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Abstract 

 

At present, most commercial GPS receivers utilize hardware designs to perform signal 

processing.  While hardware designs may have many advantages, software designs have 

several added benefits including the potential for cost reduction, fast time-to-market, and 

the ability for after-market upgrades to support presently undefined navigation signals.  

Processing GPS signals in real-time is computationally complex and stretches the 

capabilities of even the newest processors.  The goal of this project was to investigate this 

complexity and implement a software-GPS receiver in real-time.  The software was 

written in C++ and utilizes a platform-independent and parallel architecture.  In order to 

obtain a platform-independent and parallel architecture, an open-source library from Intel 

called Threading Building Blocks, which supports Windows and Linux, is used, which 

overcomes some of the problems with re-coding for a platform-specific application 

programmer’s interface (API).  While this software stretches the capabilities of present-

day hardware, advances in processor design will lead to smaller, cheaper, and 

upgradeable GPS receivers.   
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1. Introduction 

Rationale 

 

Advances in technology have provided society with numerous benefits not available to 

previous generations.  However, a frequently overlooked fact is that the availability of 

technology is not entirely driven by capability, but, instead, by cost.  While GPS has been 

available to the public since 1983, the technology did begin to see widespread use until 

this decade slowed down by cost.  Advances in technology have finally lowered the cost 

to such a level that it is practical for a consumer to purchase a limited number of 

medium-cost devices for applications such as driving.  However, the cost is still too high 

for the technology to practically be available in low-cost applications. 

 

A possible solution to lower the cost of a GPS receiver lies in eliminating much of the 

hardware used by the receiver and replacing it with software.  In executing this approach, 

the functionality of the hardware is shifted to the primary microcontroller eliminating the 

need for costly application-specific circuitry.   

 

In addition to lowering cost, a software-model allows the receiver to be updateable.  

When the launch of the European Galileo System and the GPS Block III System is 

completed, legacy hardware devices will be incompatible with the new signal schemes.  

A software-defined system could merely be updated to work with the new system. 

 

While the choice between using a hardware and software approach seems simple, a 

software system is still largely difficult to implement due to the extreme number of 

calculations required to process the signals.   

 

Project Goal 

 

A team at the University of Colorado-Boulder successfully developed hardware to 

sample GPS signals and software in MATLAB to process it.  However, the software 

implemented is excruciatingly slow taking tens of minutes to obtain an initial fix in 

certain instances.  The limitation of the software prevents it from being practically 

applied in any way.  The primary goal of this project was to redesign the software in C++ 

and implement it on a DSP.  However, the difficulty of the application was largely 

underestimated leaving implementation on the available DSP impractical causing a shift 

in the project goal to a purely PC-based approach. 
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2. System Description 
 

Figure 1, below, shows the high-level block diagram for the project.  The GPS L1 signal 

is received through an active GPS antenna.  After the antenna stage, the SiGe GPS 

Sampler chipset is used to sample and down-convert the signal.  The PC then stores and 

processes the sampled signal. 

 
Figure 1 – High-Level System Block Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antenna Stage 

 
Active GPS antennas are available from a variety of manufacturers and include at a 

minimum a low-noise amplifier and a bandpass filter.  An active antenna is necessary due 

to the low transmit power of GPS satellites and the degradation and attenuation of the 

signal as it travels through the atmosphere.   

 

SiGe GPS Sampler 

 
The SiGe GPS Sampler is a USB device developed by the University of Colorado and 

SiGe.  The device contains a USB chipset and an SE4110L GPS chipset. 

 

The SE4110L is a complicated chipset consisting of a several sub-stages.  The 

subsystems are very similar to those of a superheterodyne receiver with the addition of a 

high-frequency A/D converter.  The device outputs the magnitude and sign of the 

received signal at 4.1304 MHz. [2]   Figure 2, below, shows the functional block diagram 

from the SE4110L datasheet.  Functionally, the SE4110L provides the digitally sampled 

GPS L1 signal to the USB chipset. 
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Figure 2 - SE4110L Functional Block Diagram 

 

 
 

PC 

 

The software is designed in such a way that it could be run on any PC.  However, the 

software contains optimizations for multi-core Intel PCs. 
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3. Subsystem Requirements 
 

The subsystem requirements are shown in Figure 3, below.  The individual requirements 

are discussed in the following sections.   

 

 
Figure 3 - Table of Subsystem Requirements 

 

ErrorErrorErrorError    Specification(s)Specification(s)Specification(s)Specification(s)    
Position Error 100 m 

Sampling Rate 4.1304 MHz 

Time to First Fix Cold Start : 2 minutes 
Warm Start : 12 seconds 

Display Earth-centered, Earth-fixed Coordinates 
Latitude, Longitude, Altitude 

UTC Time Update 

 

Position Error 

 

The position error specification is set at 100 meters largely as a result of a limitation 

imposed by the sampling device.  The sampling device obtains four samples per chip 

which results in a minimum error of 73.31 meters as shown in Figure 4, below.  The 

specification is set at 100 meters in order to account for other possible error sources such 

as ionospheric or multipath effects. 

 
Figure 4 - Position Error Calculation 
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Time to First Fix 

 

The time to first fix depends on whether or not initial information is available.  In order to 

calculate a position fix, at least subframes 1-3 are required for processing.  The subframes 

last 6 seconds each and are broadcast in the order 1-5 with four and five cycling through 

different sets of data.  As it is initially unknown when subframe 1 will be sent, 36 

seconds of data must be collected.  Of this, thirty seconds accounts for collecting 

subframes 1-5 and the other six seconds accounts for starting the collection in the middle 

of a subframe. 
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Figure 5, below, illustrates the subframe transmission process. 

 
Figure 5 - Subframe Transmission 
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In addition to collecting 36 seconds of data, the data must be processed.  The software 

cannot process the data in real-time due to hardware limitations so additional time must 

be added to account for this limitation.  On a multi-core pc, approximately 20 seconds per 

satellite is required resulting in 80 seconds of processing time for 4 satellites.  This sets 

the cold-start value at approximately 2 minutes. 

 

When the subframe data is already available, the Time-of-Week (TOW) value must be 

updated which requires processing a minimal 1.2 seconds of data resulting in a warm 

start time of approximately 12 seconds. 
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4. Software Architecture 
 

The high-level software architecture is shown in Figure 6, below.  As the block diagram 

shows, the software first acquires the visible satellites.  Next, enough information is 

extracted to determine the first position fix.  Finally, using the initial estimate and ranging 

information, the position is estimated. 
 

Figure 6 - High-level Software Architecture 

 

      

 
 

Coarse Acquisition 

 

The first step in the software process is determining which satellites are visible.  Ideally, 

the intermediate frequency would be removed and the C/A code would be correlated for 

each satellite.  However, several additional factors must be considered.  First, since the 

satellites are moving very fast relative to the receiver position, the carrier frequency will 

be shifted due to the Doppler Effect.  Due to this, the exact intermediate frequency is not 

known exactly making it necessary to check a range of frequencies.  Second, it is very 

unlikely the C/A code was received beginning at the first chip requiring that every 

possible orientation be tested.  Rather than checking each pattern one by one, correlation 

is performed in the frequency domain and the best correlation alignment is detected.  

Figure 7, below, shows the block diagram for the process. 

 
Figure 7 - Coarse Acquisition Block Diagram 
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Fine Acquisition 

 

Once the satellites have been acquired, a rough estimate of the carrier frequency is 

known.  However, this estimate is not accurate enough for the tracking loop to lock onto 

the carrier frequency.  In order to find a better estimate, the current code phase estimate is 

used to remove the C/A code from a large set of data and an FFT is performed.  If the 

C/A code was removed correctly, a peak will exist in the spectrum indicating an accurate 

value for the carrier frequency.  Figure 8, below, shows a detailed block diagram 

describing the process. 

 
 

Figure 8 - Fine Acquisition Block Diagram 

 

 

 

Tracking 

 

After Fine Acquisition has completed, accurate estimates for the code phase and carrier 

frequency are available.  These estimates can be used to demodulate the carrier, remove 

the C/A code, and extract the navigation data.  However, the estimates for the code phase 

and carrier frequency are only valid over a short window of time.  The Tracking loop 

updates the estimates for these two values by using signals shifted early and late.  The 

computed correlation values for the early, prompt, and late signals are then used to 

generate a discriminator value which is used to update the two estimates.  In addition to 

the in-phase signal, a quadrature signal must be generated to account for 180 degree 

phase shift in the incoming signal.  Figure 9, on the next page, shows a detailed block 

diagram for the Tracking loop.
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Figure 9 - Tracking Block Diagram [1] 
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Position Calculation 

 

Once Tracking has completed, the Ephemeris data can be extracted.  The Ephemeris data 

provides information necessary to calculate the position and orbits of the satellites as well 

as to compute the time at which the data was transmitted.  Furthermore, a value called 

Time of Week (TOW) is extracted and related to a sample index.  The differences in the 

sample index values for the TOW is used to compute the pseudoranges. 

 

Once the pseudoranges have been computed, the Least Mean Squares method is used to 

estimate the position of the receiver as well as any time bias present.  Notably, at least 

four satellites must be available for the position fix to be computed.  The matrix shown in 

Figure 10 is setup using the available information and decomposed using QR 

factorization.  The use of QR factorization allows the software to solve the problem 

efficiently.   

 

 
Figure 10 - Least Mean Squares Matrix
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Scheduling 

 

After the initial position fix, orbital data is still available for the processed satellites.  This 

information is typically valid for at least 4 hours according to the Navstar specification 

[1].  During this time, only the Time-of-Week number must be synchronized for all 

satellites to determine the user’s position. 

 

Using this information, the position can be updated using a minimal amount of data and 

processing time.  Figure 11, below, shows the timing involved. 

 
Figure 11 - Scheduling Interval 

 

 
 

 

Figure 12, on the next page, indicates how the overall process will work in software.  

First, the initial data must be collected and processed.  Then, using the previous time a 

subframe was received, the next subframe time is estimated.  The scheduler waits until 

this time and collects a sample which will contain the telemetry (TLM) and handover 

(HOW) words for all the satellites that had been previously acquired.  While the 

scheduler is waiting for the next subframe, the new data is processed and a position 

estimate is computed.   

 

Theoretically, this process would yield a 1/6 Hz update rate or once every six seconds. 
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Figure 12 - Scheduler Flowchart 
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5. Software Display 

Google Earth 

 

The program uses Google Earth to display the determined position.  Google Earth is a 

free application available from Google which displays satellite imagery on a three-

dimensional (3d) globe.  The globe can be freely rotated and the view angle and elevation 

can be adjusted.  The software interfaces directly with the application via COM 

(Component Object Model).  A software wrapper for the interface provides functionality 

for drawing lines and points as well as positioning the view angle. 

 

Drawing Lines 

 

Figure 13, below, shows one of the benefits of being able to draw lines in three-

dimensional space.  In this picture, the lines begin at the individual satellite positions and 

converge on the receiver position.  

 

 
Figure 13 - Line Drawing Functionality 
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Drawing Points 

 

Drawing points is essential to showing the position determined by the software.  A text-

only output indicating the latitude, longitude, and altitude means little to a user since 

slight variations in the numbers can represent miles.  Furthermore, the continuous 

placement of points can help to indicate the motion of the receiver.  Figure 14, below, 

demonstrates this functionality. 

 
Figure 14 – Point Drawing Functionality 
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3d Skymaps 

 

Combining the line and point drawing functionality makes it possible to generate a 3d 

Skymap indicating the position of the satellites in the sky.  This capability provides not 

only an aesthetic benefit but also functionality for verifying appropriate satellite 

geometry.  Furthermore, this functionality could be used to verify that all visible satellites 

are acquired. 

 

 
Figure 15 - 3d Skymap Functionality 
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6. Results 

Coarse Acquisition Results 

 

Both the satellite number and its carrier frequency must be determined.  The results for a 

satellite search and carrier frequency search are shown. 

 

Satellite Search 

 

Figure 16, below, shows the results from a satellite search.  The Sample Index refers to 

the sample at which the correlation began, and the Satellite Number refers to which 

satellite’s C/A code was used.  The large peak indicates acquisition.  Notably, the width 

of the peak with respect to the sample index is very small.  This indicates that even a 

slight shift in the C/A code results in a dramatic change in the correlation value.   Most 

importantly, the values in the plane excluding the peak are very small limiting the 

possibility for false acquisition. 

 

 
Figure 16 - Satellite Search 
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Carrier Frequency Search 

 

Figure 17, below, shows the results of a correlation of a satellite’s C/A code varying the 

carrier frequency.  The large peak indicates the best carrier frequency estimate.  Notably, 

the peak does have a bit of width with respect to the frequency range.  This indicates that 

the frequency estimate may be off slightly without loss of signal.  However, the width is 

not so large as to ignore the effect altogether. 

 
Figure 17 - Carrier Frequency Search 
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Fine Acquisition Results 

 
 

Figure 18, shows the results from Fine Acquisition.  The large peak at the center of the 

graph indicates the sample index corresponding to the carrier frequency.  The sample 

index is then used with the nominal sampling frequency to compute a good carrier 

estimate. 
 

Figure 18 - Fine Acquisition Result 
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Tracking Results 

 

The Tracking Loop simultaneously tracks both the carrier and code frequency of the 

incoming signal.  Tracking results for both internal loops are shown below. 

Code Tracking Loop 

 

Figure 19 shows results from the code tracking loop. The offset is set to zero initially, but 

immediately moves in the negative direction as each millisecond of data is processed.  

After approximately 50 milliseconds (Samples) of data are processed, the loop offsets the 

code frequency around approximately -30 Hz. 

 
Figure 19 - Code Tracking Offset 
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Carrier Tracking Loop 

 

The graph shown in Figure 20, below, shows the carrier frequency offset versus time.  

The offset initially remains close to zero indicating that the initial estimate from Fine 

Acquisition was, in fact, acceptable.  The drift indicates that the actual carrier frequency 

is varying with respect to time due to the motion of the satellite. 
 

Figure 20 - Carrier Frequency Offset 
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Position Estimates 

 

The satellite image in Figure 21, on the next page, shows a position estimate determined 

by the software.  The 51.81 m accuracy is acceptable, but not great.  The position is 

calculated with the truncated TOW value likely accounting for some of the error in the 

pseudorange measurements. 

 

Figure 22, also on the next page, shows a second position result.  The accuracy in this 

case is worse than before.  Like the estimate in Figure 21, on the preceding page, the 

truncated TOW is used.  Additionally in this case, however, the estimate is worsened by 

poor satellite geometry.  The antenna was held out the window on a stick on a lower level 

of the north side of the building indicated by the actual position marker.  This, in effect, 

blocked or severely weakened many of the signals from the satellites in the Southern sky. 
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Figure 21 - Position Result 

 

 
 

 
Figure 22 - Position Result 
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7. Achievements 
 

The project goals were largely met with the following achievements: 

 

� Successful determination of position 

� An accurate position can be computed by the program. 

� Real-time satellite availability determination 

� Program can determine which satellites are visible with a high update rate. 

� Working C++ based receiver code 

� Converted C driver code for the USB sampling device to C++ 

� Multi-threaded object-oriented design 

� Software can utilize multi-core processors on Windows based PCs. 

� Google Earth C++ class wrapper 

� Program can mark the receiver position on satellite maps. 
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8. Conclusions 
 

The project was a success meeting the revised project goals.  The software is capable of 

determining the user’s position; however, several problems faced during the project 

exposed the demanding baseband signal processing requirements of this approach.  The 

raw hardware requirements make this approach impractical for commercial use. 

 

Despite the challenging requirements, advances in future technology will eventually 

enable this approach.  At present, a limited software approach utilizing a hardware-based 

carrier removal may be more feasible. 

 

Software approaches certainly have merit given their potential for cost-reduction and 

upgradeability.  The results of this project show that while it may not currently be 

possible to replace all hardware with software, a fully-functional software receiver design 

is not far away. 
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9. Recommendations for Future Work 
 

Developing software is a continuous process with the ability for constant improvement.  

The first recommendation is to continue developing the software to improve its efficiency 

as well as its capabilities. 

 

As a second recommendation, in order to make the process work in real-time, a hybrid 

approach where some of the processing is performed by hardware could be explored.  

Carrier removal is an expensive process in software that could be performed in hardware. 

 

Finally, research into neural networks may provide a way to process the sampled signals 

in ways not otherwise considered.  While the overall system requires high-accuracy not 

typically found with neural networks, the signal processing does not require extreme 

accuracy with parity checks providing verification of obtained data. 
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10. Appendix A – Software 
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11. Appendix B – Patent Search 
 

Figure 23, below, lists relevant results from a patent search.  While several patents exist 

for software-defined radio applications and hardware GPS applications, the number of 

patents specifically for software-defined GPS applications appears limited. 

 
Figure 23 - Table of Relevant Patents    

    

Patent NumberPatent NumberPatent NumberPatent Number    DescriptionDescriptionDescriptionDescription    

20060074554 Software-defined GPS receivers and distributed 
positioning system 

20067046193 Software GPS based integrated navigation 

20067002515 GPS receiver using software correlation for 
acquisition and hardware correlation for tracking 

2007213932 Computer Programmed with GPS Signal 

Processing Programs 

2005162313 GPS Receiver (Software) 
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