Low Carbon Footprint Electric Lawn Mower

Kraig Kamp, David Sharpe, Jamin Williams Advised by Dr. Huggins and Mr. Gutschlag

Problem

The amount of pollution produced by a lawn mower in one hour is the same as eight new cars driving 55 MPH for one hour

- Project Specifications
- Overall System
- Motor
- Battery
- Solar Energy
- Charging the Battery
- Controls
- Results
- Conclusions

Project Specifications

- Performance similar to a gasoline powered mower
- Mow a 10,000 sq. ft. lawn in 1 hour
- Keep mower weight under 90 lbs.
- Use solar energy to recharge the battery in 1 week
- Utilize intelligent controls for mowing and charging

Overall System

- Mower System
- Charging System

Mower System

Motor

Tecumseh 90000A

Motor Specs

- Input Voltage = 24 VDC
 - Can be achieved with two 12V batteries in series
- 3200 RPM
- 1.54 HP
- Weight = 15 pounds

Initial Motor Tests

Initial Motor Tests

Initial Motor Test Results

- Average Running Current ≈ 18 Amps
- Maximum Running Current ≈ 40 Amps
- Cut Grass as well as gas mower

Choosing Batteries

- Different chemistry make-ups
 - Nickel Cadmium
 - Nickel metal hydride
- Price vs. capacity and weight
- Deep Discharge Lead Acid
 Rated in amp*hours

Choosing Batteries 35 A*h battery

Motor Modeling

- Purpose
- Simulation in PSPICE

In order to not introduce back EMF, motor shaft cannot spin during test

At Vs=12 Volts and no load measure Vs, Ia and ωs

$$-V_{s} + I_{a}R_{a} + E_{a} = -V_{s} + I_{a}R_{a} + K_{E}\omega_{S} = 0$$
$$K_{E} = K_{T} = \frac{V_{s} - I_{a}R_{a}}{\omega_{S}}$$

Compute the static friction coefficient ($T_{S,F}$) and the viscous friction coefficient (b). Find Ia at 8V and 12 V 2 equations, 2 unknowns

Sum of the torques

$$T_{developed} - T_{S.F.} - b\omega_s = K_T I_a - T_{S.F.} - b\omega_s = 0$$

Perform a coast down test to find $E_a(\omega_s) = V_{O.C.}(\omega)$ to compute moment mass of inertia (J)

$$R_{a} = .0825 \ \Omega$$

$$K_{E} = K_{T} = 0.68723 \left[\frac{N * m}{A} \right]$$

$$T_{S.F.} = .272504 [N * m]$$

$$b = .000535 \left[\frac{N * m}{rad / s} \right]$$

$$J = .000912 \left[kg * m^2 \right]$$

Motor Driver

IRFP044N

- Vds Max = 55V
- Rds (on) = 0.02Ω
- Id max = 53 A

TC4424

- Gate Driver Chip
- Takes 0-5V input from Microcontroller
- Outputs 0-15V PWM to the Gate of the MOSFET

Snubber Circuit

 Purpose: To keep voltage across Vds on the MOSFET below 55 volts

Issues with Motor Driver

- FETs overheating
- Snubber capacitor failure

PSPICE circuit schematic

PSPICE Simulation

Solar Charger System

- Solar Panel
 BP 350
- Charger Controller

 UC3909 Switchmode Lead-Acid Battery Charger
- Charger Circuit
 - Buck Converter
 - Protective Circuitry

Solar Charger System

Things to consider:

- Voltage and Current Output

 Need to be Higher than 12V
 Current needs to break down sulfation
- Power Rating
 - Need enough energy to charge the batteries
- Efficiency
 - Used to calculate energy collected from available solar radiation

- BP 350 Specifications at Peak Power:
- 50 W
- 17.5V
- 2.9A
- 10% efficiency

BP350 I-V Curves

Month	KW-Hrs/day Solar Energy Emmitted(NREL)	KJ / day of Solar Energy Collected	actual days to charge 2 - 35AH batts
January	2.0	353	8.6
February	3.0	530	5.7
March	4.0	706	4.3
April	4.0	706	4.3
May	5.0	883	3.4
June	5.0	883	3.4
July	5.0	883	3.4
August	5.0	883	3.4
September	4.0	706	4.3
October	3.0	530	5.7
November	2.0	353	8.6
December	1.0	177	17.1

UC3909 Features

- Controls Charge States
 - Trickle
 - Bulk
 - Overcharge
 - Float
- Charge state output to microcontroller
- Battery Temperature Input for optimal charging

Charging Lead Acid Batteries

Charger Circuit

Buck Converter

Purpose:

- To Provide Constant Current/voltage to a load (batteries)
- To adjust the constant current/voltage based on a PWM input.
 - High duty cycle means higher V/I
 - Low duty cycle means lower V/I

Buck Converter

Issues with Charger Subsystem

- Voltage is not up to the proper level for charging
- Need to further debug buck converter
- Need to charge batteries using the solar panel

Controlling the Mower

- User Interface
- Speed Control
- Safety
- Display
- State of Charge measurement

Microcontroller

ATMEGA168

User Interface

Speed Control

- Voltage Divider using 10k potentiometer
- A/D Conversion
- PWM output
 - Lowest setting outputs 50% duty cycle
 - Highest setting outputs 100% duty cycle

Safety

- Safety Switch
- PWM output is set to zero when disengaged
- Over-current protection
- Fuses
- Battery Protection

Display Optrex 2x20 character LCD with HD44780 Controller

Display

Mowing

Display

Charging

Display 4-bit control vs. 8-bit control

State of Charge

- Importance
- Methods
 - Terminal Voltage
 - Specific Gravity of Electrolyte
 - Current Counting

Current Counting

Current Counting

- SOC = SOC₀ \pm 1/capacity*/Idt
- Measure current every 10ms
- Integrate for 1 second
- Recalibrate SOC₀ after a rest of four hours using terminal voltage method

Issues with Controls

- Inaccurate Current Measurement
- Battery Voltage Measurement Circuitry
- Too much current drawn

- Grass Conditions
 - Extremely dense in spots
 - -Wet
 - 3" tall
- Mower settings
 - Blade spinning at full speed
 - 1.5" cut off the top of grass

Results

- Mowed 13,000 sq. ft.
- Elapsed Time = 1.5 hrs
- Initial Voltage = 26.6V
- Final Voltage=23.77V

Results

Discharge Characteristics

Improvements

- Brushless DC Motor
- Charging from AC power
- Self Propelled
- Better Mower Deck

Questions

