
GPS Gaucho:
A GPS Navigating Autonomous Vehicle

Bradley University Department of Electrical and Computer Engineering

Senior Capstone Project
May 16, 2007

Peter Fattore
Andrew Neebel

Advisors:
Dr. In Soo Ahn

Dr. Donald S. Schertz

1

Abstract

The GPS Gaucho vehicle has been expanded for the last few years and now stabilized for
integration of various functions necessary for autonomous navigation. The system consists of a
low-level HCS12 system for power train and steering, an EBox-II Windows CE system for
remote control and web interface, and a set of GPS receivers for differential GPS (DGPS). All
these sub-systems interact through the RS-232 serial connection for efficient and universal
communication. Wireless DGPS link between the base station and remote station is maintained
via RF RS-232 transceivers controlled by the E-Box. The IEEE 802.11 which the E-Box is
running on allows web pages to be served to allow universal client communication and the
vehicle control.

2

Table Of Contents

Abstract 1

List of Figures 3

 1. Introduction 4

 2. System Description 5
 2.1 Block Diagram 5
 2.2 Functional Description 6

 3. Design/Theory 7
 3.1 Differential GPS 7
 3.2 EBox-II/Windows CE 9

 3.2.1 Building Process 9
 3.2.2 Serial Port 10
 3.2.3 Ethernet/Networking 10

 4. Software 11
 4.1 Overall Structure 11
 4.2 Gaucho 11
 4.3 Navigation Control System 13

 5. Results 17

 6. Conclusion 17

 7. Future Work 18

References/Data Sheets 19

Appendix A: Gaucho Control System Beans Settings A1

Appendix B: Gaucho Control System User Code B1

Appendix C: Navigation Control System Code C1

3

List of Figures

Figure 1 – System Block Diagram of GPS Gaucho 5

Figure 2 – Block Diagram of Differential GPS 7

Figure 3 – Screenshot of OS Deployment Options 10

Figure 4 – Flowchart of Main Gaucho Control Loop 11

Figure 5 – Flowcharts of Movement and Steering Controls 12

Figure 6 – Flowchart of Gaucho A/D Converter Interrupt 13

Figure 7 – Flowchart of Incoming Request Process 14

Figure 8 – Screenshot of User Web Interface 15

Figure 9 – Flowchart of Monitor Process 15

4

1. Introduction

Our world is becoming automated. Autonomous navigation is a necessity for any device
that needs to operate without human interaction. GPS is a fantastic way to drive a vehicle, but
alone is not accurate enough to be useful. An application of Differential GPS will be needed to
create a working feasible design. Differential GPS is a system where a GPS receiver uses data
from a fixed base station to provide much more accurate positioning information. The goal of
this project is to build a system that uses Differential GPS as part of an autonomous navigation
system. The vehicle the system is running on will be capable of identifying its current location
and, based on that information, plot the correct path to another location that is specified by the
user through the web interface.

This was the initial intent of the project, but due to a number of setbacks and issues, this
objective was not accomplished. The end result of this project is a system that is capable of
being controlled remotely through a web interface and being told to execute preprogrammed
sequences. There is a Differential GPS system available on the vehicle, but due to limitations
encountered in other parts of the system, it has not been integrated into the system.

5

2. System Description

2.1 Block Diagram

The GPS Gaucho consists of four main parts as shown in Figure 1 below. These parts
are the Differential GPS, Web Interface for user control, the Gaucho and its internal control
systems and the Navigation System that runs on the EBox A RS-232 serial interface is used to
send location data from the Differential GPS to the EBox and from the EBox to the Gaucho.
The User Interface runs from a web server on the EBox and is accessed using a web browser.

The Differential GPS (DGPS) part of the system consists of two Novatel RT-20 GPS
Receivers. These units are capable of being programmed as either a DGPS receiver or base
station. One of the units is configured as a base station and provides correction data to the
other unit which acts as the receiver. The receiver unit then provides accurate positioning data
to the Navigation System which enables it to perform its task in a more precise and reliable
fashion.

The Web Interface is provided from a web server that runs as part of the Navigation
System. A web-based interface was chosen since this allows for user control from any
environment that is capable of running a web browser, be that a computer with Mac OSX,
Windows, Linux, or other environments. This allows for a much more flexible system that
requires very little in terms of requirements at the user level.

The Gaucho is the vehicle platform that the system resides on. There is a
microprocessor mounted on it that takes commands from the Navigation System via a RS-232
serial interface and translates them to appropriate actions in the drive motor and steering
actuator. It was initially believed that the control portion of the Gaucho was completed and
could be used from the beginning. However, this assumption proved to be false and the entire
Gaucho Control System ended up having to be written from scratch. This took a significant
portion of time, and as a result, many higher-level tasks that were originally intended to be
accomplished were not.

The Navigation System itself is the central part of the project, and, as such, is also the
part with the most complexity. This part communicates with all of the other parts of the system

Figure 1 System Block Diagram of GPS Gaucho

6

through various protocols and, depending on the inputs it receives from the DGPS and Web
Interface, tells the Gaucho where to go. This portion of the system was supposed to be able to
plot a straight line course to one point and then execute a turn to go to another point. However,
because of setbacks with both the Gaucho and the EBox itself, the resulting functionality is
much less. Currently, the Navigation System takes remote control commands from the Web
Interface and passes them on to the Gaucho and is capable of being programmed with a
sequence of commands to execute upon being told to by the Web Interface.

2.2 Functional Description

The Gaucho will be capable of identifying its current location, which becomes the starting
point, through the use of the Differential GPS component. When the user identifies a
destination to go to, the Navigation Control System can use the starting point and the identified
location to calculate the path to follow. For the purposes of our system, this path will be a
straight line from the starting point to the end point. Eventually, the system should be capable
of calculating and driving from one point to an intermediate point, and then execute a turn to go
to a third point. If at any time the Differential GPS quits functioning correctly, then the system
will cease performing self-navigation calculations and stop. At this point, the only way to control
the system will be through a remote control interface. Having remote control provides a way for
the user to guide the Gaucho away from any obstacles that may be blocking the GPS signals.
The User Interface will consist of a set of web pages that are served from a server running on
the EBox This interface will allows users to either identify a location to navigate to or send
remote control commands to the Gaucho.

7

3. Design/Theory

3.1 Differential GPS

Any type of autonomous vehicle needs precise driving. Typical GPS is inadequate for
stringent positioning requirements to the centimeter accuracy. Normal public GPS is accurate to
about 20 feet. Worst case, a vehicle wobbling within this gap is unacceptable. A better system
needs to be used, this is where Differential GPS (DGPS) comes into play.

As shown in Figure 2 above, Differential GPS is a two part system consisting of a base
station and remote station. The base station is at a fixed location. It compares real time data to
its known location and generates correction coordinates (RT20). The remote station receives
this information, applies the correction data, and outputs corrected coordinates in standard GPS
notation (Proprietary, NMEA, RTCM, RTCA). These systems individually will be described.

Using the two GPS unit system, accuracy is increased. The technical specifications say
that after 3 minutes of use, 20 cm accuracy is obtained and after 10-20 minutes of use, 3-4 cm
accuracy is in play. Both the base station and the remote station must maintain 4 satellites in
their view to maintain the RT20 DGPS system. Also, keeping the remote station still for any
length of time will improve the results from the accuracy algorithm. The log commands listed
later on below build the DGPS system called RT20.

Communication to and from these units involves serial communication. The setting for
this communication is 9600 Baud, 8 bits, 1 stop bit, no parity and no flow control. Though this is
not fast by today’s standards, it is adequate for our GPS communication. Each GPS unit has
two serial ports, either can be used for programming, sending data, or receiving data. The
commutations that will be described between units use RF serial transceivers. The basic
antenna allows an approximate 1 block radius for communication. This can be increased with
higher gain antennas. For our testing, it was acceptable for the time being. Since design on all
subsystems was split into components, a more powerful RF serial transceiver can be applied.
The base station was deployed from an antenna on the top of Jobst Hall. The fixed position of
this antenna has been set to:

● 40.699629905355 North Latitude
● 89.61684333092 West Longitude
● 198.75 meters Altitude

This was determined from averaging data over a few week period of time. Though this is
not 100% accurate, it was appropriate for the time limitations and applications for our project.
The station is able to output precise coordinates, but not necessarily accurate. The position is
fixed on the base station by using the following command:

Figure 2 Block Diagram of Differential GPS

8

Fix position 40.699629905355 -89.61684333092 199 base0

Once the position is fixed, logs needed to be sent to the remote station. There are two
main logs and a third optional log: RTCM3, RTCM59, and RTCM. RTCM3 reports the fixed
location that was entered into the base station every 10 seconds. RTCM59 reports the base
station’s satellite observation data every two seconds. This log is limited to 12 satellites. The
RTCM log is used for a quick 1 meter position for a worst case scenario. This is transmitted
every 5 seconds. These transmitted logs are setup on the base station with the following
commands:

Log com2 rtcm3 ontime 10
Log com2 rtcm59 ontime 2
Log com2 rtcm ontime 5

In order to prevent a user from having to enter all of these commands every time the unit
powers up, the GPS receivers utilize a built-in flash memory that the configuration can be saved
to. If there is a saved configuration, it is then automatically loaded upon power-up. After
entering the previous 4 commands, the next command is used to save the data.

Saveconfig

If an error was made, or if a completely new configuration is needed. It is possible to
wipe the flash memory with:

Creset

This command should be performed prior to the commands before saveconfig is called.
The remote station is used to deliver the finalized differential GPS coordinates. Similar to the
method to output logs, there is a method to receive logs. Since the remote station does the
calculations, it accepts the data with a single command:

Accept com2 rt20

This is a universal command that will listen for all data and compile coordinates out of it.
The more information it receives, the more accurate it will be. The sending of the additional
RTCM log has no change in programming on the remote station due to the single command line
to receive. Since all the processing is taken care of internally, all that has to be done is to set
the output port. This will output standard GPS coordinates which are indistinguishable from
normal coordinates aside from the accuracy of the data:

Log com1 P20A 1

Saveconfig should also be called again to make this system operate independently.
Considering the application on a remote device, a collision or bump could disrupt power and
reset the unit. The system should be able to operate again without the user inputting the data
again to program.

9

3.2 EBox-II/Windows CE 6

The EBox-II encompasses all of the subsystems on the GPS Gaucho. It is a compact
small form factor x86 computer. Due to its low power requirements, it is a great choice to run
the high-end control system. The EBox-II supports a variety of operating environments from XP
Embedded, CE, Linux, etc. For our use, we chose Windows CE 6. This operating system
natively supports the .Net 2.0 compact framework. Previous versions required an additional
install or build option for the operating system.

3.2.1 Building process

As with any .Net deployment, building and deploy is quick and easy. Complex network
calls or serial data communications can be programmed with a few lines of code compared to
raw C++ or P/Invokes. Using Visual Studio 2005 Service Pack 1, go to File> New Project.
Select Visual C#>Smart Device>Windows CE 5.0. After selecting the appropriate name and
locations and selecting OK, you can see the creation of the project. Once this is completed, it is
possible to compile applications that will work on the Windows CE platform.

Similar to this process is how the CE operating system is built. Considering any
embedded deployment of a system like this needs to have a small operating image size. While
creating a new project, select Platform Builder. After the project creation, there is a ‘Catalog
Items View’ that lists the optional components for the operating system. Some of the additions
are as follows: USB Storage Class Driver, Ram and Rom File System, and Hive Registry. The
USB Storage Class Driver allows USB flash drives to operate. The file system allows
permanent and temporary data transactions. The registry option allows the registry to be
written to the permanent storage so data can be saved and used after a cold boot.

In addition to configuring the separate modules, 2 environment variables need to be set:
BSP_VS2005_CORECON and IMGRAM128. Each should have a value of 1. The first variable
allows enhanced communication for deploying applications to the EBox-II. The second variable
tells the CE operating system exactly how much RAM the device has. The CE image will fail to
load if this is not set.

The deployment of an operating system build is a complex process. Within Visual Studio
and the platform project is open, click on Target > Connectivity Options. It is necessary to select
correct connectivity for the Download and transport. The option will be Ethernet. This will work
as long as the devices are on the same network. When the EBox-II is put into eboot mode, the
connectivity options will locate the EBox-II automatically if you click on settings. This is done
through UDP discovery. The interface used for setting these options is shown on the next page
in Figure 3.

Now that the setup is complete, it is possible to deploy the operating system. The EBox-
II will request an image when it is in eboot mode. Then with Visual Studio, you can deploy by
hitting F5 or click on Target>Connect Device to deploy the latest built image. The operating
system image (nk.bin) is sent via TFTP and loaded on the EBox-II. To save the image for more
permanent use, the nk.bin file should be moved to the root of the hard drive of the device. This
can be done with the network deployed image via the GUI and transferring the nk.bin over USB
flash drive or network share.

10

3.2.2 Serial Port

The serial port on the EBox-II is a standard computer serial port and can be addressed
and called in the same fashion. This version of the EBox is limited to a single serial port. A new
version (EBox-2300) has a second serial port. This would allow the EBox to pull GPS
coordinates on one port and control the Gaucho on the other port.

3.2.3 Ethernet/Networking

There is an on board 10/100 Ethernet port to allow network communication. Since wired
communication is not applicable to a mobile device, a Linksys wireless bridge was
implemented. It simply was programmed to connect to the wireless SSID named ‘BUwireless’.
Beyond that configuration, it acts as a simple pass-through and the connected device, which in
this case is the EBox, is on the network.

Figure 3 Screenshot of OS Deployment Options

11

4. Software

4.1 Overall Structure

There are two different sets of software on this system. The Gaucho contains an HCS12
microcontroller that processes commands sent through a serial interface and drives the steering
actuator and drive motors correctly. This portion is programmed using Embedded C and
Metrowerks Codewarrior 3.1. The second part of the system is the Navigation Control System
itself, which runs on the EBox The control system is written using C# and the .NET Framework,
and runs under Windows CE 6.0. The environment used to code this system is Visual Studio
2005. The two sets of software communicate back and forth through the use of a RS-232 serial
interface, which is more than adequate for the small amount of data that needs to be sent to
provide coordination.

4.2 Gaucho

As stated before, the Gaucho Control System is programmed using Embedded C. All of
the initialization and hardware access methods were automatically generated by the Processor
Expert beans that come with Codewarrior. This left only the actual identification and execution
of commands to be written. The basic flow of the main loop of the Gaucho software is shown in
the flowchart in Figure 4 below. Most of the system works through polling as shown below, but
part of the system had to be implemented through an interrupt.

As shown above, the Gaucho constantly watches for new data from the higher level
system or the user, depending on what is currently controlling it. As the gaucho receives letters
of the command, it adds them to a string where it builds the command. Upon receiving the final
character, which has been defined as being the escape sequence '\r', or a carriage return, the
Gaucho then processes the string and takes the appropriate action. Currently, all of the
commands are one character long, and the Gaucho decides what action to take based on what
the the first character is. The commands that are currently supported by the Gaucho are:

● F for forward movement
● B for backwards (reverse) movement
● R for turning the wheels to the right
● L for turning the wheels to the left
● C for centering the steering
● H to halt the Gaucho
● X to kill the system (stop everything now)

Figure 4 Flowchart of Main Gaucho Control Loop

12

The main execution loop is shown in Figure 4, but one part is left unclear – the
process/execute command step. The different movements the Gaucho can make,
forward/backward vs. turning, are carried out in different manners. Both of the drive motors and
the linear actuator for steering are driving by pulse-width modulation (PWM) signals coming
from the HCS12. However, the direction and on/off controls vary depending on which part of
the system is being controlled. Figure 5 below shows the flowcharts for executing the forward
and backward movement commands and the left, right, and center steering commands.

In the case of the drive wheels, the PWM signals only controls the speed, while on/off
and direction are controlled by a pair of bits, one for each direction, that are set and cleared.
Each drive motor has it's own pair of bits and PWM signal. When both bits are 0, the motors
are off, while they drive in one direction or the other if either bit is set. If both bits are set, it
causes a short across the motor terminals, which implements a braking action in the motors.
However, this braking behavior has not been used at all yet, and the Gaucho instead just
coasts to a stop when the motors are turned off. If desired, each motor can be driven
separately, but in order to make things simpler, the drive motors are driven in tandem.

The steering system is slightly different. While there is still a bit output that controls the
direction the actuator moves, instead of turning the actuator on and off with the bit, the power is
controlled directly from whether or not the PWM signal is running. When the pulse is not
running, then the actuator doesn't move and then when the PWM signal is started the actuator
is driven. Due to the limited range of the steering, there is little reason to have a variable speed
control, and so the actuator is always driven at the same speed. There is also a slight
difference between the left/right steering and the center steering. If the wheels are being
centered, the system first has to check to see if the the wheels are right or left of center, and the
based on that set the actuator bit the correct direction.

As stated before, part of the system was implemented through use of an interrupt. One
of the problems that was encountered was in the steering system where the system had to be
able to both start and stop the actuator. This had a tendency to prevent the Gaucho from
responding to other commands until the steering actuator finished moving. The program flow of
the interrupt is shown on the next page in Figure 6. Upon the interrupt firing, the system looks
to see if the steering wheels are being moved to a particular direction. If so, the system checks
to see if the actuator has reached the corresponding position, upon which it stops moving the
actuator. If neither condition is true, then the interrupt exits and waits for the next interrupt to
fire.

Figure 5 Flowcharts of Movement and Steering Controls

13

The string building behavior of the system was built to allow for future extensibility.
Commands are capable of being modified to allow for more precise control of the Gaucho. An
example of this is in the forward and reverse movement commands. Currently forward and
reverse use a fixed speed that has been hard coded. This has led to problems where speeds
that are almost too fast inside are barely able to start the Gaucho moving outside. This can be
improved upon by adding a number to the command that the Gaucho can use to determine the
speed. An example of this could be using numbers from 1 to 9, where 1 is the lowest power
that can move the Gaucho and 9 is the fastest safe speed.

4.3 Navigation Control System

The Navigation Control System is what does the majority of the work. It runs under
Windows CE using the .NET 2.0 Compact Framework. There are two main languages that are
used to program .NET applications, VB.NET and C#. For this system, C# was chosen because
it is similar to C, and easier to work with in an environment where C and C++ are the common
languages. The other advantage of using .NET 2.0 and Windows CE 6.0 together is that they
both use a common environment for writing software and building the OS images – Visual
Studio 2005.

Part of the core of the Navigation Control System is based on a simple HTTP server. In
order to provide a User Interface that can be used on any platform, the interface was
implemented as a web page, which therefore requires a web server. A simple HTTP server that

Figure 6 Flowchart of Gaucho A/D Converter Interrupt

14

is capable of serving up static pages is fairly simple. HTTP is a text-based protocol, so by
reading in lines of text and parsing them, the data sent by and wanted by the client is easy to
determine. Replies are also fairly easy to generate since most of the fields needed are static
and can be hard-coded into the server. The program flow of the web server is shown in Figure
7 below.

In order to make things as simple as possible, the web server is designed to use the
name of the page being requested as the command from the user. Currently, the only
capability that the entire system has is remote navigation. Therefore, the only commands that
the user sends are commands to directly control various movement functions of the Gaucho.
These commands were implemented based on the URL of the page being requested from the
server. The pages and corresponding commands are listed below:

● left.html to turn left
● center.html to center wheels
● right.html to turn right
● forward.html to go forward
● backward.html to go backward
● halt.html to stop
● sequence.html to execute a preprogrammed sequence

There is also an index.html page that is a set of Hyperlinks laid out that execute various
commands. This same page is also provided whenever one of the main movement commands
is executed. The sequence page is different in that it instead builds and sends the page while
the Gaucho is executing commands, which allows the user to be able to tell what the Gaucho is
doing while it does it. A screenshot of the web page interface is shown in Figure 8 at the top of
the next page.

The page shown in Figure 8 is a very basic interface to control the Gaucho, but it allows the
user to direct the Gaucho anywhere that it needs to go, thus serving it's purpose. This interface
was only built to provide a way to test other parts of the system and allow the Gaucho to be
navigated away from obstacles in the case that something goes wrong completely. This

Figure 7 Flowchart of Incoming Request Process

15

functionality of the system should remain in existence because of it's usefulness even when the
autonomous navigation is functional.

Figure 8 Screenshot of User Web Interface

Figure 9 Flowchart of Monitor Process

16

The other part of the system is a background process that runs constantly and compares
the current location from the DGPS to the desired location. It also calculates direction and
speed based on the past several DGPS locations, which allows it to tell if the Gaucho is
heading towards or away from the target location and how long it is going to take to reach it. If
the direction is not correct to get the Gaucho from the Current Location to the Destination, then
the system instructs the Gaucho to turn towards the Destination until it is pointing the correct
direction. This process flow is shown in Figure 9 on the previous page.

Unfortunately, due to problems encountered in other parts of the Autonomous Vehicle
system that caused delays, this part of the system was never implemented. Due to this,
beyond the basic structure shown in Figure 9, very little of this part of the GPS Gaucho system
has been identified and designed.

17

5. Results

The goals of the project were not completely met. It was intended that the Gaucho
would be capable of driving around the Quad on its own when this project is over, but currently,
the only functionality that exists is that to remote control the Gaucho through the web interface.
While the DGPS has been researched and implemented, it has not been possible to integrate it
with the rest of the system yet. This is because there is only one serial port on the EBox,
making it impossible to connect two devices. It was originally intended to overcome this
problem through use of a USB-serial dongle, however, the Windows CE drivers for these types
of devices do not want to recognize the dongle as being supported.

Another major problem that was encountered was in the Gaucho itself. Last year there
was a project to build hardware and software for the Gaucho that could be used by projects
without dealing with any of the low-level control systems. That project was only partially
successful in that the hardware was well-built and integrated together nicely, but the software
was unusable. Much of the early development time of this project was spent first trying to test
and make the old software work before eventually deciding that new software needed to be
written completely from scratch. This led to the design and building of the system described in
the Gaucho Software section above.

6. Conclusion

This project encountered many stumbling blocks which eventually led to it not being
completed according to the original goals. This is not to say that the project wasn't successful
in some way. Many of the problems that were encountered were due to things outside of our
control, the best example of this being the Gaucho. When we started this project in the fall, we
were led to believe that the Gaucho's control system was completely finished and functional.
However, since it turned out that the only functional part of the Gaucho was the hardware, we
ended up being set back considerably, both from trying to get the old code to run on the
Gaucho, upon which we learned that the code was unusable, and from development of new
code that would work correctly. Because of this problem and the time spent solving it,
additional problems were compounded. By the time that we learned that Windows CE was not
going to support our USB-serial dongle, it was too close to the end of the semester to try and
get hardware that would allow us to bypass this problem. This has led us to the point where it
is not possible to implement any form of GPS usage, either for navigation or reporting, at this
time. However, replacing the EBox with a newer version that does have multiple serial ports
would eliminate this problem and allow for proper continuation of the project.

18

7. Future Work

This project has plenty of work that could still be accomplished on it. Future projects will
be able to make use of and improve the Gaucho Control System in addition to now having a
functional Differential GPS system. Some work that could easily be continued on this project
includes:

● Replacement of the EBox with a better platform and development of the navigation
system

● Differential GPS mapping capabilities
● Improvements to the Gaucho control system, such as obstacle detection, direction from

a compass, and distance sensing and calculations

19

References/Data Sheets

1. 78M09A 9V Regulator Data Sheet

2. ICOP Windows Embedded CE 6.0 Jump Start Guide
http://www.dsl-ltd.co.uk/software/ebox2300/eBox2300_CE6_Guide.pdf

3. Configuring a registry file to run an application at startup
http://msdn2.microsoft.com/en-us/library/aa909369.aspx

4. Registry Types
http://msdn2.microsoft.com/en-us/library/aa910532.aspx

5. File Systems and Storage Management Catalog Items
http://msdn2.microsoft.com/en-us/library/aa916309.aspx

6. GPSCard Command Descriptions Manual
http://www.novatel.com/Documents/Manuals/om-20000008.pdf

7. GPSCard Installation and Operating Manual
http://www.novatel.com/Documents/Manuals/om-20000007.pdf

8. ProPak User Manual
http://www.novatel.com/Documents/Manuals/om-20000011.pdf

A1

Appendix A: Gaucho Control System Beans Settings

CPU Bean:

Left Motor Forward Pin:

Left Motor Backward Pin:

A2

Right Motor Forward Pin:

Right Motor Backward Pin:

Left Motor PWM Signal:

A3

Right Motor PWM Signal:

Steering Actuator Direction Pin:

Steering Actuator PWM Signal:

A4

Steering Actuator A/D Converter:

A5

Asynchronous Serial Interface:

B1

Appendix B: Gaucho Control System User Code

GauchoCommander.C

/* MODULE GauchoCommander */

/* Including used modules for compiling procedure */
#include "Cpu.h"
#include "Events.h"
#include "SerialPort.h"
#include "PWM_Right_Speed.h"
#include "PWM_Left_Speed.h"
#include "Bit_Right_Forward.h"
#include "Bit_Right_Backward.h"
#include "Bit_Left_Forward.h"
#include "Bit_Left_Backward.h"
#include "PWM_Steering_Speed.h"
#include "Bit_Steering_Direction.h"
#include "ADC_Steering_Position.h"
/* Include shared modules, which are used for whole project */
#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"

#include "myVars.h"

// Sends a reply back to tell the host that it got the command
void sendAck(byte* message, word length) {
 word count;
 if (SerialPort_SendBlock("ACK:", 4, &count) == ERR_OK) {
 SerialPort_SendBlock(message, length, &count);
 }
}

// Sends a reply back to tell the host that it didn't understand the
command
void sendUnknown(byte* message, word length) {
 word count;
 if (SerialPort_SendBlock("UKN:", 4, &count) == ERR_OK) {
 SerialPort_SendBlock(message, length, &count);

B2

 }
}

// Reads up to a newline character or max length
// ERR_OK returned if found newline
// ERR_OVERRUN returned if maxLength reached
// line with newline is in line, length is in count
byte readLine(byte line[], word maxLength, word* count) {
 byte character = 0;
 *count = 0;
 while (character != '\r') { // The carriage return character code
 if (SerialPort_RecvChar(&character) == ERR_OK) {
 line[*count] = character;
 (*count)++;
 if (*count == maxLength) {
 return ERR_OVERRUN;
 }
 }
 }
 return ERR_OK;
}

// Drive the Gaucho forwards
void doForward(byte message[], word length) {
 sendAck("Forward\r", 8);
 Bit_Right_Backward_ClrVal();
 Bit_Right_Forward_SetVal();
 Bit_Left_Backward_ClrVal();
 Bit_Left_Forward_SetVal();
}

// Drive the Gaucho backwards
void doBackward(byte message[], word length) {
 sendAck("Backward\r", 9);
 Bit_Right_Forward_ClrVal();
 Bit_Right_Backward_SetVal();
 Bit_Left_Forward_ClrVal();
 Bit_Left_Backward_SetVal();
}

// Turn the wheels to the right

B3

void doRight(byte message[], word length) {
 word meas_val = 0;

 sendAck("Right\r", 6);
 Bit_Steering_Direction_PutVal(0);
 PWM_Steering_Speed_SetRatio16(0x4000);
 PWM_Steering_Speed_Enable();

 TurningDirection = Turning_RIGHT;
}

// Turn the wheels to the left
void doLeft(byte message[], word length) {
 word meas_val = 0xFFFF;

 sendAck("Left\r", 5);
 Bit_Steering_Direction_PutVal(1);
 PWM_Steering_Speed_SetRatio16(0x4000);
 PWM_Steering_Speed_Enable();

 TurningDirection = Turning_LEFT;
}

// Center the wheels
void doCenter(byte message[], word length) {
 word meas_val;
 sendAck("Center\r", 7);

 ADC_Steering_Position_Stop();
 do {
 ADC_Steering_Position_MeasureChan(TRUE, 0);
 } while (ADC_Steering_Position_GetChanValue(0, &meas_val) != ERR_OK);

 if (meas_val == 749) {
 // Do nothing
 } else if (meas_val < 749) { // Turn to the right
 Bit_Steering_Direction_PutVal(0);
 } else { // Turn to the left
 Bit_Steering_Direction_PutVal(1);
 }

B4

 PWM_Steering_Speed_SetRatio16(0x4000);
 TurningDirection = Turning_STRAIGHT;
 PWM_Steering_Speed_Enable();

 ADC_Steering_Position_Start();
}

// Halt all actions, stops wheels, centers steering
// This tends to coast to a stop
void doHalt(byte message[], word length) {
 sendAck("Stop\r", 5);
 Bit_Right_Forward_ClrVal();
 Bit_Right_Backward_ClrVal();

 Bit_Left_Forward_ClrVal();
 Bit_Left_Backward_ClrVal();

 // For now, need to center wheels later
 PWM_Steering_Speed_Disable();
 PWM_Steering_Speed_SetRatio16(0);
 TurningDirection = Turning_NONE;
}

// Kills all actions, no reset, meant to be an emergency stop, so Ack at
end
// Setting all bits so that it brakes the wheels
void doKill(byte message[], word length) {
 Bit_Right_Forward_SetVal();
 Bit_Right_Backward_SetVal();
 Bit_Left_Forward_SetVal();
 Bit_Left_Backward_SetVal();
 PWM_Steering_Speed_Disable();
 PWM_Steering_Speed_SetRatio16(0);
 TurningDirection = Turning_NONE;
 sendAck("Killed\r", 7);
}

void main(void)
{
/***Processor Expert internal initialization. DON'T REMOVE THIS CODE!!!***/
 PE_low_level_init();

B5

 /*** End of Processor Expert internal initialization. ***/

 /*Write your code here*/

 // My Init
 TurningDirection = Turning_NONE;
 ADC_Steering_Position_Start();

 for(;;) {
 byte message[32];
 word length = 0;
 if (readLine(&message, 32, &length) == ERR_OK) {
 if (length < 2) { // We should have at least two characters,

//command and newline
 continue;
 }
 switch (message[0]) {
 case 'F':
 case 'f': doForward(message, length); break;
 case 'B':
 case 'b': doBackward(message, length); break;
 case 'R':
 case 'r': doRight(message, length); break;
 case 'L':
 case 'l': doLeft(message, length); break;
 case 'C':
 case 'c': doCenter(message, length); break;
 case 'H':
 case 'h': doHalt(message, length); break;
 case 'X':
 case 'x': doKill(message, length); break;
 default: sendUnknown(&message, length); break;
 }
 }
 }

 /*** Processor Expert end of main routine. DON'T MODIFY THIS CODE!!! ***/
 for(;;);
 /*** Processor Expert end of main routine. DON'T WRITE CODE BELOW!!! ***/

B6

} /*** End of main routine. DO NOT MODIFY THIS TEXT!!! ***/
/* END GauchoCommander */

Events.C
Note: Edited to remove unmodified generated methods

/* MODULE Events */

/*Including used modules for compilling procedure*/
#include "Cpu.h"
#include "Events.h"
#include "SerialPort.h"
#include "PWM_Right_Speed.h"
#include "PWM_Left_Speed.h"
#include "Bit_Right_Forward.h"
#include "Bit_Right_Backward.h"
#include "Bit_Left_Forward.h"
#include "Bit_Left_Backward.h"
#include "PWM_Steering_Speed.h"
#include "Bit_Steering_Direction.h"
#include "ADC_Steering_Position.h"

/*Include shared modules, which are used for whole project*/
#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"

#include "myVars.h"
/*
** ===
** Event : ADC_Steering_Position_OnEnd (module Events)
**
** From bean : ADC_Steering_Position [ADC]
** Description :
** This event is called after a measurements (which consists
** of 1 or more conversions) is finished.
** Parameters : None
** Returns : Nothing
** ===
*/

B7

void ADC_Steering_Position_OnEnd(void) {
 word meas_val;
 if (ADC_Steering_Position_GetChanValue(0, &meas_val) == ERR_OK) {
 switch (TurningDirection) {
 case Turning_LEFT:
 if (meas_val < 455) {
 PWM_Steering_Speed_Disable();
 TurningDirection = Turning_NONE;
 }
 break;
 case Turning_RIGHT:
 if (meas_val > 1000) {
 PWM_Steering_Speed_Disable();
 TurningDirection = Turning_NONE;
 }
 break;
 case Turning_STRAIGHT:
 if (meas_val == 749) {
 PWM_Steering_Speed_Disable();
 TurningDirection = Turning_NONE;
 }
 break;
 default: break;
 }
 }
}

/* END Events */

C1

Appendix C: Navigation Control System Code

GauchoSerial.cs

using System;
using System.Collections.Generic;
using System.IO.Ports;
using System.Text;

namespace GPSGaucho {
 class GauchoSerial {
 private SerialPort sPort = null;
 public GauchoSerial(string Port) {
 sPort = new SerialPort(Port, 19200, Parity.None, 8,

StopBits.One);
 sPort.Open();
 }
 public void Left() {
 sPort.Write("L\r");
 }
 public void Right() {
 sPort.Write("R\r");
 }
 public void Center() {
 sPort.Write("C\r");
 }
 public void Halt() {
 sPort.Write("H\r");
 }
 public void Forward() {
 sPort.Write("F\r");
 }
 public void Backward() {
 sPort.Write("B\r");
 }
 ~GauchoSerial() {
 sPort.Close();
 }
 }
}

C2

HTTPServer.cs

using System;
using System.Collections.Generic;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading;

namespace GPSGaucho {
 public class HTTPServer {

 private Socket listeningSock = null;
 private GauchoSerial gaucho = null;

 public HTTPServer() {
 this.gaucho = new GauchoSerial("COM1");
 this.listeningSock = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 // Listen on all interfaces, HTTP port
 this.listeningSock.Bind(new IPEndPoint(IPAddress.Any, 8080));
 }

 public void Start() {
 this.listeningSock.Listen(10);

 this.listeningSock.BeginAccept(
 new AsyncCallback(this.listeningSock_AcceptAsyncCallback),
 null);
 }

 public void Stop() {
 this.listeningSock.Close();
 }

 private void listeningSock_AcceptAsyncCallback(IAsyncResult ar) {
 Socket clientSock = this.listeningSock.EndAccept(ar);
 if (clientSock == null) {

C3

 // This means that there is no client,
 //probably because the connection was closed
 return;
 }
 Console.WriteLine("Client connected");
 processRequest(clientSock);
 clientSock.Close();

 // Look for the next connection
 this.listeningSock.BeginAccept(
 new AsyncCallback(this.listeningSock_AcceptAsyncCallback),
 null);
 }

 private void processRequest(Socket sock) {
 NetworkStream stream = new NetworkStream(sock);
 StreamReader reader = new StreamReader(stream);
 List<string> requestLines = new List<string>();
 string line = String.Empty;
 try {
 while ((line = reader.ReadLine()) != String.Empty) {
 Console.WriteLine(line);
 requestLines.Add(line);
 }
 }
 catch (IOException) {
 try {
 reader.Close();
 stream.Close();
 }
 catch (IOException) { }
 }
 string method = requestLines[0].Split(' ')[0];
 string file = requestLines[0].Split(' ')[1];
 switch (method) {
 case "GET": this.process_GET(stream, file); break;
 default: break;
 }
 try {
 reader.Close();

C4

 stream.Close();
 }
 catch (IOException) { }
 }

 private void process_GET(NetworkStream stream, string file) {
 StringBuilder returnData = new StringBuilder();
 // Write the headers
 // Insert the HTTP code line later on
 returnData.Append("Server: Gaucho Control Server\r\n");
 returnData.Append("Connection: close\r\n");
 returnData.Append("Cache-Control: no-cache\r\n");
 returnData.Append("Expires: 0\r\n");
 returnData.Append("ETag: \"\"\r\n");
 returnData.Append(
 "Content-Type: text/html; charset=ISO-8859-1\r\n");
 returnData.Append("\r\n");

 if (file == "/" || file == "/index.html") {
 returnData.Insert(0, "HTTP/1.1 200\r\n");
 returnData.Append(Properties.Resources.Index);
 }
 else if (file == "/left.html") {
 // Turn left
 this.gaucho.Left();
 returnData.Insert(0, "HTTP/1.1 200\r\n");
 returnData.Append(Properties.Resources.Index);
 }
 else if (file == "/right.html") {
 // Turn right
 this.gaucho.Right();
 returnData.Insert(0, "HTTP/1.1 200\r\n");
 returnData.Append(Properties.Resources.Index);
 }
 else if (file == "/center.html") {
 // Center
 this.gaucho.Center();
 returnData.Insert(0, "HTTP/1.1 200\r\n");
 returnData.Append(Properties.Resources.Index);
 }

C5

 else if (file == "/halt.html") {
 // Halt
 this.gaucho.Halt();
 returnData.Insert(0, "HTTP/1.1 200\r\n");
 returnData.Append(Properties.Resources.Index);
 }
 else if (file == "/forward.html") {
 // Forward
 this.gaucho.Forward();
 returnData.Insert(0, "HTTP/1.1 200\r\n");
 returnData.Append(Properties.Resources.Index);
 }
 else if (file == "/backward.html") {
 // Backward
 this.gaucho.Backward();
 returnData.Insert(0, "HTTP/1.1 200\r\n");
 returnData.Append(Properties.Resources.Index);
 }
 else if (file == "/sequence.html") {
 returnData.Insert(0, "HTTP/1.1 200\r\n");
 byte[] buf =
 Encoding.ASCII.GetBytes(returnData.ToString());
 stream.Write(buf, 0, buf.Length);
 stream.Flush();
 returnData = new StringBuilder();
 returnData.Append(this.executeSequence(stream));
 }
 else {
 returnData.Insert(0, "HTTP/1.1 404\r\n");
 }
 try {
 // We try/catch nothing just to make sure
 // the stream doesn't crash
 // if it was closed by the browser
 byte[] buffer =
 Encoding.ASCII.GetBytes(returnData.ToString());
 stream.Write(buffer, 0, buffer.Length);
 stream.Flush();
 }
 catch (IOException) { }

C6

 }

 private string executeSequence(NetworkStream stream) {
 try {
 byte[] buffer = Encoding.ASCII.GetBytes(
 "<html><head><title>Pre-Programmed Sequence</title></head><body>");
 stream.Write(buffer, 0, buffer.Length);
 stream.Flush();
 }
 catch (IOException) {
 return "";
 }
 try {
 byte[] buffer = Encoding.ASCII.GetBytes(
 "<p>Centering Wheels...
\n");
 stream.Write(buffer, 0, buffer.Length);
 stream.Flush();
 this.gaucho.Center();

 buffer = Encoding.ASCII.GetBytes(
 "<p>Going Forward, 5 seconds...
\n");
 stream.Write(buffer, 0, buffer.Length);
 stream.Flush();
 this.gaucho.Forward();
 Thread.Sleep(5000);

 buffer = Encoding.ASCII.GetBytes(
 "<p>Turning Right, 3 seconds...
\n");
 stream.Write(buffer, 0, buffer.Length);
 stream.Flush();
 this.gaucho.Right();
 Thread.Sleep(3000);

 buffer = Encoding.ASCII.GetBytes(
 "<p>Centering Wheels...
\n");
 stream.Write(buffer, 0, buffer.Length);
 stream.Flush();
 this.gaucho.Center();

 buffer = Encoding.ASCII.GetBytes(

C7

 "<p>Going Forward, 5 seconds...
\n");
 stream.Write(buffer, 0, buffer.Length);
 stream.Flush();
 // Already moving forward
 Thread.Sleep(5000);

 buffer = Encoding.ASCII.GetBytes("<p>Stopping...
\n");
 stream.Write(buffer, 0, buffer.Length);
 stream.Flush();
 this.gaucho.Halt();
 }
 catch (IOException) {
 this.gaucho.Halt();
 }
 return "</p></body></html>";
 }
 }
}

Program.cs

using System;
using System.Collections.Generic;
using System.Text;

namespace GPSGaucho {
class Program {

static void Main(string[] args) {
HTTPServer server = new HTTPServer();
server.Start();
Console.ReadLine();
server.Stop();

}
}

}

