
Implementation of a Software-Defined GPS Receiver

Anthony J. Corbin

Advisor:

Dr. In Soo Ahn

Department of Electrical and Computer Engineering

Bradley University

Peoria, IL

Wednesday, May 14, 2008

 2

Abstract

At present, most commercial GPS receivers utilize hardware designs to perform signal

processing. While hardware designs may have many advantages, software designs have

several added benefits including the potential for cost reduction, fast time-to-market, and

the ability for after-market upgrades to support presently undefined navigation signals.

Processing GPS signals in real-time is computationally complex and stretches the

capabilities of even the newest processors. The goal of this project was to investigate this

complexity and implement a software-GPS receiver in real-time. The software was

written in C++ and utilizes a platform-independent and parallel architecture. In order to

obtain a platform-independent and parallel architecture, an open-source library from Intel

called Threading Building Blocks, which supports Windows and Linux, is used, which

overcomes some of the problems with re-coding for a platform-specific application

programmer’s interface (API). While this software stretches the capabilities of present-

day hardware, advances in processor design will lead to smaller, cheaper, and

upgradeable GPS receivers.

 3

Acknowledgements

I would like to thank the ECE department faculty, especially my advisor Dr. Ahn, for the

endless help given to me over the past years at Bradley. Their mentoring and guidance

has helped to give me a start towards a lifetime of achievement. I will always be in their

debt.

 4

 5

Table of Contents

1. Introduction.. 6
Rationale .. 6

Project Goal ... 6

2. System Description .. 7
Antenna Stage.. 7

SiGe GPS Sampler... 7

PC .. 8

3. Subsystem Requirements .. 9
Position Error... 9

Time to First Fix .. 9

4. Software Architecture ... 11
Coarse Acquisition... 11

Fine Acquisition... 12

Tracking... 12

Position Calculation... 14

Scheduling ... 15

5. Software Display .. 17
Google Earth .. 17

6. Results... 20
Coarse Acquisition Results.. 20

Fine Acquisition Results.. 22

Tracking Results .. 23

Position Estimates.. 24

7. Achievements.. 26

8. Conclusions... 27

9. Recommendations for Future Work.. 28

10. Appendix A – Software... 29

11. Appendix B – Patent Search .. 30

12. References .. 31

 6

1. Introduction

Rationale

Advances in technology have provided society with numerous benefits not available to

previous generations. However, a frequently overlooked fact is that the availability of

technology is not entirely driven by capability, but, instead, by cost. While GPS has been

available to the public since 1983, the technology did begin to see widespread use until

this decade slowed down by cost. Advances in technology have finally lowered the cost

to such a level that it is practical for a consumer to purchase a limited number of

medium-cost devices for applications such as driving. However, the cost is still too high

for the technology to practically be available in low-cost applications.

A possible solution to lower the cost of a GPS receiver lies in eliminating much of the

hardware used by the receiver and replacing it with software. In executing this approach,

the functionality of the hardware is shifted to the primary microcontroller eliminating the

need for costly application-specific circuitry.

In addition to lowering cost, a software-model allows the receiver to be updateable.

When the launch of the European Galileo System and the GPS Block III System is

completed, legacy hardware devices will be incompatible with the new signal schemes.

A software-defined system could merely be updated to work with the new system.

While the choice between using a hardware and software approach seems simple, a

software system is still largely difficult to implement due to the extreme number of

calculations required to process the signals.

Project Goal

A team at the University of Colorado-Boulder successfully developed hardware to

sample GPS signals and software in MATLAB to process it. However, the software

implemented is excruciatingly slow taking tens of minutes to obtain an initial fix in

certain instances. The limitation of the software prevents it from being practically

applied in any way. The primary goal of this project was to redesign the software in C++

and implement it on a DSP. However, the difficulty of the application was largely

underestimated leaving implementation on the available DSP impractical causing a shift

in the project goal to a purely PC-based approach.

 7

2. System Description

Figure 1, below, shows the high-level block diagram for the project. The GPS L1 signal

is received through an active GPS antenna. After the antenna stage, the SiGe GPS

Sampler chipset is used to sample and down-convert the signal. The PC then stores and

processes the sampled signal.

Figure 1 – High-Level System Block Diagram

Antenna Stage

Active GPS antennas are available from a variety of manufacturers and include at a

minimum a low-noise amplifier and a bandpass filter. An active antenna is necessary due

to the low transmit power of GPS satellites and the degradation and attenuation of the

signal as it travels through the atmosphere.

SiGe GPS Sampler

The SiGe GPS Sampler is a USB device developed by the University of Colorado and

SiGe. The device contains a USB chipset and an SE4110L GPS chipset.

The SE4110L is a complicated chipset consisting of a several sub-stages. The

subsystems are very similar to those of a superheterodyne receiver with the addition of a

high-frequency A/D converter. The device outputs the magnitude and sign of the

received signal at 4.1304 MHz. [2] Figure 2, below, shows the functional block diagram

from the SE4110L datasheet. Functionally, the SE4110L provides the digitally sampled

GPS L1 signal to the USB chipset.

Antenna

GPS L1 Signal
1575.42 MHz

PC
Sampled Signal
IF 4.1304 MHz

Display

Bandpass Filter - 1575.42 MHz

LNA
SiGe GPS
Sampler

Input: GPS L1 Signal

Outputs: Earth-Centered, Earth-Fixed Coordinates

 Latitude, Longitude, Altitude

Antenna Stage

 8

Figure 2 - SE4110L Functional Block Diagram

PC

The software is designed in such a way that it could be run on any PC. However, the

software contains optimizations for multi-core Intel PCs.

 9

3. Subsystem Requirements

The subsystem requirements are shown in Figure 3, below. The individual requirements

are discussed in the following sections.

Figure 3 - Table of Subsystem Requirements

ErrorErrorErrorError Specification(s)Specification(s)Specification(s)Specification(s)
Position Error 100 m

Sampling Rate 4.1304 MHz

Time to First Fix Cold Start : 2 minutes
Warm Start : 12 seconds

Display Earth-centered, Earth-fixed Coordinates
Latitude, Longitude, Altitude

UTC Time Update

Position Error

The position error specification is set at 100 meters largely as a result of a limitation

imposed by the sampling device. The sampling device obtains four samples per chip

which results in a minimum error of 73.31 meters as shown in Figure 4, below. The

specification is set at 100 meters in order to account for other possible error sources such

as ionospheric or multipath effects.

Figure 4 - Position Error Calculation

m
m

m

s

s

m

f

c

Chip

Chip

31.73
4

26.293

4
Precision

26.293
1

10023.1

103

6

8

===

=

×

×
==

λ

λ

Time to First Fix

The time to first fix depends on whether or not initial information is available. In order to

calculate a position fix, at least subframes 1-3 are required for processing. The subframes

last 6 seconds each and are broadcast in the order 1-5 with four and five cycling through

different sets of data. As it is initially unknown when subframe 1 will be sent, 36

seconds of data must be collected. Of this, thirty seconds accounts for collecting

subframes 1-5 and the other six seconds accounts for starting the collection in the middle

of a subframe.

 10

Figure 5, below, illustrates the subframe transmission process.

Figure 5 - Subframe Transmission

6 Seconds

Subframe 1

Subframe 2

Subframe 3

Subframe 4

Subframe 5

30 Seconds

In addition to collecting 36 seconds of data, the data must be processed. The software

cannot process the data in real-time due to hardware limitations so additional time must

be added to account for this limitation. On a multi-core pc, approximately 20 seconds per

satellite is required resulting in 80 seconds of processing time for 4 satellites. This sets

the cold-start value at approximately 2 minutes.

When the subframe data is already available, the Time-of-Week (TOW) value must be

updated which requires processing a minimal 1.2 seconds of data resulting in a warm

start time of approximately 12 seconds.

 11

4. Software Architecture

The high-level software architecture is shown in Figure 6, below. As the block diagram

shows, the software first acquires the visible satellites. Next, enough information is

extracted to determine the first position fix. Finally, using the initial estimate and ranging

information, the position is estimated.

Figure 6 - High-level Software Architecture

Coarse Acquisition

The first step in the software process is determining which satellites are visible. Ideally,

the intermediate frequency would be removed and the C/A code would be correlated for

each satellite. However, several additional factors must be considered. First, since the

satellites are moving very fast relative to the receiver position, the carrier frequency will

be shifted due to the Doppler Effect. Due to this, the exact intermediate frequency is not

known exactly making it necessary to check a range of frequencies. Second, it is very

unlikely the C/A code was received beginning at the first chip requiring that every

possible orientation be tested. Rather than checking each pattern one by one, correlation

is performed in the frequency domain and the best correlation alignment is detected.

Figure 7, below, shows the block diagram for the process.

Figure 7 - Coarse Acquisition Block Diagram

 12

Fine Acquisition

Once the satellites have been acquired, a rough estimate of the carrier frequency is

known. However, this estimate is not accurate enough for the tracking loop to lock onto

the carrier frequency. In order to find a better estimate, the current code phase estimate is

used to remove the C/A code from a large set of data and an FFT is performed. If the

C/A code was removed correctly, a peak will exist in the spectrum indicating an accurate

value for the carrier frequency. Figure 8, below, shows a detailed block diagram

describing the process.

Figure 8 - Fine Acquisition Block Diagram

Tracking

After Fine Acquisition has completed, accurate estimates for the code phase and carrier

frequency are available. These estimates can be used to demodulate the carrier, remove

the C/A code, and extract the navigation data. However, the estimates for the code phase

and carrier frequency are only valid over a short window of time. The Tracking loop

updates the estimates for these two values by using signals shifted early and late. The

computed correlation values for the early, prompt, and late signals are then used to

generate a discriminator value which is used to update the two estimates. In addition to

the in-phase signal, a quadrature signal must be generated to account for 180 degree

phase shift in the incoming signal. Figure 9, on the next page, shows a detailed block

diagram for the Tracking loop.

 13

Figure 9 - Tracking Block Diagram [1]

I

Q

Carrier Frequency

Phase Remainder

L1 Code

Remainder
Chipping Length Generator

P

E

L

Signal

I_P

I_L

I_E

Q_P

Q_L

Q_E

Code

Discriminator

Carrier

Discriminator

 14

Position Calculation

Once Tracking has completed, the Ephemeris data can be extracted. The Ephemeris data

provides information necessary to calculate the position and orbits of the satellites as well

as to compute the time at which the data was transmitted. Furthermore, a value called

Time of Week (TOW) is extracted and related to a sample index. The differences in the

sample index values for the TOW is used to compute the pseudoranges.

Once the pseudoranges have been computed, the Least Mean Squares method is used to

estimate the position of the receiver as well as any time bias present. Notably, at least

four satellites must be available for the position fix to be computed. The matrix shown in

Figure 10 is setup using the available information and decomposed using QR

factorization. The use of QR factorization allows the software to solve the problem

efficiently.

Figure 10 - Least Mean Squares Matrix

 ∆−−

=

∆

∆

 −−−
−>−

.

.

.

.

.

....

....

....

1 111

1

1

1

1

1

1 tc

tc

X
ZZYYXX

SATRCV
SATRCVSATRCVSATRCV ρρ

ρρρ

 15

Scheduling

After the initial position fix, orbital data is still available for the processed satellites. This

information is typically valid for at least 4 hours according to the Navstar specification

[1]. During this time, only the Time-of-Week number must be synchronized for all

satellites to determine the user’s position.

Using this information, the position can be updated using a minimal amount of data and

processing time. Figure 11, below, shows the timing involved.

Figure 11 - Scheduling Interval

Figure 12, on the next page, indicates how the overall process will work in software.

First, the initial data must be collected and processed. Then, using the previous time a

subframe was received, the next subframe time is estimated. The scheduler waits until

this time and collects a sample which will contain the telemetry (TLM) and handover

(HOW) words for all the satellites that had been previously acquired. While the

scheduler is waiting for the next subframe, the new data is processed and a position

estimate is computed.

Theoretically, this process would yield a 1/6 Hz update rate or once every six seconds.

 16

Figure 12 - Scheduler Flowchart

Collect 36s of Data

Extract orbital data

Coarse Acquisition

Fine Acquisition

Tracking

Estimate the Time at which

the TLM/HOW word will be
transmitted

Wait until 0.1s before

Collect 1.2s+ of data

Compute position

 17

5. Software Display

Google Earth

The program uses Google Earth to display the determined position. Google Earth is a

free application available from Google which displays satellite imagery on a three-

dimensional (3d) globe. The globe can be freely rotated and the view angle and elevation

can be adjusted. The software interfaces directly with the application via COM

(Component Object Model). A software wrapper for the interface provides functionality

for drawing lines and points as well as positioning the view angle.

Drawing Lines

Figure 13, below, shows one of the benefits of being able to draw lines in three-

dimensional space. In this picture, the lines begin at the individual satellite positions and

converge on the receiver position.

Figure 13 - Line Drawing Functionality

 18

Drawing Points

Drawing points is essential to showing the position determined by the software. A text-

only output indicating the latitude, longitude, and altitude means little to a user since

slight variations in the numbers can represent miles. Furthermore, the continuous

placement of points can help to indicate the motion of the receiver. Figure 14, below,

demonstrates this functionality.

Figure 14 – Point Drawing Functionality

 19

3d Skymaps

Combining the line and point drawing functionality makes it possible to generate a 3d

Skymap indicating the position of the satellites in the sky. This capability provides not

only an aesthetic benefit but also functionality for verifying appropriate satellite

geometry. Furthermore, this functionality could be used to verify that all visible satellites

are acquired.

Figure 15 - 3d Skymap Functionality

 20

6. Results

Coarse Acquisition Results

Both the satellite number and its carrier frequency must be determined. The results for a

satellite search and carrier frequency search are shown.

Satellite Search

Figure 16, below, shows the results from a satellite search. The Sample Index refers to

the sample at which the correlation began, and the Satellite Number refers to which

satellite’s C/A code was used. The large peak indicates acquisition. Notably, the width

of the peak with respect to the sample index is very small. This indicates that even a

slight shift in the C/A code results in a dramatic change in the correlation value. Most

importantly, the values in the plane excluding the peak are very small limiting the

possibility for false acquisition.

Figure 16 - Satellite Search

 21

Carrier Frequency Search

Figure 17, below, shows the results of a correlation of a satellite’s C/A code varying the

carrier frequency. The large peak indicates the best carrier frequency estimate. Notably,

the peak does have a bit of width with respect to the frequency range. This indicates that

the frequency estimate may be off slightly without loss of signal. However, the width is

not so large as to ignore the effect altogether.

Figure 17 - Carrier Frequency Search

 22

Fine Acquisition Results

Figure 18, shows the results from Fine Acquisition. The large peak at the center of the

graph indicates the sample index corresponding to the carrier frequency. The sample

index is then used with the nominal sampling frequency to compute a good carrier

estimate.

Figure 18 - Fine Acquisition Result

 23

Tracking Results

The Tracking Loop simultaneously tracks both the carrier and code frequency of the

incoming signal. Tracking results for both internal loops are shown below.

Code Tracking Loop

Figure 19 shows results from the code tracking loop. The offset is set to zero initially, but

immediately moves in the negative direction as each millisecond of data is processed.

After approximately 50 milliseconds (Samples) of data are processed, the loop offsets the

code frequency around approximately -30 Hz.

Figure 19 - Code Tracking Offset

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

0 50 100 150 200 250 300 350 400 450 500

Sample Number

F
re

q
u

e
n

c
y
 O

ff
s
e
t

 24

Carrier Tracking Loop

The graph shown in Figure 20, below, shows the carrier frequency offset versus time.

The offset initially remains close to zero indicating that the initial estimate from Fine

Acquisition was, in fact, acceptable. The drift indicates that the actual carrier frequency

is varying with respect to time due to the motion of the satellite.

Figure 20 - Carrier Frequency Offset

-60

-50

-40

-30

-20

-10

0

10

20

30

0 5000 10000 15000 20000 25000 30000

Time (ms)

F
re

q
u

e
n

c
y
 O

ff
s
e
t

(H
z
)

Position Estimates

The satellite image in Figure 21, on the next page, shows a position estimate determined

by the software. The 51.81 m accuracy is acceptable, but not great. The position is

calculated with the truncated TOW value likely accounting for some of the error in the

pseudorange measurements.

Figure 22, also on the next page, shows a second position result. The accuracy in this

case is worse than before. Like the estimate in Figure 21, on the preceding page, the

truncated TOW is used. Additionally in this case, however, the estimate is worsened by

poor satellite geometry. The antenna was held out the window on a stick on a lower level

of the north side of the building indicated by the actual position marker. This, in effect,

blocked or severely weakened many of the signals from the satellites in the Southern sky.

 25

Figure 21 - Position Result

Figure 22 - Position Result

51.81 m

104.4 m

 26

7. Achievements

The project goals were largely met with the following achievements:

� Successful determination of position

� An accurate position can be computed by the program.

� Real-time satellite availability determination

� Program can determine which satellites are visible with a high update rate.

� Working C++ based receiver code

� Converted C driver code for the USB sampling device to C++

� Multi-threaded object-oriented design

� Software can utilize multi-core processors on Windows based PCs.

� Google Earth C++ class wrapper

� Program can mark the receiver position on satellite maps.

 27

8. Conclusions

The project was a success meeting the revised project goals. The software is capable of

determining the user’s position; however, several problems faced during the project

exposed the demanding baseband signal processing requirements of this approach. The

raw hardware requirements make this approach impractical for commercial use.

Despite the challenging requirements, advances in future technology will eventually

enable this approach. At present, a limited software approach utilizing a hardware-based

carrier removal may be more feasible.

Software approaches certainly have merit given their potential for cost-reduction and

upgradeability. The results of this project show that while it may not currently be

possible to replace all hardware with software, a fully-functional software receiver design

is not far away.

 28

9. Recommendations for Future Work

Developing software is a continuous process with the ability for constant improvement.

The first recommendation is to continue developing the software to improve its efficiency

as well as its capabilities.

As a second recommendation, in order to make the process work in real-time, a hybrid

approach where some of the processing is performed by hardware could be explored.

Carrier removal is an expensive process in software that could be performed in hardware.

Finally, research into neural networks may provide a way to process the sampled signals

in ways not otherwise considered. While the overall system requires high-accuracy not

typically found with neural networks, the signal processing does not require extreme

accuracy with parity checks providing verification of obtained data.

 29

10. Appendix A – Software

 30

11. Appendix B – Patent Search

Figure 23, below, lists relevant results from a patent search. While several patents exist

for software-defined radio applications and hardware GPS applications, the number of

patents specifically for software-defined GPS applications appears limited.

Figure 23 - Table of Relevant Patents

Patent NumberPatent NumberPatent NumberPatent Number DescriptionDescriptionDescriptionDescription

20060074554 Software-defined GPS receivers and distributed
positioning system

20067046193 Software GPS based integrated navigation

20067002515 GPS receiver using software correlation for
acquisition and hardware correlation for tracking

2007213932 Computer Programmed with GPS Signal

Processing Programs

2005162313 GPS Receiver (Software)

 31

12. References

[1] Kai Borre, Dennis M. Akos, Nicolaj Bertelsen, Peter Rinder, and Soren Holdt Jensent,

Software-Defined GPS and Galileo Receiver : A Single-Frequency Approach.
Birkhauser: Boston, 2007, pp. 29, 83, 105.

[2] SiGe, SE4110L-EK1 Evaluation Board User Guide.

[3] SiGe, SE4110L Datasheet.

[4] U.S. DoD, Navstar GPS Space Segment/Navigation User Interfaces. IS-GPS-200

Rev. D.

[5] U.S. DoD, World Geodetic System 1984 : Its Definition and Relationships with Local

Geodetic Systems

[6] Wikipedia, GLONASS. <http://en.wikipedia.org/wiki/GLONASS>

[7] Wikipedia, GALILEO. <http://en.wikipedia.org/wiki/Galileo_gps>

[8] EDACafe.com. Atmel Introduces $5 GPS Baseband IC With 3 Meter Accuracy.
<http://www10.edacafe.com/nbc/articles/view_article.php?articleid=177910&page_
no=2>

