

Autonomous Vehicle Navigation
Using Stereoscopic Imaging

Project Report

By:

Adam Beach
 Nick Wlaznik

Advisors:

Dr. Huggins
Dr. Stewart

May 15, 2007

 2

Abstract

This capstone project is an integrated hardware-software system that
autonomously navigates a mobile platform through a terrain using stereoscopic
imaging, which is the same technique used by the Mars rovers, Spirit and
Opportunity. Stereoscopic imaging allows 3D information to be extracted from
images obtained by two cameras. The system utilizes color correlation to
determine the shift index between corresponding pixels of an image set. The
software then uses this data to calculate the distance from the platform to the
obstacles using the pinhole model for the cameras. Finally, control signals are
generated, based on this distance information, to move the platform through the
terrain without collisions.

 3

Table of Contents

I. Introduction

II. System Description
 A. Subsystems
 1. Camera Subsystems
 2. Laptop and Software Subsystems
 3. Robotic Platform Subsystems

 B. Modes Of Operation
 1. Calibration Mode
 2. Navigation Mode

III. Subsystem Requirements
 1. Camera Requirements
 2. Laptop and Software Requirements
 3. Robotic Platform Requirements

IV. Results
 A. Pinhole Model and Distance Calculations
 B. Color Correlation and Distance Calculations
 C. Image Capture and Correction
 D. Edge Detection
 E. Conclusion and Recommendations of Further Work

V. Equipment List

VI. Related Patents

VII. Bibliography

Appendices:

A. Subsystem Specification Summary Tables
B. Colorspace Correlation
C. Color Correlation and Distance Calculation Matlab Code
D. How to set up multiple web cams in Dorgem
E. Image Capture and Correction Matlab Code
F. Edge Detection Matlab Code

 4

I. Introduction

The objective of the Autonomous Vehicle Navigation Using Stereoscopic Imaging
senior capstone project, NavBot, is to develop a robot that can independently
navigate through a terrain that contains colored obstacles. The system utilizes
stereoscopic imaging and color correlation to detect objects in its path. It then
calculates the distance from the robot to the obstacles. Distance calculations are
made using the pinhole model for the cameras. There will be two modes of
operation for the robot. The first mode, calibration, will be used to setup and
ensure that the subsystems are functioning within specifications. Navigation
mode will be the main mode of operation. The goal is to navigate through the
terrain as quickly as possible.

 5

II. System Description

The system consists of two cameras, a Gateway laptop computer, and an
ActivMedia Pioneer 2 Mobile Robotic Platform as depicted in Figure 1. The
robotic platform is the same one that was used in the GuideBot and MapBot
projects of 2005 and 2006 respectively. The cameras are Logitech Buddy Cams.
The two cameras and the laptop computer are mounted on top of the robotic
platform.

The NavBot uses stereoscopic imaging and color correlation to assess the terrain
through which it is moving. Stereoscopic imaging is a technique used to create a
three-dimensional map from 2 two-dimensional images. The distance from the
robot to obstacles in its view can be calculated from the resulting three-
dimensional map. The robot will be stationary when the images are to be taken,
allowing the images to be captured one after the other rather than
simultaneously. The three-dimensional map is generated using edge detection
and color space correlation. Appendix A contains a short description of color
space correlation. The distance to the obstacles is calculated using the pinhole
model for the cameras. Information regarding the pinhole model can be found in
Appendix B.

There will be two modes of operation: Calibration and navigation. The
calibration mode will be used to set up the various subsystems and confirm that
they are operating within the specifications. The system will switch to navigation
mode once calibration is complete.

Figure 1: System Block Diagram

 6

A. Subsystems

As depicted in Figure 1, the system has three subsystems. They are the camera
subsystem, the laptop and software subsystem, and finally the robotic platform
subsystem.

1. Camera Subsystem

The camera subsystem consists of two Logitech Buddy Cams. These are color
webcams that interface to the laptop via USB. As depicted in Figure 2, the
cameras are mounted on a horizontal platform rigidly attached to the robot and
are a fixed distance apart. The camera subsystem converts photons into digital
data upon a trigger sent to them from the laptop computer. This digital data is
compatible with Matlab. The image is stored in the Matlab workspace as a three-
dimensional array containing the red, green, and blue values (0-255) for each
pixel. The inputs and outputs to the camera subsystem are shown in Figure 2.
The cameras function the same in the calibration and navigation modes.

Figure 2: Illustration of Camera Mount

Figure 3: Camera Subsystem

 7

2. Laptop and Software Subsystems

The laptop runs the software necessary for system operation. The laptop sends
a signal out via USB to instruct each of the cameras to take a picture. The
resulting images are then sent to the laptop via USB. The software on the laptop
does the necessary calculations and makes a decision. Once the software has
made a decision, signals are sent via a serial interface instructing the robot to
move in the appropriate direction. The signals received from the robot contain
information regarding robot motion and will be used during calibration mode. The
user inputs and outputs are also used during calibration mode.

Figure 4: Laptop Computer Subsystem

 8

3. Robotic Platform Subsystem

The ActivMedia robotic platform uses a software package called Aria. With this
software, the robot can be controlled using single letters as instructions. For
example, to move the robot directly forward, the letter d is outputted from the
laptop via the serial interface. The microprocessor on the robotic platform
analyzes the movement instructions signal and then sends signals to the motors
to turn the wheels in the appropriate directions. The robot sends out other
signals via the serial interface, however they are not relevant to this project. The
robot functions the same in both modes.

Figure 5: Robot Subsystem

 9

B. Modes of Operation

There are two modes of operation, calibration mode and navigation mode. Each
of these modes will be described in the following sections.

1. Calibration Mode

This mode will be used to ensure that the subsystems are setup and working
properly. The user will initiate all of the steps performed in calibration mode
manually. To ensure that the lighting is sufficient, a preview window of each
camera will be opened in Matlab. The user will observe the preview and
determine if the lighting is appropriate. While these preview windows are open,
the user will also manually focus each camera if necessary. Lastly, the user will
send various motion commands to the robot to ensure that it moves within
specifications. If movements are not within specifications, appropriate changes
will be made to the software to compensate for any discrepancies. When
calibration is complete, the mode will be changed to navigation.

Figure 6: Calibration Mode Flow Chart

 10

2. Navigation Mode

Navigation mode is the primary mode of operation. The software flow for this
mode is shown in Figure 7. The first step is to retrieve the images from the
cameras. The software sends a trigger to initiate this task. A signal is sent to
each camera to capture an image. The image is then stored in the Matlab
workspace as an image array. Since the robot is stationary, the two images can
be captured in succession. Unless supported by the cameras, Matlab is unable
to process two image captures simultaneously. The Logitech Buddy Cams do
not support this feature. After the images are captured, they are straightened
and cropped so that the objects lie on the same horizontal lines. Once the
images are aligned, the software uses them to generate a three dimensional
map. The edges of the objects will be detected first. The software will use color
space correlation to determine which edges belong to each object. The software
will then use the pinhole camera model to calculate the robot’s distance from
each of the obstacles.

Once the system computes the necessary distances, it will need to determine
which way to move. The software will have the robot’s physical dimensions hard-
coded. The gaps between obstacles will be calculated and compared to
Navbot’s actual size. The system will determine where a large enough gap is
and then move so that it is inline with the gap and facing it. From here, the robot
will move forward. If the robot is more than one meter away from the closest
obstacle, it will move the appropriate distance to bring it within one meter. From
there the robot will move 30 centimeters at a time, reanalyzing its situation after
each movement.

The system will continue through this process until it has determined that the
navigation is complete. This decision will be based on a timer. A predetermined
navigation time will be set and the robot will cease navigation once the time has
expired.

 11

Figure 7: Navigation Mode Flow Chart

 12

III. Subsystem Requirements

Each of the three subsystems described above are expected to perform within
certain specifications. The specifications for each subsystem will be described in
the following sections. Summaries of the specifications are also given in Tables
C1 through C4 in Appendix C.

1. Camera Requirements

Both camera systems are the same therefore the requirements for each camera
are identical. As depicted in Figure 3, the cameras detect photons and output a
digital image. The stereoscopic imaging calculations are based on color
correlations between the two cameras. In order to avoid false matches while
correlating the images, the distance in color space between the colors seen by
each camera shall not exceed 50 out of 255. In order to achieve the speed
requirements, the cameras shall output images at a resolution of 320x240. A
resolution greater than this will result in more calculations, therefore slowing
down the system. The cameras shall be focused manually to avoid
complications with any auto focus software or circuitry. The system begins
making navigation decisions once it is within one meter of the closest object. To
guarantee the system does not collide with any obstacles, the depth of field from
the camera shall be at least three meters. To ensure proper light exposure, the
camera shall have a minimum aperture of f/32. The focal length is the measure of
how strongly the lens focuses light. There is no requirement for focal length,
however it will need to be known for the distance calculations. The cameras shall
not have any on board software or circuitry that is used for face tracking. Due to
the available ports on the laptop computers, the cameras shall interface with the
laptop computer via USB.

 13

2. Laptop and Software Requirements

The laptop computer will be mounted on top of the robotic platform, as shown in
Figure 2. It will perform all of the calculations and generate control signals. It
grabs images from the cameras for analysis. As stated in the camera
requirements, USB interfaces shall be used. Since there are two cameras, the
laptop shall have at least 2 USB ports. The laptop will also be interfaced with the
robot platform. The robot requires a serial interface. Therefore, the laptop shall
have at least one serial port. The laptop shall also have the Mathworks Matlab
package installed with the Image Processing and Image Acquisition toolboxes in
order to perform the software tasks.

The goal of the NavBot project is to navigate through a terrain as quickly as
possible. To achieve this goal, the software must be quick and efficient. There
are five blocks to the software subsystem as shown in Figure 8. The first step
shall only take about one half of one second. Blocks two, three, and four shall
require less than 15 seconds to complete. The final block shall also require less
than half of one second. The distance calculations need to be very accurate to
avoid colliding with any obstacles. The software shall be capable of detecting
edges of objects to within 1cm of accuracy.

Figure 8: Software Block Diagram

 14

3. Robotic Platform Requirements

The robot needs to be able to maneuver with speed and precision. The body of
the robot is 44 cm x 38 cm x 22 cm. It is capable of traveling 1.6 meters per
second on flat surface with no payload. For each meter of travel, the robot shall
be within 4 cm. Should the robot need to turn around, its turning radius is 32 cm
swinging from a stationary wheel. The robot’s wheels have a diameter of 32cm.
The motor gear ratios are 38.1:1 and each motor has a 500 tick rotary encoder.
These specifications were taken from the robot manufacture’s website,
www.activmedia.com.

 15

IV. Results

This year, major progress was made on four areas of the project. The pinhole
model was implemented and the conversion factor was found experimentally.
Using the conversion factor information, image correlation was used to generate
a distance calculation function. A manually adjustable image capture and
correction function was also created. Finally, progress was made towards
implementing edge detection to automate the distance calculations.

A. Pinhole Model and Conversion Factor

Stereoscopic imaging gives the ability to calculate the three dimensional position
of an object in Cartesian coordinates using the position of the object in images
captured by two cameras. The cameras can be oriented in any fashion as long
as equations are derived for that specific orientation. For this project, the
cameras are side by side and 10 cm apart, which is denoted as d in Figures 9
and10. A set of equations can be derived using the pinhole camera model from
which an object’s X, Y, and Z coordinates can be determined. However, only X
and Z need to be calculated for this project since the terrain is two-dimensional.
Figure 9, shows the setup of the pinhole model for side-by-side cameras and
Figure 10 shows a view from the +y axis. Using similar triangles, the relation
between X, Z, XR, XL, and d can be found and is shown in Equations 1(a) and
1(b). Currently, progress has only been made toward determining Z. X will need
to be found by future teams in order to complete the project.

Figure 9: Pinhole model system setup for side-by-side cameras

Equation 1(a): Equation for Z

Equation 1(b): Equation for X

Equation 1(a) shows the relationship between Z and the value of XL – XR and its
validity is apparent from Figure 10.

 16

Figure 10: View of pinhole model from +y axis

This figure shows that the pinhole plane is in front of the CCD array in the XY
plane. The pinhole is f meters in front of the array. If, for example, an object is
on the Z-axis, then XL is positive and XR is zero. This yields a positive value for Z
as expected. .

As shown in Equation 1(a), there is also a conversion factor involved in the
calculation. The distances in the equations are measurements in meters.
However, when the images are captured and imported into Matlab, they only
contain pixel information. The conversion factor is used to convert the pixel
information to meters. The value of f is typically available as a specification for
the cameras. However, this value was not available for the Logitech Buddy
Cams. Since f is a constant, it was moved into the conversion factor. Both the
conversion factor and f were found experimentally.

To find the conversion factor experimentally, sets of images were taken at
distances of 2 meters down to 0.5 meters in 10 cm decrements. The images
were manually analyzed in Matlab to determine XL – XR for each distance, from
which the conversion factor can be calculated. Table 1 shows the data and
calculations from this experiment.

 17

Table 1: Conversion factor experiment data

Distance
From Robot (m)

Xleft
(pixels)

Xright
(pixels)

XL
(pixels)

XR
(pixels)

XL - XR
(pixels)

d
(m)

Conversion
Factor
(pixels)

2.0 186 122 21 -43 64 0.10 1280
1.9 171 105 6 -60 66 0.10 1254
1.8 190 123 25 -42 67 0.10 1206
1.7 188 119 23 -46 69 0.10 1173
1.6 181 109 16 -56 72 0.10 1152
1.5 169 94 4 -71 75 0.10 1125
1.4 179 102 14 -63 77 0.10 1078
1.3 182 102 17 -63 80 0.10 1040
1.2 178 94 13 -71 84 0.10 1008
1.1 182 93 17 -72 89 0.10 979
1.0 179 83 14 -82 96 0.10 960
0.9 184 81 19 -84 103 0.10 927
0.8 183 70 18 -95 113 0.10 904
0.7 188 60 23 -105 128 0.10 896
0.6 188 42 23 -123 146 0.10 876
0.5 184 10 19 -155 174 0.10 870

The results show that the conversion factor is not constant. This is probably due
to deviations of the actual camera optics from the pinhole model. At first
inspection, the conversion factor seems that it may be linear across the range.
To determine how linear the conversion factor is, it was plotted against the actual
distance. The following two figures are conversion factor versus distance.
Figure 11 has a linear trend line while Figure 12 has a polynomial trend line.

Figure 11: Conversion factor vs. distance with linear trend line

Figure 12: Conversion factor vs. distance with polynomial trend line

 18

It is clear that the data is not perfectly linear. In fact, it almost matches perfectly
with the polynomial trend line. However, R2 value for the linear trend line is still
0.9821, which is very close. For the requirements of this project, it is acceptable
to assume the conversion factor is linear. This will greatly reduce the complexity
of the distance calculation algorithm.

It was decided for Z value calculations that the best solution to the non-constant
conversion factor was to develop an iterative algorithm. The function firsts
calculates an intermediate value for Z using a constant conversion factor. It then
chooses the correct value from a lookup table. If the value is not in the table, the
function interpolates. The next step was to decide what to use as the constant
conversion factor to calculate the intermediate Z value. Table 2 shows the
intermediate values of Z if calculated using four different conversion factors.

Table 2: Conversion factor intermediate Z values
Z (m)
Actual

Z (m)
CF = 1

Z (m)
CF = 870

Z (m)
CF = 1280

Z (m)
CF = 1000

2.0 0.00156 1.359 2.000 1.563
1.9 0.00152 1.318 1.939 1.515
1.8 0.00149 1.299 1.910 1.493
1.7 0.00145 1.261 1.855 1.449
1.6 0.00139 1.201 1.778 1.389
1.5 0.00133 1.160 1.707 1.333
1.4 0.00130 1.130 1.662 1.299
1.3 0.00125 1.088 1.600 1.250
1.2 0.00119 1.036 1.524 1.190
1.1 0.00112 0.978 1.438 1.124
1.0 0.00104 0.906 1.333 1.042
0.9 0.00097 0.845 1.243 0.971
0.8 0.00088 0.770 1.133 0.885
0.7 0.00078 0.680 1.000 0.781
0.6 0.00068 0.596 0.877 0.685
0.5 0.00057 0.500 0.736 0.575

Range 0.00099 0.85938 1.26437 0.988

The range row in Table 2 is the distance calculated at 0.5 meters subtracted from
the distance at 2.0 meters. The range is the greatest when the conversion factor
is equal to 1280. Using a value that allows for a greater range will all for more
accuracy when interpolating. The values are more spread out, so it is less likely
that an intermediate value will be interpolated between the inappropriate values
in the look up table. Therefore, the constant conversion factor will initially set as
1280. Appendix C contains the interpolation code.

 19

B. Color Correlation and Distance Calculations

The situation depicted in Figure 10 is a single point in space illuminating single
pixels in each camera. However, in an actual operating environment, many
pixels will be illuminated and it is necessary to correlate the pixels in each
camera to the edges of the obstacles. This is a difficult process in general. In
the case of color obstacles, color correlation can be used and was chosen for
this project.

Color correlation was developed and used in Nick Patrick’s masters degree
project. A description of color correlation from Patrick’s paper, Stereoscopic
Imaging, can be found in Appendix A. Patrick included Matlab code to perform
color correlation for two images. This code was slightly modified for use with the
NavBot project. The most notable change was in regards to the amount the right
image is shifted over the left. Patrick’s test images did not have any correlations
greater than 60 pixels apart. Depending on the distance the images are taken at,
the shift index can be anywhere between 60 and 175. The code was modified to
accommodate the larger shift indices.

Color correlation is based on a calculation of distance in colorspace for two
pixels. The equation Patrick used to calculate colorspace distance is shown in
Equation 2. The variables relate to the R, G, and B values of the pixel in each of
the images.

3

)()()(222
BRBLGRGLRRRL

dist
!+!+!

=

Equation 2: Distance in colorspace

Patrick’s code was used as a foundation for the distance calculation software.
The color correlation software provides a matrix containing the shift index, XL -
XR, for each pixel in an image. Code was written to calculate a distance using
based on the pinhole model equations. This code utilizes the shift indices from
Patrick’s code.

The software starts by reading the left and right images. It then slides the right
image across the left and records the minimum slide for each point. The index of
matching points is determined and saved in an array called min1Seq. This array
is then plotted as a disparity map. A threshold is applied to the minimum value
for each pixel. If the disparity is greater than the threshold, a value of -1 is
recorded. The appropriate shift index is chosen based on the x and y values
determined by the edge detection software. This shift index is used to calculate
an intermediate value for Z using a constant conversion factor of 1280. The
intermediate Z is used to interpolate the actual Z from a lookup table. A flowchart
of the complete function is shown in Figure 13. The code is provided in Appendix
C.

 20

Figure 13: Color correlation and distance calculation software flowchart

This software was used on a couple of sets of images with partial success. The
main problem was that the images used were of a sheet of black paper taped to
a wall. This resulted in essentially flat images. The correlation software had
difficulty correlating the images due to a lack of three-dimensional disparity
between them. Future senior teams should design test obstacles with actual
three-dimensional objects, such as colored boxes.

 21

C. Image Capture and Correction

A critical portion of this project was to capture good images. Without a good set
of images, it is difficult to correlate pixels. A good set of images should have little
to no distortion. There were primarily three types of distortion observed in the
laboratory.

The first type of distortion observed was color distortion. Originally this was
attributed to poor lighting conditions. Later it was thought to be due to the poor
quality web cameras. Finally, it was found that the color distortion was a product
of the way Matlab was capturing images. Matlab initialized the cameras every
time it took a picture. This resulted in inconsistent gamma adjustments and white
balance levels. If higher end web cameras were implemented (with face tracking)
the face tracking would also automatically be enabled upon initialization (every
time a picture was taken). To remedy the problems that resulted when using
Matlab to capture images, Dorgem was used. Dorgem is an open source web
camera capture program. Dorgem can save pictures to a compressed JPG or run
in the background of the computer as a web server. (Appendix D contains a
tutorial on how to set up multiple cameras for Dorgem). After Dorgem was
implemented, constant gamma levels and white balance levels were selected
based on the lighting conditions of the room. If these levels were selected poorly,
pictures would appear yellow or washed out. This was acceptable, as the primary
goal was to improve consistency between pictures, not accuracy.

The second type of distortion observed was camera alignment. Each camera had
a slightly different angle with respect to the other one. The pitch, yaw, and skew
of each camera were slightly different, resulting in different placing of the horizon.
This distortion made pixel correlation virtually impossible. The pictures were
corrected in Matlab with the imrotate command, and some image cropping code.
This code is given in Appendix E. It should be noted that this code was using
static variables and was not working perfectly, however it was functional.

The third type of distortion was lens distortion. It was noted that the pictures had
a slight fisheye distortion. Several tests were conducted, and it was decided that
this distortion was minor and would consume too much time to correct. It was
suspected that some kind of lens distortion was causing variation in the
conversion factor, which was corrected with iteration.

 22

D. Edge Detection

Edge detection was used to locate objects. Once a full distance map was
created, the computer needed to locate the objects in the distance map, in order
to avoid them. Edge detection was used as a way of intelligently guessing what,
in the images, were objects. Once the computer had a guess as to what was an
object, it could extrapolate the location of the object, and find the distance to the
object from the cameras, using the distance calculation software. Edge detection
was selected for object detection primarily because all the objects used had
straight vertical edges (such as a box). In addition, all of the objects were solid
colors that differed from the background. The code shown in Appendix F would
need to be modified slightly to implement the max command in order to
extrapolate the location of the object.

The results for edge detection were mixed. Insufficient time was allotted toward
this portion of the project to complete it. The results primarily varied with the
picture taken. If a set of images had a very distinct set of vertical edges, the
program could easily find the edges. Figure F4 shows clearly detected lines. The
program would need to be tweaked to detect less distinct lines. Two ways to
change the matlab script would be: 1) implement a more sensitive vertical edge
filter or 2) change the threshold of the enhanced image (Figure F3). If the filter
and enhanced image are too sensitive, noise will be added.

5. Conclusion and Recommendations for Further Work

The four portions of the project discussed above are all critical to achieving the
final goals of this project. The image capture and correction software is required
for the color correlation to function properly. If the images are not perfectly
aligned, the objects will not correlate correctly and false results will be generated.
The color correlation provides crucial data necessary to perform the distance
calculations. Finally, edge detection is a process that aims to determine which
pixels of an image to use for distance calculations.

Recommendations to Future Senior Teams:

• Develop software to determine distances on X axis
• Use three-dimensional objects for testing
• Obtain and implement high quality cameras or a single camera on a rail
• Develop a graphical user interface for calibration
• Integrate software with robot movement

 23

V. Equipment List

1. Hardware
 2 Logitech Buddy Cams
 Gateway Laptop
 ActivMedia P2-DX Robotic Platform
2. Software
 Dorgem
 Mathworks Matlab
 Image Processing Toolbox
 Image Acquisition Toolbox

VI. Related Patents

A patent search resulted in a number of patents related to the NavBot project.
The patent number and a short description of each related patent is shown in
Table 3.

Patent Number Brief Description
6396397 Vehicle imaging system with stereo imaging
5675377 True three-dimensional imaging and display system
4709263 Stereoscopic imaging apparatus and methods
6775614 Vehicle navigation system using live images
6151539 Autonomous vehicle arrangement and method for

controlling an autonomous vehicle
6751535 Travel controlling apparatus of unmanned vehicle
5812269 Triangulation-based 3-D imaging and processing method

and system
6661449 Object recognizing apparatus for vehicle and the method

thereof
Table 3: Related Patents

VII. Bibliography

Patrick, Nicholas. Stereoscopic Imaging.

Crombie, Brian and Zivney, Matt. Project Proposal. Bradley University.

"Aperture." Wikipedia. 11 Dec. 2006. 13 Dec. 2006
<http://en.wikipedia.org/wiki/Aperture>.

"Focal Length." Wikipedia. 8 Dec. 2006. 13 Dec. 2006
<http://en.wikipedia.org/wiki/Focal_length>.

 24

Appendix A

Subsystem Specification Summary Tables

Table C1: Camera Specifications
Color 16 bit
Focus Manual
Interface USB
Aperture f/32
Resolution 320x240
Depth of Field 3 m
Face Tracking No

Table C2: Laptop Specifications

USB Ports At least 2
Serial Ports At least 1
Processor Speed 1.6 Ghz Pentium M
Memory 512 Mb
Software Matlab

Image Acquisition Toolbox
Image Processing Toolbox

Table C3: Software Specifications

Retrieve Images 0.5 seconds
Analyze Images 5 seconds
Calculate Distances 5 seconds
Determine Direction to Move 5 seconds
Send Instructions To Robot 0.5 seconds
Distance Calculation Accuracy 1 cm

Table C4: Robotic Platform Specifications

Height 38 cm
Length 44 cm
Width 22 cm
Max. Speed 1.6 m/s
Turning Radius 32 cm
Wheel Size 16.5 cm dia
Motor Gear Ratios 38.2:1
Motor Rotary Encoders 500 tick
Movement Accuracy 4 cm per 1 m of travel

 25

Appendix B
Colorspace Correlation

Color space correlation is a technique used in stereoscopic imaging to correlate
images taken from two cameras. The following information was taken directly
from Nick Patrick’s paper Stereoscopic Imaging. The NavBot system will utilize
this technique.

“In order to determine the image disparity for each point, the correlation
between one pixel and another needs to be defined. Since the images are
supplied as RGB matrices, I can determine the distance in the color space
for each color and sum each difference. The norm function is used for this
purpose.

3

)()()(222
BRBLGRGLRRRL

dist
!+!+!

=

The square root term in the distance function could be eliminated to make
the calculation more efficient; however it is useful in this case for keeping
the range of distance between 0 and 255. The terms in the distance
function correspond to the intensity of each pixel in each color, i.e. RX, GX
or BX. The pixel from each diagram is referred to by XL or XR for the left
or right figure.

In order to visualize the color space distance function, it is useful to
imagine each color to be an axis. The distance between two points is then
defined by the equation above. The image in Figure B1 shows two points
in the color space dimensions. The coordinates of the points are R(230),
G(100), B(40) for the red point and R(100), G(230), B(200) for the blue
point. The distance between these points is 203.3.

Figure B1: Two points in color space

 26

Now that distance between two colors is defined, this function has to be
applied to find corresponding pixels between two figures. Since each
figure is aligned vertically, each pixel on the left figure only needs to be
checked against the pixels on the same scan line on the right figure. The
method that was used to determine the minimum color distance is to slide
the right image across the left image from left to right. In order to ensure
that noise does not cause too many false positives, each subtracted
image is filtered by a small Gaussian filter from the MATLAB image
processing toolbox. The filter causes each color distance to be affected
by the color distance of its neighbors.“

 27

Appendix C
Color Correlation and Distance Calculation Matlab Code

calc_dist.m

%Color Correlation by Nick Patrick
%Distance Calculation by Nick Wlaznik

% Read Images

%fname1 = 'l6crop.jpg'; % Left Image
%fname2 = 'r6crop.jpg'; % Right Image

%im1 = double(imread(fname1,'jpg'));
%im2 = double(imread(fname2,'jpg'));

im1 = double(saveL);
im2 = double(saveR);

[m,n,o]=size(im1);
j=1;

h=fspecial('gaussian',3,1.5);

minMap = repmat(255,m,n);

% slide 2nd image across 1st image and record minimum slide
for each point
for i=1:100 % for i, slide right image right 1 pixel,
subtract images
 % slide right image right across left image
 newRight = im2;
 newRight(:,1+i:n,:)=im2(:,1:n-i,:);
 subImg = uint8(abs(round(sqrt(im1.^2-newRight.^2))));
 subImg(:,1:i,:)=255;
 subImg = imfilter(subImg,h,'conv');
 figure(1);
 image(subImg);
 drawnow;
% pause;

 % record each difference image
 minMap(:,:,i) = sum(subImg,3)/3;
end

min1Seq=repmat(255,m,n);min1Val=minMap(:,:,1);
npix = m*n;

 28

% Find index of matching points
for j=1:100
 ind=find(minMap(:,:,j)<min1Val);
 min1Seq(ind)=j;
 min1Val(ind)=minMap(ind+(j-1)*npix);
end

% Threshold the minimum value for each pixel
min1Seq(min1Val>90)=-1;
min1Seq(min1Seq>100)=-1;

% Plot min1Seq, indices of disparity image
figure(2);
imagesc(min1Seq);

% Optional
colormap('gray');

%extract shift index from color correlation results
%x and y are provided by edge detection
xlxr = min1Seq(y,x,:)

%calculate intermediate Z value using constant conversion
factor
z_init = (.10/(xlxr))*1280

%Actual Z values
t = 0.5:.1:2;

%interpolation values
p = [0.7360 0.8770 1.0000 1.1330 1.2430 1.3330 1.4380
1.5240 1.6000 1.6620 1.7070 1.7780 1.8550 1.9100 1.9390
2.0000];

%interpolate to find final Z value
z = interp1(p,t,z_init)

 29

Appendix D
How to set up multiple web cams in Dorgem

This tutorial was taken directly from the simplehelp.net website. The URL of the
website is http://www.simplehelp.net/2006/09/27/how-to-use-your-pc-and-
webcam-as-a-motion-detecting-and-recording-security-camera/

If you can get more than one Webcam to work in Windows (not always an easy
task, esp. if they’re Labtec), Dorgem can support them all. You don’t need to
install another copy of Dorgem, but you do need to start each instance differently.
To do so, follow the steps below..

1. Right-click on your current Dorgem desktop icon and select Create
Shortcut

2. You should see a new Dorgem (2) icon on your desktop - right-click on it
this time, and choose Properties

3. Make sure the Shortcut tab is selected, and change the Target: to:

“C:\Program Files\Dorgem\Dorgem.exe” /c:cam2

If you installed Dorgem to somewhere other than the default location,
make the appropriate changes.

 30

4. Click Apply and then return to your desktop. Double-click the Dorgem (2)
icon. When it launches, notice that it’s titled Dorgem (cam2). Repeat the
same steps you did for the first camera (though choose a different file
name to save the image as).

 31

Appendix E
Image Capture and Correction Matlab Code

pic.m

%function pic creates the following
%frameL frameR: the right and left frame, unedited captured
from dorgem
%saveL saveR: the cropped and rotated images

%web server ~dorgem
frameL=imread('http://localhost:8081/');
frameR=imread('http://localhost:8082/');

%%%%%
%rotation
%our static variables go here
%we could possibly find how far the images need to be
rotated by using
%a function similar to the one I found on the web called
'croockedness'
%but for the time alloted for this project I was unable to
get auto
%rotation completed
%%%%%%

rotateLeft=.6;
rotateRight=-1.5;

saveL=frameL;
saveR=frameR;

saveL=imrotate(saveL,rotateLeft,'bicubic');
saveR=imrotate(saveR,rotateRight,'bicubic');

saveL=saveL(10:280, 10:340, 1:3);
saveR=saveR(15:285, 15:345, 1:3);

figure,imshow(saveL);figure,imshow(saveR);

 32

Appendix F
Edge Detection Matlab Code

edge.m

close all;
%closes all the open figure windows

Figure F1: Original picture

vertFilt = [-1,2,-1;-1,2,-1;-1,2,-1];
%sets up the vertical filter
%if we change 2 to a larger number (3) the image will
%have sharper edges
%to do a horizontal filter we would use=
%[-1 -1 -1;
% 2 2 2;
%-1 -1 -1]
%this is what it looks like after the vertical filter
%is applied

 33

Figure F2: Picture after vertical filter

fsaveLV = imfilter(saveL,vertFilt);
%our image after we apply the vertical edge detection

for k=1:3 %we have 3 components RGB
 for j=1:271 %image height
 for i = 1:331 %image width

 %this value sets up the threshold
 if fsaveLV(j,i,k) > 50%thrhld7g

 fsaveLV2(j,i) = 255;
 else
 fsaveLV2(j,i) = 0;
 end;
 end;
 end;
end;

 34

Figure F3: Picture after enhancing the filtered image

fsaveRV = imfilter(saveR,vertFilt);

for k=1:3
 for j=1:271
 for i = 1:331
 if fsaveRV(j,i,k) > 50%%thrhld7g
 fsaveRV2(j,i) = 255;
 else
 fsaveRV2(j,i) = 0;
 end;
 end;
 end;
end;

figure,imshow(fsaveLV)
figure,imshow(fsaveRV)

figure,imshow(fsaveLV2)
figure,imshow(fsaveRV2)

%now we transform it to a single x-y graph, by adding up
the
%the components along the x axis
fgraphL(1:331)=0;
fgraphR(1:331)=0;

for j=1:271
 for i = 1:331
 if fsaveLV2(j,i) == 255;
 fgraphL(i) = fgraphL(i) + 1;

 35

 end;
 end;
end;

Figure F4: Result after

for j=1:271
 for i = 1:331
 if fsaveRV2(j,i) == 255;
 fgraphR(i) = fgraphR(i) + 1;
 end;
 end;
end;

%now that we have these we could use a max detection
%and directly output our max numbers to edges which
%can be used in distance calculations

figure,plot(fgraphL);
figure,plot(fgraphR);

