR Sensor	Acroname	Sharp GP2Y0A21YK	Distance (Min & Max)	\$12.50	4	\$50.00
H-Bridge	Bradley University	LMD18200	Max Current	\$0.00	2	\$0.00
Wheels	Robot Marketplace	0-DAV5540	Diameter	\$8.99/pair	2	\$17.98
Hub	Robot Marketplace	0-MHUB04	Bore size	\$8.49/pair	1	\$8.49
Microphone	Digi Key	CMB-6544PF		\$0.72	5	\$3.60
Photosensor						

Proposed Schedule

Week	Andrew Elliott	Nick Hanauer			
1-3	Research & Website Development	Parts Research			
4	Learn ATmega128	Parts Testing & Research			
5	Interface with the Digital I/O	Parts Testing & Finalizing Parts List			
6	ADC Setup	Parts Testing & Order Remaining Parts			
Winter Break	Construct Chassis				
7	Interface IR Sensors & Photosensor	Motor & H-Bridge Circuitry/Testing			
8	Interface Microphones	Microphone & Photosensor Circuitry/Testing			
9	Interface Motors & H-Bridge	Ultrasonic Circuitry/Testing			
10-11	Integrating All Sensors	Circuitry Clean-Up & Wire Wrapping			
12	Final Software/Hardware Testing				
13-14	Final Documentation and Presentation Preparation				

Questions?

Emergent Behavior Robot

Andrew Elliott & Nick Hanauer

Joel Schipper