
 1

Introduction

The objective of the Robotic Navigation Distance Control Platform is to design and build
a robotic platform that maintains a fixed safety distance behind another moving object to
avoid collisions. The robotic platform contains an EMAC 80515 microcontroller that
interfaces a distance sensor, electric motor and steering on the robotic platform.

Applications

This can be useful in such applications as robotics, in which there might be several robots
that are required to follow one another, and this system would prevent them from
colliding. Another application is in the automotive industry, which a similar device can
be installed on a vehicle to maintain a safe distance behind another vehicle. This would
be useful when a vehicle using its cruise control approaches a slower moving vehicle.
When the faster moving cruise control vehicle approaches the slower moving vehicle,
this safety distance system would slow the faster moving vehicle to match the speed of
the slower moving vehicle to prevent an accident (see Figure 1.1). This vehicle adaptive
cruise control system is used in such vehicles as Lexus and Mercedes-Benz. This
technology is used to prevent collisions while the driver is using the cruise control on the
vehicle.

Figure 1.1

Adaptive Cruise Control on Vehicles
Source: http://www.ece.msstate.edu/classes/design/ece4532/2003_spring/cruise_control/

 2

The Robotic Navigation Distance Control Platform keeps a constant distance from a
moving object through software and hardware development. This Robotic Platform has
six different software modes of operation: Fixed Navigation Mode, User Out of Range
Mode, Auto Out of Range Mode, Stop / Reload Mode and Navigation Control Mode,
Increment / Decrement Mode. The hardware aspect of this project consists of inputs and
outputs to the robotic platform and hardware subsystems. The modes of operation and
hardware will be discussed below.

Modes of Operation

Fixed Navigation Mode:
All systems are powered and the robotic platform waits for the user to enter a fixed safety
distance in feet to follow the object. First, the user is asked to enter either User or Auto
Out of Range Mode. Second, the user enters the desired distance, and then presses the
activation button on the keypad to activate the robotic platform navigation controls. The
robotic platform then proceeds to navigate behind a moving object.

User Out of Range Mode:
If the object being followed is out of range or there is no signal from the sensor, the
robotic platform enters an Out of Range Mode in which the robotic platform stops. The
EMAC microcontroller displays “Out of Range”. The robotic platform then waits for the
user to reactivate the navigation controls, which then activates the navigation controls
and displays “Following” on the LCD screen.

Auto Out of Range Mode:
This mode is similar to User Out of Range Mode except the robotic platform activates the
navigation mode once an object is placed back within range of the sensors. The EMAC
microcontroller displays “Following” on the LCD screen.

Stop / Reload Mode:
User is able to stop and reload the motor speed manually using keypad input.

Navigation Control Mode:
User is able to activate or deactivate the Fixed Navigation Mode.

Increment / Decrement Mode:
User is able to increment or decrement motor speed by one unit manually.

System I/O

There are several inputs and outputs to the EMAC Microcontroller. The inputs and
outputs are described below. See Table 3.1 and Figure 3.1 for complete inputs and
outputs to the EMAC microcontroller.

 3

Inputs Outputs
User Keypad LCD Display

Distance Control Sensor Robotic Platform Motor
 Robotic Platform Steering

Table 3.1

System Inputs and Outputs

Figure 3.1
System I/O Block Diagram

Inputs to EMAC Microcontroller:

User Keypad:
When in navigation mode, the user enters the required fixed following distance and the
Out of Range Mode and activates the robotic platform using the keypad. If the robotic
platform enters the User Out of Range Mode, the user must press activate button to
reactivate robotic platform navigation mode. The keypad also allows the user to
manually stop, reload, increment and decrement the electric motor speed.

Distance Control Sensor:
The distance sensor consist of an ultrasonic SRF04 sensor that will be mounted on the
robotic platform. The distance sensor will point straightforward and parallel to the
ground, which will determine distance behind the moving object. The EMAC will
control the electric motor on the robotic platform from the signal received from the
ultrasonic sensor.

EMAC
Microcontroller

Distance
Control
Sensor

Robotic
Platform
Motor

Robotic
Platform
Steering

LCD
Display

Keypad
(User Input)

 4

Outputs from EMAC Microcontroller:

LCD Display:
The LCD display shows the mode of operation that the robotic platform is currently
performing. The LCD display will also provide information for the user, allowing the
user to enter the different manual modes of operation. Finally the LCD will be used as a
display prompt to ask the user to enter in the desired safety distance in feet as well as to
enter the Out of Range Mode. See Figure 4.1 for location of distance sensor on robotic
platform.

Figure 4.1

Distance Control Sensor Diagram

Robotic Platform Motor:
The EMAC microcontroller controls the motor speed, allowing the robotic platform to
safely follow the moving object.

Robotic Platform Steering:
The EMAC microcontroller controls the steering of the robotic platform to navigate
behind the moving object. Note: The steering is not implemented, and is kept in the
neutral position.

Robotic Platform
(R/C Car)

Distance
Sensor

Moving Object
(Similar size to robotic platform)

 5

Hardware

The hardware subsystems consist of a distance control sensor subsystem, an electric
motor subsystem and a steering system. The robotic platform chosen for this project is a
radio controlled R/C car. The sensors will be mounted on the R/C car and the current
R/C car’s electric motor and servomotor will be used for navigation control. Each
subsystem is discussed in full detail below. See Figure 5.1 for hardware subsystem block
diagram.

Figure 5.1
Hardware Subsystem Block Diagram

Steering

Subsystem
PWM Signal

Translates
Steering Rod

EMAC
Microcontroller

Electric
Motor

Subsystem
PWM Signal

Power to
Drive Wheels
on R/C Car

Distance
Control
Sensor

Subsystem

PWM Signal
Output

Ultrasonic
Trigger
Pulse

 6

Distance Control Sensor Subsystem

Input Signal to Ultrasonic Sensor:
A trigger pulse of 1.5 ms from the microcontroller is used to start the initial sequence,
which transmits an ultrasonic pulse. If an object is in front of the sensor, the transmitted
wave reflects off the object, and the same sensor will receive the reflected wave. See
Appendix C1 for SRF04 timing diagram and complete data sheet.

Sensor Output Signal:
The output signal from the sensor is related to the distance between the sensor and the
object in front of the sensor. The output from the sensor is a pulse width modulation
(PWM) signal with a large pulse width related to a large distance.

Electric Motor Subsystem

Input Signal to Motor:
The input signal to run the motor consists of a PWM signal provided from the
microprocessor, which controls revolutions per minute (RPM) of the motor. The PWM
signal consists of a 33Hz signal with the positive pulse width varying from 1.0ms to
1.7ms. The 1.0ms pulse width is the neutral position for the electric motor and the 1.7ms
pulse is full speed of the electric motor. See Appendix D for specifications, definitions
and operating instructions for the Team Novak Rooster ESC. Note: The electric motor
reverse is not implemented.

Motor Speed Output:
The motor shaft drives a gearbox that connects to the wheels of the robotic platform.
Depending on the input pulse width of the PWM signal, the motor’s shaft speed varies,
providing the different ground speeds for the robotic platform.

Steering Subsystem

Input Signal:
The input signal consists of a PWM signal from the microcontroller and the variations in
the input PWM signal will control a servomotor. The PWM signal consists of a 33Hz
signal with the positive pulse width varying from 1.1ms to 1.9ms with 1.5ms as the
servo’s centering position. See Appendix E for Hitec HS-303 servo specifications.
Note: The steering is not implemented, and is kept in the neutral position.

Output Steering Rod:
The steering rod connects to the servo horn, which is a plastic lever arm attached to the
servomotor. The rotational movement of the servo horn produces a translation
movement. The other end of the steering rod connects to the wheel linkage that controls
the robotic platform’s direction.

 7

Hardware Circuit Diagram

The circuit diagram that connects the SRF04 ultrasonic sensor, the electronic speed
controller and the servo to the 80515 microcontroller is seen in Figure7.1. The 5 Vdc for
the ESC connector, servo connector and the SRF04 were connected to a voltage
regulator. Even though the microcontroller board would be able to power these three
devices, a voltage regulator was added to power these devices to protect the
microcontroller board and to allow for future expansion to the project.

Figure 7.1
Hardware Circuit Diagram

 8

Software

The software programmed on the EMAC 80515 microcontroller processes the incoming
distance signal. The EMAC microcontroller software provides appropriate PWM signal
to the electric motor subsystem to allow the robotic platform to maintain the desired
safety distance from the moving object. The different modes of operation are: Fixed
Navigation Mode, User Out of Range Mode, Auto Out of Range Mode, Navigation
Control Mode, Increment / Decrement Mode and Stop / Reload Mode. These modes of
operation are discussed in more detail with software flow charts below.

Fixed Navigation Mode:
All systems are powered, and the robotic platform asks the user to enter the desired safety
following distance from 1 to 9 feet. The EMAC waits for the user to enter a fixed safety
distance in feet through the keypad. The user will then enter the User or Auto Out of
Range Mode. Last the user will press the activation button on the keypad to activate the
robotic platform navigation controls. The robotic platform will then proceed to navigate
behind a moving object.

The Fixed Navigation Mode software flowchart is followed and is shown in Figure 18.1
and 19.1 in Appendix A. If the control bit is 1 after Check Control Variable in Figure
19.1, the right flowchart is followed. If the object is out of range then the user selected
Out of Range Mode is called. If the object is in range of the robotic platform then, the
fixed distance control function determines if the motor speed should increase, decrease or
kept constant. If the control bit is 0, then the right software flowchart is bypassed,
allowing the fixed navigation mode to be deactivated. If a manual mode key is pressed
on the keypad as seen in Figure 19.1 the appropriate software mode is called. When the
navigation control button (0) is pressed the Navigation Control Mode is called, which the
software returns back to the Check Control Variable in Figure 19.1.

The Fixed Navigation Mode uses the Fixed Distance Control function in Figure 19.1 to
keep the distance between the robotic platform and the followed object constant. This is
accomplished by calculating the distance between the robotic platform and the followed
object from the distance sensor signal. The calculated distance will be compared to the
user specified distance and the motor subsystem will adjust to achieve the user specified
distance. If the distance sensor does not detect an object or no signal is received the Out
of Range Mode will be entered.

User / Auto Out of Range Modes:
If the object being followed is out of range or there is no signal from sensor, the robotic
platform will enter an Out of Range Mode, in which the robotic platform will stop. The
EMAC microcontroller will display “Out of Range” on the LCD. The User Out of Range
Mode will wait for the user to reactivate the navigation controls, which “Following” is
then displayed on the LCD screen.

 9

The Auto Out of Range Mode is similar to user Out of Range Mode except the robotic
platform will continue navigation once an object is placed back within range of the
sensors. The EMAC microcontroller will then display “Following” on LCD screen.

If the User or Auto Out of Range Mode is called from the Fixed Navigation Mode
software seen in Figure 19.1 in Appendix A, the User / Auto Out of Range Mode
software Flowchart in Figure 9.1 below is followed. In the flowchart the Stop Electric
Motor function will stop the electric motor to prevent the platform from crashing into an
object. If the user selected the User Out of Range Mode, the left software flowchart is
followed, after “Out of Range” is displayed on the LCD screen seen in Figure 9.1. In the
User Out of Range Mode the platform waits for the user to press the button 0, which calls
the Navigation Control Mode. If the user selected the Auto Out of Range Mode then the
right software flowchart is followed after the “Out of Range” is displayed on the LCD
screen seen in Figure 9.1 In the Auto Out of Range Mode, the robotic platform waits until
the distance sensor detects an object. Once an object is detected, the LCD displays
“Following” and the software returns back to the Check Control Variable in the Fixed
Navigation Mode seen in Figure 19.1.

Figure 9.1
User / Auto Out of Range Mode Software Flowchart

 User/Auto Out of Range Mode

Display:
 Out of Range

 User Out of Range Mode Auto Out of Range Mode

Stop Electric Motor

Display:
Wait for object

Display:
Press 0 to Activate

Display:
Following

Return

 Waits for User to Press 0

 10

Stop / Reload Mode:
User is able to stop and reload the motor speed manually using keypad input. If the user
presses the stop button (B) on the keypad, the Stop software is called and follows the
software flowchart on the left in Figure 10.1. If the Reload Motor Speed Button (D) is
pressed on the keypad, the Reload Motor Speed software is called and the flowchart is on
the right in Figure 10.1. At the end of both flowcharts there is a return, which means that
both software modes return to the Check Control Variable in the Fixed Navigation Mode
seen in Figure 19.1 in Appendix A.

 Figure 10.1
Stop / Reload Mode Software Flowchart

Stop Electric Motor

Keypad:
User Presses Stop Button B

Display Prompt:
Manual Stop

Press 0 to Activate

Loads Last Motor

Keypad:
User Presses Reload Motor

Speed Button D

Display Prompt:
Reload Last Speed
Press 0 to Activate

Save Current Motor Speed

Return

Return

 11

Increment / Decrement Mode:
User is able to increment or decrement motor speed by one unit manually. If the user
presses the Increment Motor Speed Button (C) the software flowchart on the left in
Figure 11.1 is followed. The IncMotorSpeed () function is the same function that the
Fixed Navigation Mode uses to increase the Motor speed by one unit. When this function
is called it increases the PWM signal to the Electric Motor Subsystem, which increases
the motor speed. If the user presses the Decrement Motor Speed Button (E), the software
flowchart on the right in Figure11.1 is followed. The DecMotorSpeed () function is the
same function that the Fixed Navigation Mode uses to decrease the Motor speed by one
unit. When this function is called it decreases the PWM signal to the electric motor
subsystem which decreases the motor speed. At the end of both flowcharts there is a
return, which means that both software modes return to the Check Control Variable in the
Fixed Navigation Mode seen in Figure 19.1 in Appendix A.

Figure 11.1
Increment / Decrement Mode Software Flowcharts

Call DecMotorSpeed () Call IncMotorSpeed ()

Keypad:
User Presses Increment Motor

Speed Button C

Display Prompt:
Manual Inc Speed
Press 0 to Activate

Keypad:
User Presses Decrement Motor

Speed Button E

Display Prompt:
Manual Dec Speed
Press 0 to Activate

Return Return

 12

Navigation Control Mode:
User is able to activate or deactivate the Fixed Navigation Mode. When the user presses
the Control Button (0) either in the Fixed Navigation Mode or in any of the manual
modes this software flowchart is used. There is a variable control bit that is toggled when
this software mode is called. When the Robotic Platform is using the Fixed Navigation
mode and if the Control Button (0) is pressed, the control bit is toggled to allow the
Robotic Platform to be deactivated. This deactivation stops the platform and deactivates
the Fixed Navigation Mode. The deactivation of the Robotic Platform occurs when the
Control bit = 0 and the software follows left path after the Control Variable is checked in
Figure 12.1. This deactivation mode is also used on all of the manual modes of Stop /
Reload Mode and Increment / Decrement Mode. At the flowchart there is a return, which
means that both software modes return to the Check Control Variable in the Fixed
Navigation Mode seen in Figure 19.1 in Appendix A.

Figure 12.1
Navigation Control Mode Software Flowchart

Return

Check
Control
Variable

1 0

Stop Electric Motor

Keypad:
User Presses Control Button 0

Toggle Control Bit

Display:
Following

Display:
Deactivated

Return

 13

Design Equations and Calculations

To calculate the PWM period from timer 2, the critical limiting factor will be the sensor
subsystem. Using the timing diagram of the SRF04 seen in Appendix C1 the total period
for the SRF04 was calculated in equation (13.1). The 10 µs corresponds to required
trigger pulse. The 0.2 ms corresponds to the 40 KHz, 8 cycle sonic burst seen in the
timing diagram Appendix C1. In lab the maximum pulse width measured corresponding
to the largest measure distance from the SRF04 ultrasonic sensor was approximately 18
ms. 20 ms was chosen to allow for any errors in measure signals and also because the
actual trigger pulse used is 1.5 ms. The 10 ms is needed for delay from the end of the
echo pulse to the next trigger pulse. All these values resulted in equation (13.1)
producing a 30.21 ms period signal for the SRF04, which is approximately 33 HZ.

Total period for SRF04 = 10us + 0.2ms + 20ms + 10ms = 30.21ms (13.1)

The total timer counts equation (13.2) and the timer setting equation (13.3) are used to set
the compare registers and reload values of timer 2.

Total timer counts =
Seconds

12

 fosc
 =

Seconds

12

 11.0592 Mhz
 (13.2)

Timer setting = 216 - 1 – Total Timer Counts (13.3)

The timer 2 timer reload value setting produces a 30.21 ms period PWM signal which
corresponds to approximately 33 Hz. Using equation (13.2) and equation (13.3) the
Timer 2 initial setting is below.

Timer 2 count reload setting for 33 Hz PWM signal = 933Dh (13.4)

The timer 2 compare register 1 produces a 1.5 ms positive pulse width, which is used to
set the steering subsystem in the neutral position and trigger the ultrasonic SRF04 sensor.
Using equation (13.2) and equation (13.3) the timer 2 compare register 1 setup values are
below.

Timer 2 Compare Register 1 Setting = FA99h (13.5)

Timer 2 compare register 2 will be used to produce a varying PWM signal to the electric
motor subsystem. The three values that will be calculated will be for full reverse speed,
neutral and full forward speed. The full reverse PWM signal corresponds to 0.7 ms, the
neutral position PWM signal corresponds to 1.0 ms and full forward speed corresponds to
1.7 ms. The Timer 2 compare register 2 values are provided below for full reverse speed

 14

see (13.6), neutral see (13.7) and full forward speed see (13.8). These values were
calculated using equations (13.2) and (13.3).

Timer 2 compare register 2 full reverse setting = FD7Ah (13.6)

Timer 2 compare register 2 neutral Setting = FC65h (13.7)

Timer 2 compare register 2 full forward setting = F8CCh (13.8)

Project Data

The EMAC microcontroller is set up using external interrupts to measure the PWM
signal from the SRF04 ultrasonic sensor. On a rising edge of the PWM signal an
interrupt occurs which resets timer 0 to zero and starts the timer. Upon the falling edge
of the PWM signal another interrupt occurs which stops the timer. Using the Increment /
Decrement Mode software, the increment unit was set to 1ms. The output of Timer 2 was
connected to the pins of Timer 0. As the Timer 2 output values were changed from 1 ms
to 18 ms, the Timer 0 values were recorded as seen in Table 14.1. The values in Table
14.1 were used to correct the measured PWM signal in software before the Fixed
Navigation Mode. As can be seen in Table 14.1 the correction factor of positive 3 is
added to the measured PWM signal from Timer 0.

Pulse Width (ms) Calculated Hex Value u Processor Measured Value Timer count error

1 39Ah 397h -3

2 734h 731h -3

3 ACEh ACBh -3

4 E68h E65h -3

5 1202h 11FFh -3

6 159Ch 1599h -3

7 1936h 1933h -3

8 1CD0h 1CCDh -3

9 206Ah 2067h -3

10 2404h 2401h -3

11 279Eh 279Bh -3

12 2B38h 2B35h -3

13 2ED2h 2ECFh -3

14 326Ch 3269h -3

15 3606h 3603h -3

16 39A0h 399Dh -3

17 3D3Ah 3D37h -3

18 40D4h 40D1h -3

Table 14.1
Pulse width measurements measured by microcontroller.

 15

After the SRF04 ultrasonic sensor was mounted, the hardware circuit was connected and
some of the software was written. The SRF04 ultrasonic sensor distance in feet vs.
measured hexadecimal values were shown in Table 15.1. This table shows how distance
is related to the hexadecimal values measured from Timer 0. These data sets were used
to set the desired distance in the software as seen in Table 15.2 based on which values
were similar for the same distance.

 Measured Hex Value of Ultrasonic Sensor from EMAC

Distance (ft) Set #1 Set #2 Set #3

0.5 03C8h 03EAh 03EEh

1 06E8h 06FCh 06FCh

1.5 0A22h 0A3Eh 0A38h

2 0D44h 0D6Ah 0D5Ch

2.5 1088h 1082h 1088h

3 1392h 13B2h 13AAh

3.5 16D4h 16DEh 16DAh

4 19FCh 1A08h 1A00h

4.5 1D24h 1D3Ah 1D3Ch

5 2056h 204Ah 206Ah

5.5 2380h 239Eh 23A0h

6 26B6 26B8h 26C8

6.5 29EAh 2A02h 29FAh

7 2D02h 2D10h 2D2Ch

7.5 3042h 3060h 3056h

8 3368h 3374h 3376h

8.5 3686h 36CAh 36B8h

9 39DEh 39D4h 39F2h

9.5 3D04 3D12h 3D30h

10 402Ch 4048h 403Eh

Table 15.1

SRF04 ultrasonic sensor distance in feet vs. measured hex values from Timer 0

Distance (ft) Desired Distance Hex value

1 06E8h

2 0D5Ah

3 13AAh

4 1A00h

5 2056h

6 26B8h

7 2D10h

8 3376h

9 39DEh

Table 15.2
Desired distance setting selected by the user and used for the Fixed Navigation Mode

 16

Results / Conclusions

All the software modes were tested, debugged and worked correctly. The user is able to
enter the fixed safety distance from 1 – 9 feet and select the desired out of range mode.
The user is also able to activate or deactivate the navigation control mode and use the
manual modes to increase, decrease, stop and reload the electric motor speed. The
EMAC microcontroller triggers the ultrasonic sensor and measure the PWM echo signal,
which is related to the distance the object is away from the ultrasonic sensor. The EMAC
microcontroller is able to increase and decrease the speed of the electric motor to
maintain the desired constant distance from the moving object in front of the robotic
platform. A picture of the completed project is seen in Figure 16.1.

Figure 16.1

Completed Robotic Navigation Distance Control Platform

Future Development and Research of Project

Another expansion of this project might include modeling and determining a complete
transfer function of the robotic platform. This would allow more advanced controls to be
implemented into the project allowing the robotic platform to have smoother control,
more accurate following distance and better tracking of the moving object.

A second expansion might include more sensors on the robotic platform to allow the
robotic platform to be able to steer and navigate behind a moving object. Fuzzy logic
steering control should be considered for this expansion due to the nonlinear steering
required to steer the robotic platform around corners.

 17

References

“Adaptive Cruise Control”. I-Car Advantage. 16 February 2004. April 2004.
<http://www.i-
car.com/html_pages/about_icar/current_events_news/advantage/advantage_online_archiv
es/2004/021604.html>

”Adaptive Cruise Control”. April 2004.
<http://www.ece.msstate.edu/classes/design/ece4532/2003_spring/cruise_control/>

”Adaptive Cruise Control Hits the Road”. Automotive Industries. 1 October 1998. April
2004.<http://www.findarticles.com/cf_dls/m3012/1998_Oct_1/53179685/p1/article.jhtml>

“Announced Specification of HS-303 Standard sport Servo”. Hitec. 18 November 2003
<www.hitecrcd.com/servos/discontinuedservos/hs303.pdf>

Clarke Peter. “Adaptive Cruise Control Takes to the Highway”. EE Times. 20 October
1998. April 2004. <http://www.eetimes.com/story/OEG19981020S0007>

“ESC Specifications Reversible Models”. Team Novak Electronics. 18 November 2003
<http://www.teamnovak.com/products/ESC_Specs/revers_spec/reverse_index.htm>

“General Servo Information”. Hitec. 18 November 2003
<www.hitecrcd.com/support/manuals/servomanual.pdf>

Jones Willie D. “Keeping Cars from Crashing”. September 2001. April 2004.
<http://www.gavrila.net/Computer_Vision/Smart_Vehicles/Media_Coverage/spectrum.pdf>

”SRF04 Ultrasonic Ranger Technical Specifications”. April 2004
<http://www.robot-electronics.co.uk/htm/srf04tech.htm>

“Rooster Operating Instructions”. Team Novak Electronics,inc. 18 November 2003
<http://www.teamnovak.com/Download/acrobat/rooster_superr.pdf>

“Technical Info Glossary of Terms”. Team Novak Electronics,inc. 18 November 2003
<http://www.teamnovak.com/Tech_info/glossary/index.html>

“Ultrasonic Rangers SRF04 & SRF08 FAQ”. April 2004
<http://www.robot-electronics.co.uk/htm/sonar_faq.htm>

 18

Appendix A:

Fixed Navigation Mode Flowchart

Figure 18.1
Fixed Navigation Mode Software Flowchart (1 of 2)

 Out of Range Mode Display Prompt:
Press 1 for User
Press 2 for Auto

Keypad:
User Enters Out of Range Mode

EMAC
Initialization

LCD
Initialization

Keypad
Initialization

Keypad:
User enters fixed distance

Fixed Steering
Control

Display Prompt:
Press 0 to Activate

Keypad:
User Presses 0 Button

Fixed Distance Display Prompt:
Enter 1-9 feet:

Control = 0

 19

Figure 19.1
Fixed Navigation Mode Software Flowchart (2 of 2)

Fixed Distance Control

Check if
object is

out of range
Enter Use /Auto Out of Range Mode

No

Yes

Increment Motor Speed Decrement Motor Speed

Measure > Desired Measure < Desired

Measure = Desired

Check
Control
Variable

Check
Keypad

1

0

No

Yes

Call Software
Mode Pressed

 20

Appendix B1:

Header File Software (REG515.H)

Header file for 80515 microprocessor in C language

/*--
REG515.H

Header file for 80515.
Copyright (c) 1988-1997 Keil Elektronik GmbH and Keil Software, Inc.
All rights reserved.
--*/

/* BYTE Register */
sfr P0 = 0x80;
sfr P1 = 0x90;
sfr P2 = 0xA0;
sfr P3 = 0xB0;
sfr P4 = 0xE8;
sfr P5 = 0xF8;
sfr PSW = 0xD0;
sfr ACC = 0xE0;
sfr B = 0xF0;
sfr SP = 0x81;
sfr DPL = 0x82;
sfr DPH = 0x83;
sfr PCON = 0x87;
sfr TCON = 0x88;
sfr TMOD = 0x89;
sfr TL0 = 0x8A;
sfr TL1 = 0x8B;
sfr TH0 = 0x8C;
sfr TH1 = 0x8D;
sfr SCON = 0x98;
sfr SBUF = 0x99;

sfr IEN0 = 0xA8;
sfr IEN1 = 0xB8;
sfr IP0 = 0xA9;
sfr IP1 = 0xB9;
sfr IRCON = 0xC0;
sfr CCEN = 0xC1;
sfr CCL1 = 0xC2;
sfr CCH1 = 0xC3;
sfr CCL2 = 0xC4;
sfr CCH2 = 0xC5;
sfr CCL3 = 0xC6;
sfr CCH3 = 0xC7;
sfr T2CON = 0xC8;
sfr CRCL = 0xCA;
sfr CRCH = 0xCB;
sfr TL2 = 0xCC;
sfr TH2 = 0xCD;
sfr ADCON = 0xD8;

 21

sfr ADDAT = 0xD9;
sfr DAPR = 0xDA;

/* BIT Register */
/* PSW */
sbit CY = 0xD7;
sbit AC = 0xD6;
sbit F0 = 0xD5;
sbit RS1 = 0xD4;
sbit RS0 = 0xD3;
sbit OV = 0xD2;
sbit F1 = 0xD1;
sbit P = 0xD0;

/* TCON */
sbit TF1 = 0x8F;
sbit TR1 = 0x8E;
sbit TF0 = 0x8D;
sbit TR0 = 0x8C;
sbit IE1 = 0x8B;
sbit IT1 = 0x8A;
sbit IE0 = 0x89;
sbit IT0 = 0x88;

/* IEN0 */
sbit EAL = 0xAF;
sbit WDT = 0xAE;
sbit ET2 = 0xAD;
sbit ES = 0xAC;
sbit ET1 = 0xAB;
sbit EX1 = 0xAA;
sbit ET0 = 0xA9;
sbit EX0 = 0xA8;

/* IEN1 */
sbit EXEN2 = 0xBF;
sbit SWDT = 0xBE;
sbit EX6 = 0xBD;
sbit EX5 = 0xBC;
sbit EX4 = 0xBB;
sbit EX3 = 0xBA;
sbit EX2 = 0xB9;
sbit EADC = 0xB8;

/* P3 */
sbit RD = 0xB7;
sbit WR = 0xB6;
sbit T1 = 0xB5;
sbit T0 = 0xB4;
sbit INT1 = 0xB3;
sbit INT0 = 0xB2;
sbit TXD = 0xB1;
sbit RXD = 0xB0;

/* SCON */
sbit SM0 = 0x9F;

 22

sbit SM1 = 0x9E;
sbit SM2 = 0x9D;
sbit REN = 0x9C;
sbit TB8 = 0x9B;
sbit RB8 = 0x9A;
sbit TI = 0x99;
sbit RI = 0x98;

/* T2CON */
sbit T2PS = 0xCF;
sbit I3FR = 0xCE;
sbit I2FR = 0xCD;
sbit T2R1 = 0xCC;
sbit T2R0 = 0xCB;
sbit T2CM = 0xCA;
sbit T2I1 = 0xC9;
sbit T2I0 = 0xC8;

/* ADCON */
sbit BD = 0xDF;
sbit CLK = 0xDE;
sbit BSY = 0xDC;
sbit ADM = 0xDB;
sbit MX2 = 0xDA;
sbit MX1 = 0xD9;
sbit MX0 = 0xD8;

/* IRCON */
sbit EXF2 = 0xC7;
sbit TF2 = 0xC6;
sbit IEX6 = 0xC5;
sbit IEX5 = 0xC4;
sbit IEX4 = 0xC3;
sbit IEX3 = 0xC2;
sbit IEX2 = 0xC1;
sbit IADC = 0xC0;

 23

Appendix B2:

Keypad Scan Mode Software (KBDSCAN.a51)

Keypad scan mode software in assembly language

; KBD.a51
; Program file for keyboard in scanned mode
; This program was slightly modified by scott Sendra to work with C code
; Robotic Navigation Distance Control Platform
; Scott Sendra
; e-mail: ssendra@bradley.edu
; 5-11-04

Name chkkbd
kbdpt equ 30h ; value for P2 to access keyboard

kbd SEGMENT CODE
 RSEG kbd
 PUBLIC KBDinit
 PUBLIC getkbd
 PUBLIC chkkbd
;
; initialize for keyboard scan
;
KBDinit:
 setb it1 ; falling edge
 clr ie1 ; clear flag
 clr ex1 ; disable interrupt
 ret
;
; returns key value in A
;
getkbd:
 jnb ie1,getkbd ; WAIT FOR KEY
getkbd2:
 mov p2,#kbdpt ; point to keyboard
 movx a,@r1
 anl a,#00001111B ; mask lower 4 bits
 add a,#4;changed from 3 to 4 to keypad works with C code (Scott Sendra)
 movc a,@a+pc ; translate to character code
 mov r7,a ;was added so keypad works with C code (Scott Sendra)
 clr ie1
 ret
; Keyboard conversion table
 db '123C456D789EA0BF'
; returns key value in A if pressed
; returns 0 if not pressed
chkkbd:
 jb ie1,getkbd2 ; CHECK FOR KEY
 mov a,#0
 mov r7,a ;was added so keypad works with C code (Scott Sendra)
 ret
 end

 24

Appendix B3
Keypad Interrupt Mode Software (KEYPAD.a51)

Keypad interrupt mode software in assembly language

;***
;
; KEYPAD subroutine: waits for key pressed and returns it
; in "key".
;
;***
$NOMOD51 ; omit assembler micro definitions
$Include(reg515.inc) ; define 515 micro

Name keypad
PUBLIC keypad,key_init

pad_key SEGMENT CODE
 RSEG pad_key ; switch to this code segment

 USING 0 ; use register_bank 0

; Dempsey Note:
; This code was provided by EMAC
; It is not an efficient way to use keypad
; Normally must do other main code processing
;
; local definitions

KEYSEL EQU 38H ; KEYPAD PORT

key_init:
 SETB IT1 ; falling edge trigger (INT1)
 RET

keypad:
 JNB IE1,keypad ; LOOP TILL KEY PRESSED
 CLR IE1 ; clear for next transition

 PUSH DPH
 PUSH DPL ; SAVE DPTR
 MOV DPTR,#KEYTABL ; POINT TO TRANSLATE TABLE
 MOV P2,#KEYSEL ; POINT TO KEYPAD PORT
 MOVX A,@R1 ; GET KEY FROM PORT
 ANL A,#00001111B ; ONLY 5 BITS
 MOVC A,@A+DPTR ; TRANSLATE TO KEY FROM TABLE (ASCII)
 MOV R7,A ; save in "R7" for C code
 POP DPL
 POP DPH
 RET

KEYTABL: DB '123C456D789EA0BF'

 END

 25

Appendix B4:
LCD Initialization Software (LCD_GLD.a51)

LCD initialization software in assembly language

;***
;
; lcd_gld subroutine: modified lcddrv3.a51 from EMAC (see notes below)
;
;***

$NOMOD51 ; omit assembler micro definitions
$Include(reg515.inc) ; define 515 micro

Name lcd_gld
PUBLIC _lcdout,lcdinit

lcd_drv SEGMENT CODE
 RSEG lcd_drv ; switch to this code segment

 USING 0 ; use register_bank 0

;**
;
; 20X2 character LCD drivers for the MICROPAC 535
;
; COPYRIGHT 1993-1995 EMAC INC.
;
; ESCflag is a bit field that must be declared.
; DLAYA is a 5ms delay routine with no registers affected.
; LCDINIT should be executed before any other LCD subroutines.
;
;
; LCDOUT: Output the char in ACC to LCD
; Following are some codes that are supported by this driver (20*2 displays)
;
; 0ah move cursor to other line (i.e. from 1-2 or 2-1)
; 0dh move cursor to beginning of line
; 1ah clear display and move cursor to home
; 1bh the next byte received after this will be written to register
; 0 of the lcd display
;

; definitions

escflag equ psw.5 ; LCD equate
lcdcmd equ 28h ; value for P2 to select lcd command port
initdata:
 db 38h,08,01,06,0eh,80h,0
;--
; Dempsey notes
; (1) R1,R7 are corrupted by this subroutine
; (2) Previously there were several returns- now only one: "LCDEXIT"

 26

; (3) From calling program: Use a delay of 5ms (minimum)
; between command codes LF (0A) and CR (0D)
;---

_lcdout:
 ; value passed in R& (C convention)
 MOV A,R7 ; get character
 MOV P2,#LCDCMD ; POINT TO COMMAND PORT
 jnb ESCflag,lcdnt5 ; skip if no ESC
 clr escflag
 sjmp reg0out ; write directly to lcd reg 0

lcdnt5:
 ANL A,#11100000B ; SEE IF ANY OF UPPER 3 BITS SET
 JNZ REG1OUT ; IF YES, PRINT IT
 MOV A,R7 ; RESTORE CHAR
 ANL A,#11111000B ; SEE IF CHAR IS < 7
 JZ REG1OUT ; IF LESS, A=0 SO PRINT USER DEF CHAR 0-7

 MOV A,R7 ; SEE IF CONTROL CHAR
 CJNE A,#0DH,LCNT1 ; IF NOT CR, SKIP
 MOVX A,@R1 ; READ COMMAND PORT TO FIND CURSOR POS
 SETB ACC.7 ; SET BIT 7 FOR DDRAM ADDR
 ANL A,#11100000 ; MOVE TO LEFT (ONLY VALID ON 2 LINE DISPL)
 MOV R7,A
 SJMP REG0OUT

LCNT1: CJNE A,#0AH,LCNT2 ; IF NOT LF, SKIP
 MOVX A,@R1 ; READ COMMAND PORT TO FIND CURSOR POS
 CPL ACC.6 ; SWITCH LINE (ONLY VALID ON 2 LINE DISPL)
 SETB ACC.7 ; SET BIT 7 FOR DDRAM ADDR
 MOV R7,A
 SJMP REG0OUT

LCNT2: CJNE A,#1BH,LCNT3 ; IF NOT ESC, SKIP
 setb ESCflag ; indicate ESC received
 JMP LCDEXIT

LCNT3: CJNE A,#1AH,LCNT4 ; EXIT IF NOT CLEAR SCREEN
 MOV R7,#1 ; CLEAR COMMAND
 SJMP REG0OUT

 ; OUTPUT THE CHAR IN R2 TO REG 1
REG1OUT:
 MOVX A,@R1 ; READ LCD COMMAND PORT
 JB ACC.7,REG1OUT ; LOOP IF BUSY FLAG SET
 INC P2 ; POINT TO LCD DATA PORT
 MOV A,R7 ; RESTORE CHAR
 MOVX @R1,A ; OUTPUT IT
LCNT4: JMP LCDEXIT

 ; OUTPUT THE CHAR IN R2 TO REG 0
REG0OUT:
 MOVX A,@R1 ; READ LCD COMMAND PORT
 JB ACC.7,REG0OUT ; LOOP IF BUSY FLAG SET

 27

 MOV A,R7 ; RESTORE CHAR
 MOVX @R1,A ; OUTPUT IT
 JMP LCDEXIT

;
; LCDINIT: Init the LCD
;
LCDINIT:
 clr ESCflag ; indicate no esc found
 MOV P2,#LCDCMD ; POINT TO COMMAND PORT
 LCALL DLAYA ; 5MS DELAY
 LCALL DLAYA ; 5MS DELAY
 LCALL DLAYA ; 5MS DELAY
 LCALL DLAYA ; 5MS DELAY
 MOV A,#30H
 MOVX @R1,A ; OUT TO LCD COMMAND PORT
 LCALL DLAYA ; 5MS DELAY
 MOVX @R1,A ; OUT TO LCD COMMAND PORT
 LCALL DLAYA ; 5MS DELAY
 MOVX @R1,A ; OUT TO LCD COMMAND PORT

 MOV DPTR,#INITDATA ; POINT TO INIT DATA
 ; the last command should take no more than 40 uS.
 mov b,#80 ; for timeout of 80*3 * (12/clock)
lcdnit2:
 movx a,@r1 ; read lcd command port
 jnb acc.7,lcdnit1 ; exit if not busy
 djnz b,lcdnit2 ; loop till timeout
 sjmp lcdexit ; exit if timeout

LCDNIT1:
 MOVX A,@R1 ; READ LCD COMMAND PORT
 JB ACC.7,LCDNIT1 ; LOOP IF BUSY FLAG SET

 CLR A
 MOVC A,@A+DPTR ; GET BYTE FROM INIT TABLE
 JZ LCDEXIT ; EXIT IF 0
 INC DPTR ; POINT TO NEXT BYTE
 MOVX @R1,A ; OUTPUT BYTE
 SJMP LCDNIT1 ; LOOP

LCDEXIT:
 RET

;
; MISCELLANEOUS DELAYS
;
DLAYA: PUSH ACC
 MOV A,#100
 AJMP DLAYA2

DLAYB: PUSH ACC
 MOV A,#128

 28

 AJMP DLAYA2

DLAYC: PUSH ACC
 MOV A,#255
 AJMP DLAYA2
dlayd: push acc
 mov a,#8

DLAYA2:
 PUSH ACC
 MOV A,#0FFH
DLAYA1:
 MOV A,#0FFH
 DJNZ ACC,$; LEVEL 3 LOOP
 POP ACC
 DJNZ ACC,DLAYA2 ; LEVEL 1 LOOP

 POP ACC
 RET

 END

 29

Appendix B5:

Startup Software (STARTUP.a51)

Startup software in EMAC microcontroller in assembly language

;--- ; This file is part of the C51 Compiler
package
; Copyright (c) 1995-1997 Keil Software, Inc.
;--
; Modified by G. Dempsey 7/11/00 for interrupts
; changed startup.a51 to absolute code starting at 8000h
; also required to locate at 8000h in linker options
;
;
; STARTUP.A51: This code is executed after processor reset.
;
; To translate this file use A51 with the following invocation:
;
; A51 STARTUP.A51
;
; To link the modified STARTUP.OBJ file to your application use the following
; BL51 invocation:
;
; BL51 <your object file list>, STARTUP.OBJ <controls>
;
;--
$NOMOD51 ; omit assembler micro definitions
$Include(reg515.inc) ; define 515 micro
;
; User-defined Power-On Initialization of Memory
;
; With the following EQU statements the initialization of memory
; at processor reset can be defined:
;
; the absolute start-address of IDATA memory is always 0
IDATALEN EQU 080H ; the length of IDATA memory in bytes.
;
XDATASTART EQU 0H ; the absolute start-address of XDATA memory
XDATALEN EQU 0H ; the length of XDATA memory in bytes.
;
PDATASTART EQU 0H ; the absolute start-address of PDATA memory
PDATALEN EQU 0H ; the length of PDATA memory in bytes.
;
; Notes: The IDATA space overlaps physically the DATA and BIT areas of the
; 8051 CPU. At minimum the memory space occupied from the C51
; run-time routines must be set to zero.
;--
;
; Reentrant Stack Initilization
;
; The following EQU statements define the stack pointer for reentrant
; functions and initialized it:
;
; Stack Space for reentrant functions in the SMALL model.

 30

IBPSTACK EQU 1 ; set to 1 if small reentrant is used.
IBPSTACKTOP EQU 0FFH+1 ; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the LARGE model.
XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
XBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the COMPACT model.
PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
PBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.
;
;--
;
; Page Definition for Using the Compact Model with 64 KByte xdata RAM
;
; The following EQU statements define the xdata page used for pdata
; variables. The EQU PPAGE must conform with the PPAGE control used
; in the linker invocation.
;
PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.
PPAGE EQU 0 ; define PPAGE number.
;
;--

 NAME ?C_STARTUP

?STACK SEGMENT IDATA

 RSEG ?STACK
 DS 1

 EXTRN CODE (?C_START)
 PUBLIC ?C_STARTUP

; Define starting location for program

stard EQU 8000H ; start address for program

 CSEG AT stard

?C_STARTUP: LJMP STARTUP1 ; jump over interrupt vector table

;---
; Interrupt Vector Table
; Area
;---
 CSEG AT stard+0BH ; 0BH=addr for Timer 0
 LJMP tmr0srv

 CSEG AT stard+13h ; External interrupt 1.
 LJMP ext1srv

 CSEG AT stard+1BH ; Timer 1 interrupt.

 31

 LJMP tmr1srv

 CSEG AT stard+23H ; Serial interrupt
 LJMP serialsrv

 CSEG AT stard+2BH ; Timer 2
 LJMP tmr2srv

 CSEG AT stard+43H ; IADC interrupt.
 LJMP iadcsrv

 CSEG AT stard+4BH ; IEX2 interrupt.
 LJMP iex2srv

 CSEG AT stard+53H ; IEX3 interrupt.
 LJMP iex3srv

 CSEG AT stard+5BH ; IEX4 interrupt
 LJMP iex4srv

 CSEG AT stard+63H ; IEX5 interrupt.
 LJMP iex5srv

 CSEG AT stard+6BH ; IEX6 interrupt.
 LJMP iex6srv

;---
;
; Interrupt: Timer 0 Service
;
;---
tmr0srv: ; timer 0 service
;---
;---
;
; Interrupt: Timer 2 Servie
;
;---
tmr2srv: ; timer 2 service
;---
;---
;
; Unused Interrupt Service Routines
;
;---
;
; note: this is not required but shown for completeness

ext1srv: RETI ; do nothing but return
tmr1srv: RETI
serialsrv: RETI
iadcsrv: RETI

;---

 32

 ;Scott Sendra added code
iex2srv: ;INT2 falling interrupt of PWM signal from distance sensor
clr TR0 ;stop timer 0
RETI
;---
 ;Scott Sendra added code
iex3srv: ;INT3 rising interrupt of PWM signal from distance sensor
mov TL0,#0 ;resets timer 0 values
mov TH0,#0
setb TR0 ;start timer 0
RETI
;---
iex4srv: RETI
iex5srv: RETI
iex6srv: RETI

;---
;
; End of Interrupt Service Routines
;
;---

STARTUP1:

; Initilization Specific To The EMAC MicroPac 535 SBC

 setb P5.5 ; reset SC26C92 DUART
 clr P5.5 ; bring DUART out of reset
 setb P5.0 ; make A16 of 128K Ram, hi
 clr P5.1 ; enable memory mapped IO
 clr P5.2 ; disable EEPROM
; End Of MicroPac 535 Initilization

; Interrupt setup code
; local definitions

;DSEG AT 30h
;PWH: ds 1
;PWL: ds 1
;pwpw: ds 0Eh
;PUBLIC PWH
;PUBLIC PWL

CSEG

;mov PWH,#09h
;mov PWL,#19h

;Robotic Navigation Distance Control Platform code added
;Scott Sendra
;e-mail: ssendra@bradley.edu
;5-11-04
;software code added until setb TR0

 33

mov CCL1,#0B7h ;CC register 1 to produce 1.5ms pulse for servo
mov CCH1,#0FAh
mov CCEN,#28h ;CC register 1 and 2 compared enabled
mov CCL2,#65h
mov CCH2,#0FCh
mov TH2,#93h ;Places 933Dh into timer 2
mov TL2,#3Dh
mov CRCH,#93h ;Timer 2 reload value of 933Dh
mov CRCL,#3Dh
mov a,T2CON ;Timer 2 mode 0 with compared mode 0
mov a,#11h
mov T2CON,a

clr TR0 ;stops timer 0
setb P1.0 ;enable INT3/P1.0 as input
setb P1.4 ;enable INT2/P1.4 as input
mov TL0,#0 ;Sets Timer 0 to 0 value
mov TH0,#0
mov a, TMOD ; Timer 0 mode 1, TR0 control bit timer control
anl a,#0F0h
orl a,#01h
mov TMOD,a
setb I3FR ;T2CON rising edge activated INT3/P1.0
clr I2FR ;T2CON falling edge activated INT2/P1.4
clr EX0 ;Timer 0 external interrupt 0 disabled
setb IEN1.2 ;enable INT3
setb IEN1.1 ;enable INT2
setb EAL ;enable all interrupts
setb TR0 ;Set timer 0 to start

IF IDATALEN <> 0
 MOV R0,#IDATALEN - 1
 CLR A
IDATALOOP: MOV @R0,A
 DJNZ R0,IDATALOOP
ENDIF

IF XDATALEN <> 0
 MOV DPTR,#XDATASTART
 MOV R7,#LOW (XDATALEN)
 IF (LOW (XDATALEN)) <> 0
 MOV R6,#(HIGH XDATALEN) +1
 ELSE
 MOV R6,#HIGH (XDATALEN)
 ENDIF
 CLR A
XDATALOOP: MOVX @DPTR,A
 INC DPTR
 DJNZ R7,XDATALOOP
 DJNZ R6,XDATALOOP
ENDIF

IF PPAGEENABLE <> 0
 MOV P2,#PPAGE

 34

ENDIF

IF PDATALEN <> 0
 MOV R0,#PDATASTART
 MOV R7,#LOW (PDATALEN)
 CLR A
PDATALOOP: MOVX @R0,A
 INC R0
 DJNZ R7,PDATALOOP
ENDIF

IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)

 MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF

IF XBPSTACK <> 0
EXTRN DATA (?C_XBP)

 MOV ?C_XBP,#HIGH XBPSTACKTOP
 MOV ?C_XBP+1,#LOW XBPSTACKTOP
ENDIF

IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)
 MOV ?C_PBP,#LOW PBPSTACKTOP
ENDIF

 MOV SP,#?STACK-1
 SETB EAL ; enable all interrupts
 LJMP ?C_START

 END

 35

Appendix B6:

Main Software (MAIN.C)

Main software for this project in C language

/*
Robotic Navigation Distance Control Platform Software
by Scott Sendra
e-mail: ssendra@bradley.edu
5-11-04
*/

#pragma SMALL
#include <reg515.h>

extern void lcdinit(void);
extern void key_init(void);
extern int lcdout(char dummy);
extern int keypad(void);
extern int chkkbd(void);
extern int KBDinit(void);

/***
;
; Main Module
;
;***
*/

/* local definitions */

#define LCD_CLR 0x1A // clear LCD command
#define LCD_LF 0x0A // LCD line feed (next line)
#define LCD_CR 0x0D // Move cursor to beginning of line
#define keyA 0x41 // key A
#define keyB 0x42 // key B
#define keyC 0x43 // key C
#define keyD 0x44 // key D
#define keyE 0x45 // key E
#define keyF 0x46 // key F
#define key0 0x30 // key 0
#define key1 0x31 // key 1
#define key2 0x32 // key 2
#define key3 0x33 // key 1
#define key4 0x34 // key 4
#define key5 0x35 // key 5
#define key6 0x36 // key 6
#define key7 0x37 // key 7
#define key8 0x38 // key 8
#define key9 0x39 // key 9

 36

int i; //used in Display () to display arrays to LCD
int pw_low, pw_high;
int L2, H2;
int PW_CCL2, PW_CCH2; //Used in the stop mode to save the current compare register 2 values of current motor speed
int desiredPWH, desiredPWL; //Used to store the desire distance from the user
int High, Low; //Used to store the high and low bytes from timer 0
int control; //Used to for the activate or deactive Navigation Mode
int SpeedLUnit, SpeedHUnit; //Used to set the increment or decrement electric motor speed
int OutofRangeMode; //Used to set store the User or Auto Out of Ranges Modes
int nop; //Used in for LCD display in several locations to creat delay
int count; //Used to control update of electric motor speed

/*All arrays below are used to display info to to the LCD. The null '/' is used to terminate the display loop.
The maximum number of characters that can be displayed to the LCD is 20 characters.
*/

unsigned char data key; // current key
unsigned char data lcd_char=LCD_CLR; // char for LCD
unsigned char code mainmenu1[21]="Enter 1-9 feet: /"; // the '/' char is used as a null char
unsigned char code mainmenu2[21]="or 0-7 for override/";
unsigned char code OutofRangeMenu[21]="Press 1 for User/";
unsigned char code OutofRangeMenu2[21]="Press 2 for Auto/";
unsigned char code OutofRangeDisplay[21]="Out of Range/";
//unsigned char code OutofRangeDisplay1[21]="Press 0 to activate/";
unsigned char code OutofRangeDisplay2[21]="Waiting for object/";
unsigned char code ManIncMotorSpeed[21]= "Manual Inc Speed/";
unsigned char code ManDecMotorSpeed[21]= "Manual Dec Speed/";
unsigned char code ManStopMotor[21]= "Manual Stop/";
unsigned char code ManLastSpeed[21]= "Reload Last Speed/";
unsigned char code ManFullMotorSpeed[21]= "Full Forward Speed/";
unsigned char code ManRevMotorSpeed[21]= "Full Reverse Speed/";
unsigned char code Following[21]= "Following/";
unsigned char code Deactivated[21]= "Deactivated/";
unsigned char code Activate[21]="Press 0 to activate/";

//Software functions
void LCDmainmenu();
void OutofRangeMainMenu();
void PulseWidthDisplay();
void HextoASCII (int PW);
void IncMotorSpeed();
void DecMotorSpeed();
void OutofRange();
void ActivateDisplay ();
void Display (unsigned char array[21]);

void main(void) //Main loop of program
{
SpeedHUnit= 0x00; //This is the high byte value to change the speed of the motor.
SpeedLUnit= 0x01; //This is the low byte value to change the speed of the motor.
control= 0; //This sets control to zero which the Navigation Mode will be deactivated
OutofRangeMode=0; //Initial OutofRangeMode which is no out of range mode.
lcdinit(); //LCD initialization
//key_init();

 37

KBDinit(); /Keypad initializatoin
LCDmainmenu();//Allows user to enter the desired distance and then sets variables desiredPWL and desiredPWH
OutofRangeMainMenu(); //Allows user to enter in the Out of Range Mode
//PulseWidthDisplay();
count=255; //Was used experimently to slow down the motor update rate

while(1)
{

while (count > 0) {count= count - 1;}//Used to slow down the motor update rate, for smoother control
if ((TR0==0) && (control ==1)) //If Timer 0 is stopped and control = 1 then enter navigation mode
 {
 if (TH0 > 0x41)
//If pulse width from sensor is larger then 0x41 aprox 10 feet, then object is out of range

 { CCH2= 0xFC; //stop electric motor
 CCL2= 0x65;
 High=TH0; //High will be used in the OutorRange() function
 OutofRange();
 }

 if (TL0 <= 0xFC)
 //This adds 0x03 to the timer values to correct timer count error
 {
 Low = TL0+0x03; High= TH0;
 }
 else
 {
 Low= (0x02 - (0xFF - TL0)); High= TH0 + 0x01;
 }
 //PulseWidthDisplay();

 if ((desiredPWH - High) > 0) //If measure pulse width is larger then desired, then decrease motor speed
 {
 DecMotorSpeed();
 }
 else if(((desiredPWL - Low) > 1) && (desiredPWH >= High))
 {
 DecMotorSpeed();
 }
 else if ((desiredPWH - High) < 0)
 //if measure pulse width is smaller then desired, then icrease motor speed
 {
 IncMotorSpeed();
 }
 else if (((desiredPWL - Low) < 1) && (desiredPWH <= High))
 {
 IncMotorSpeed();
 }

 count= 255;
 }

key=0;
//key=keypad(); // call keypad subroutine
key=chkkbd(); //Keypad in scan mode

 38

if(key==keyA) // Motor full reverse
{
control= 0; //Deactivates the Navigation Mode.
_lcdout(LCD_CLR);
Display (ManRevMotorSpeed); //Displays "Full Reverse Speed" on LCD
ActivateDisplay (); //Displays "Press 0 to activate on the 2nd line of LCD
CCH2= 0xFD; CCL2= 0x7A; //Set electric motor in full reverse speed.
}

else if(key==keyB) //Motor stop
{
control= 0; //Deactivates the Navigation Mode.
_lcdout(LCD_CLR);
Display (ManStopMotor); //Displays "Manual Stop" on LCD
ActivateDisplay ();
PW_CCH2= CCH2; PW_CCL2= CCL2; //Saves current speed of electric motor
CCH2= 0xFC; CCL2= 0x45; //Stops electric motor
}

else if(key==keyC) // Increment motor speed
{
control= 0; //Deactivates the Navigation Mode
_lcdout(LCD_CLR);
Display (ManIncMotorSpeed); //Displays "Manual Inc Speed" on LCD
ActivateDisplay ();
IncMotorSpeed(); //Calls increment motor speed function
}

else if(key==keyD) // Start motor from last speed
{
control= 0; //Deactivates the Navigation Mode
_lcdout(LCD_CLR);
Display (ManLastSpeed); //Display "Reload Last Speed" on LCD
ActivateDisplay ();
CCH2= PW_CCH2; //Reloads the last speed when pressig the Motor stop button B
CCL2= PW_CCL2;
}

else if (key == keyE) // Decrement motor speed
{
control= 0; //Deactivates the Navigation Mode
_lcdout(LCD_CLR);
Display (ManDecMotorSpeed); //Displays "Manual Dec Speed" on LCD
ActivateDisplay ();
DecMotorSpeed(); //Calls decrement motor speed function
}

else if(key==keyF) // Motor full forward
{
control= 0; //Deactivates the Navigation Mode
_lcdout(LCD_CLR);
Display (ManFullMotorSpeed); //Displays "Full Forward Speed" on LCD
ActivateDisplay ();
CCH2= 0xF8; CCL2= 0xCC; //Sets electric motor to full forward speed

 39

}

else if (key==key1)
 {
 /* This allows the user to reset the software so the fixed desired distance
 as well as the Out of Range Mode can be changed.
 */

 CCH2= 0xFC; //Stops the electric motor
 CCL2= 0x45;
 control= 0;//Resets all the variables as in the begining of software code.
 OutofRangeMode=0;
 LCDmainmenu();
 OutofRangeMainMenu();

 }

else if (key==key0)
 {
 control = !control;
 //toggles control bit to so navigation would be activated or deactivated
 if (control == 1) //If control = 1 then navigation mode is active
 {
 _lcdout (LCD_CLR);
 Display (Following); //Display "Following" on LCD
 }

 if (control == 0) //If control = 0 then navigation mode is deactivated
 {
 CCH2= 0xFC; //Stops electric motor
 CCL2= 0x45;
 _lcdout (LCD_CLR);
 Display (Deactivated); //Display "Deactivated" on LCD
 ActivateDisplay (); //Displays "Press 0 to
activate" on 2nd of LCD
 }
 }

} /* end while loop */
} /* end main loop */

/**/
/*
This function has a display prompt "Enter 1-9 feet:". When the user enteres
the desired distance the desiredPWH, and desiredPWL values are set using the
values below. These values are used in the main loop of the program.
*/

void LCDmainmenu()
{
 _lcdout(LCD_CLR); //clears LCD display
 Display (mainmenu1); //Displays "Enter 1-9 feet:"

 40

//Key pad used in interrupt mode and waits for user to enter in the desired distance
key=keypad();
 if (key==key1) { _lcdout (key1); desiredPWH= 0x06; desiredPWL= 0xE8;}
else if (key==key2) { _lcdout (key2); desiredPWH= 0x0D; desiredPWL= 0x5A;}
else if (key==key3) { _lcdout (key3); desiredPWH= 0x13; desiredPWL= 0xAA;}
else if (key==key4) { _lcdout (key4); desiredPWH= 0x1A; desiredPWL= 0x00;}
else if (key==key5) { _lcdout (key5); desiredPWH= 0x20; desiredPWL= 0x56;}
else if (key==key6) { _lcdout (key6); desiredPWH= 0x26; desiredPWL= 0xB8;}
else if (key==key7) { _lcdout (key7); desiredPWH= 0x2D; desiredPWL= 0x10;}
else if (key==key8) { _lcdout (key8); desiredPWH= 0x33; desiredPWL= 0x76;}
else if (key==key9) { _lcdout (key9); desiredPWH= 0x39; desiredPWL= 0xDE;}

}

/***/
/*
This function asks the user to enter in the User out of range mode.
The LCD displays on line 1: "Press 1 for User" and on line 2: Press 2 for Auto".
The keypad is used in interrupt mode and waits for user to press a key.
The User Out of Range Mode is set to 1, and the default and also selectable
Auto OUt of Range Mode is set to 2.
*/

void OutofRangeMainMenu()
{
 _lcdout(LCD_CLR);
 Display(OutofRangeMenu);//Displays "Press 1 for User" on LCD

 _lcdout(LCD_CR);
 nop=0;
 //The nop is used for delay purpose so LCD could display 2nd line correctly
 nop=0;
 _lcdout(LCD_LF);
 Display(OutofRangeMenu2); //Displays "Press 2 for Auto" on LCD

key=keypad();
if (key==key1) {OutofRangeMode=1;} //OutofRangeMode variable is set here.
else {OutofRangeMode=2;}
_lcdout(LCD_CLR);
Display (Activate); //Displays "Press 0 to activate" on LCD
}

/**/
/*
This function is not used for the proper operation of the platform.
This was used for testing purposes, to display the timer 0 values on the LCD.
This function was used the the HextoACCII () function to display the 2 byte
values on the LCD screen. For example to display the values of timer 0
on the LCD screen the following values will need to be used.
High= TH0;
Low= TL0;
*/

void PulseWidthDisplay()
{
_lcdout(LCD_CLR);

 41

HextoASCII (High);
HextoASCII (Low);
}

/**/
/*
This function is currently not used for the correct operation or display
of the LCD screen. This function was used to convert a 2 byte hex value to
ASCII to allow hex value to be displayed on the LCD screen. This allow
the display the pulse width measurements from Timer 0 on the LCD screen.
This was needed to take data of distance vs. hex values from the
ultrasonic sensor. To use this function for Timer 0 for example PW = TL0
which would provide the low byte of timer 0 value.
*/

void HextoASCII (int PW)
{
int H, L;
H=PW / 0x10;
L=PW - (H*0x10);
if(H >= 0x0A) H= (H-0x0A) + 0x11;
_lcdout(H + 0x30);
if (L >= 0x0A) L= (L-0x0A) + 0x11;
_lcdout(L + 0x30);
}

/***/
/*
This function is used in the Navigation Mode as well as the manual increment mode.
This increments the motor speed by the specified number of units set in the
SpeedLUnit and SpeedHUnit variables. To increase limit forward motor speed the
values values in the if statement for the compare registers have to be decreased
to allow a higher motor speed.
*/

void IncMotorSpeed()
{
if ((CCH2 >= 0xFC) && (CCL2 >= 0x10)) //This limits the forward speed of the motor
{
if (CCL2 < SpeedLUnit) //This accounts if a carry needs to be performed
 {
 CCL2= CCL2 - SpeedLUnit + 0xF0 + 0x10;
 CCH2= CCH2 - (SpeedHUnit + 0x01);
 }
else
 {
 CCL2= CCL2 - SpeedLUnit; //increments motor speed by SpeedLUnit
 CCH2= CCH2 - SpeedHUnit; //increments motor speed by SpeedHUnit
 }
}
}
/**/
/*
This funciton is used in the Navigation Mode as well as the manual decrement mode.
This decrements the motor speed byt the specified number of units set in the
SpeedLUnit and SpeedHUnit variables. If reversed is used then the values in

 42

the if statement will need to be increased to allow the motor to reverse.
*/

void DecMotorSpeed()
{
if ((CCH2 <= 0xFC) && (CCL2 <= 0x45)) //This limits the Lower speed to prevent overflows during
decrementing.
{
/* for CCL2 0x45 was used because this was the largest pulse width that the ESC would accept to keep the
motor in netural. The normal neutral setting is CCH2= 0xFC, CCL2= 0x65, but do to the resolution of the
ESC CCL2= 0x45 was the first value when decreasing the pulse width that would put the motor in the
neutral position. This higher neutral pulse width would allow for a slightly faster response when
increasing the pulse to speed up the electric motor.
*/
 if ((0xFF - CCL2) < SpeedLUnit) //This accounts if a carry needs to be
performed
 {
 CCL2= CCL2 + SpeedLUnit - 0xF0 - 0x10;
 CCH2= CCH2 + (SpeedHUnit + 0x01);
 }
 else
 {
 CCL2= CCL2 + SpeedLUnit; //decrements motor speed by SpeedLUnit
 CCH2= CCH2 + SpeedHUnit;//decrements motor speed by SpeedHUnit
 }
}
else
{
 CCL2= 0x45; //This sets the Electric motor in the neutral position.
 CCH2= 0xFC;
}
}
/***/
/*
This function is the Out of Range Mode which is called from the main loop.
This displays "Out of Range" on the LCD and either follows the User or Auto
out of range flow charts.
*/

void OutofRange()
{

_lcdout(LCD_CLR);
Display(OutofRangeDisplay); //Displays the OutofRangeDisplay array

 _lcdout(LCD_LF);
 nop=0;
 //The nop is used for delay purpose so LCD could display 2nd line correctly
 nop=0;
 _lcdout(LCD_CR);
 if (OutofRangeMode == 1)
 { Display(Activate);

 key=keypad();
 //keypad in interrupt mode so waits for user to press a button.
 if (key==key0)

 43

 {

 }
 while (TR0 != 0) {}
 //once key is pressed it waits here until timer 0 is stopped
 }
 else
 { Display (OutofRangeDisplay2); //Displays the OutofRangeDisplays2 array

 while (High > 0x42)
 {
 /*Loops until the High value from the ultrasonic sensor is less
 than 0x42 hex which is approx. 10 feet. When the high value is
 less than 0x42 then an object is with in 10 feet from the sensor.
 */
 if (TR0 == 0) {High= TH0;}
 }

 }
_lcdout(LCD_CLR);
Display (Following);
}

/**/
/*
This function is a function that displays a 20 char array of text
in a array on the LCD screen. This function looks for the null char
'/' which loop of the array will stop. Function accepts an array and
displays the char in the array until the null '/' char is reached.
*/

void Display (unsigned char array[21])
{
for (i=0; array[i] != '/'; i++)
 _lcdout (array[i]);
}

/**/
/*
This function is used to display for the manual modes:
increment / decrement, stop / reload, Navigaton control.
This displays "press 0 to activate" on the 2nd line of the LCD.
*/

void ActivateDisplay ()

{
_lcdout(LCD_CR);
nop=0; //The nop is used for delay purpose so LCD could display 2nd line correctly
nop=0;
_lcdout(LCD_LF);
Display(Activate); //Displays Activate array
}

 44

Appendix C1:

Data Sheet for SRF04 Ultrasonic Sensor
Source: http://www.robot-electronics.co.uk/htm/srf04tech.htm

SRF04 - Ultra-Sonic Ranger

Technical Specification

This project started after I looked at the Polaroid Ultrasonic Ranging module. It has a number of disadvantages for use in small robots
etc.

1. The maximum range of 10.7 metre is far more than is normally required, and as a result

2. The current consumption, at 2.5 Amps during the sonic burst is truly horrendous.

3. The 150mA quiescent current is also far too high.

4. The minimum range of 26cm is useless. 1-2cm is more like it.

5. The module is quite large to fit into small systems, and

6. It’s EXPENSIVE.

The SRF04 was designed to be just as easy to use as the Polaroid sonar, requiring a short trigger pulse and providing an echo pulse.
Your controller only has to time the length of this pulse to find the range. The connections to the SRF04 are shown below:

The SRF04 Timing diagram is shown below. You only need to supply a short 10uS pulse to the trigger input to start the ranging. The
SRF04 will send out an 8 cycle burst of ultrasound at 40khz and raise its echo line high. It then listens for an echo, and as soon as it
detects one it lowers the echo line again. The echo line is therefore a pulse whose width is proportional to the distance to the object.
By timing the pulse it is possible to calculate the range in inches/centimeters or anything else. If nothing is detected then the SRF04
will lower its echo line anyway after about 36mS.

 45

Here is the schematic, You can download a better quality pdf (161k) version srf1.pdf

The circuit is designed to be low cost. It uses a PIC12C508 to perform the control functions and standard 40khz piezo transducers. The
drive to the transmitting transducer could be simplest driven directly from the PIC. The 5v drive can give a useful range for large
objects, but can be problematic detecting smaller objects. The transducer can handle 20v of drive, so I decided to get up close to this
level. A MAX232 IC, usually used for RS232 communication makes and ideal driver, providing about 16v of drive.

The receiver is a classic two stage op-amp circuit. The input capacitor C8 blocks some residual DC which always seems to be present.
Each gain stage is set to 24 for a total gain of 576-ish. This is close the 25 maximum gain available using the LM1458. The gain
bandwidth product for the LM1458 is 1Mhz. The maximum gain at 40khz is 1000000/40000 = 25. The output of the amplifier is fed
into an LM311 comparator. A small amount of positive feedback provides some hysterisis to give a clean stable output.

The problem of getting operation down to 1-2cm is that the receiver will pick up direct coupling from the transmitter, which is right
next to it. To make matters worse the piezo transducer is a mechanical object that keeps resonating some time after the drive has been
removed. Up to 1mS depending on when you decide it has stopped. It is much harder to tell the difference between this direct coupled
ringing and a returning echo, which is why many designs, including the Polaroid module, simply blank out this period. Looking at the
returning echo on an oscilloscope shows that it is much larger in magnitude at close quarters than the cross-coupled signal. I therefore
adjust the detection threshold during this time so that only the echo is detectable. The 100n capacitor C10 is charged to about –6v
during the burst. This discharges quite quickly through the 10k resistor R6 to restore sensitivity for more distant echo’s.

 46

A convenient negative voltage for the op-amp and comparator is generated by the MAX232. Unfortunately, this also generates quite a
bit of high frequency noise. I therefore shut it down whilst listening for the echo. The 10uF capacitor C9 holds the negative rail just
long enough to do this.

In operation, the processor waits for an active low trigger pulse to come in. It then generates just eight cycles of 40khz. The echo line
is then raised to signal the host processor to start timing. The raising of the echo line also shuts of the MAX232. After a while – no
more than 10-12mS normally, the returning echo will be detected and the PIC will lower the echo line. The width of this pulse
represents the flight time of the sonic burst. If no echo is detected then it will automatically time out after about 30mS (Its two times
the WDT period of the PIC). Because the MAX232 is shut down during echo detection, you must wait at least 10mS between
measurement cycles for the +/- 10v to recharge.

Performance of this design is, I think, quite good. It will reliably measure down to 3cm and will continue detecting down to 1cm or
less but after 2-3cm the pulse width doesn’t get any smaller.

Maximum range is a little over 3m. As and example of the sensitivity of this design, it will detect a 1inch thick plastic broom handle at
2.4m.
Average current consumption is reasonable at less than 50mA and typically about 30mA.

Download the source code and a ready assembled hex file.

Calculating the Distance
The SRF04 provides an echo pulse proportional to distance. If the width of the pulse is measured in uS, then dividing by 58 will give
you the distance in cm, or dividing by 148 will give the distance in inches. uS/58=cm or uS/148=inches.

Changing beam pattern and beam width
You can't! This is a question which crops up regularly, however there is no easy way to reduce or change the beam width that I'm
aware of. The beam pattern of the SRF04 is conical with the width of the beam being a function of the surface area of the transducers
and is fixed. The beam pattern of the transducers used on the SRF04, taken from the manufacturers data sheet, is shown below.

There is more information in the sonar faq.

Update - May 2003
Since the original design of the SRF04 was published, there have been incremental improvements to improve performance and
manufacturing reliability. The op-amp is now an LMC6032 and the comparator is an LP311. The 10uF capacitor is now 22uF and a
few resistor values have been tweaked. These changes have happened over a period of time.

All SRF04's manufactured after May 2003 have new software implementing an optional timing control input using the "do not
connect" pin. This connection is the PIC's Vpp line used to program the chip after assembly. After programming its just an unused
input with a pull-up resistor. When left unconnected the SRF04 behaves exactly as it always has and is described above. When the "do
not connect" pin is connected to ground (0v), the timing is changed slightly to allow the SRF04 to work with the slower controllers
such as the Picaxe. The SRF04's "do not connect" pin now acts as a timing control. This pin is pulled high by default and when left
unconnected, the timing remains exactly as before. With the timing pin pulled low (grounded) a 300uS delay is added between the
end of the trigger pulse and transmitting the sonic burst. Since the echo output is not raised until the burst is completed, there is no
change to the range timing, but the 300uS delay gives the Picaxe time to sort out which pin to look at and start doing so. The new code
has shipped in all SRF04's since the end of April 2003. The new code is also useful when connecting the SRF04 to the slower Stamps
such as the BS2. Although the SRF04 works with the BS2, the echo line needs to be connected to the lower numbered input pins. This
is because the Stamps take progressively longer to look at the higher numbered pins and can miss the rising edge of the echo signal. In
this case you can connect the "do not connect" pin to ground and give it an extra 300uS to get there.

 47

Appendix C2:
FAQ for Ultrasonic SRF04 Sensor

Source: http://www.robot-electronics.co.uk/htm/sonar_faq.htm

 Ultrasonic Rangers SRF04 & SRF08 FAQ

Q. What is the accuracy of the ranging?
A. We quote 3-4cm. Its normally better than this, however so many factors affect accuracy that we won't specify anything better than
this. The speed of sound in air is approx. 346m/S at 24 degrees C. At 40KHz the wavelength is 8.65mm. The sonar's detect the echo
by listening for the returning wavefronts. This echo has an attack/decay envelope, which means it builds up to a peak then fades away.
Depending on which wavefront is the 1st to be strong enough to be detected, which could be the 1st, 2nd or even 3rd, the result can
jitter by this much. Another effect which limits accuracy is a phasing effect where the echo is not coming from a point source. Take a
wall for example, the ping will bounce off the wall and return to the sonar. The wall is large, however, and there will be reflections
from a large area, with reflections from the outside being slightly behind the central reflection. It is the sum of all reflections which the
sensor sees which can be either strengthened or weakened by phasing effects. If the echo is weakened then it may be the following
wavefront which is detected - resulting in 8.65mm of jitter. It is possible to see changes of distance as small as mm but then get cm of
jitter.

Q. How can I narrow the beam width?
A. You can't! This is a question which crops up regularly, however there is no easy way to reduce or change the beam width that I'm
aware of. The beam pattern of the SRF04/8 is conical with the width of the beam being a function of the surface area of the
transducers and is fixed. The beam pattern of the transducers used on the SRF04/8, taken from the manufacturers data sheet, is shown
below.

Q. What are the units on the vertical axis in the beam pattern diagram?
A. Units are dB, taken from the manufacturers data sheet at: http://www.robot-electronics.co.uk/datasheets/t400s16.pdf

Q. What distance above the floor should the sonar be mounted?
A. If you can mount the SRF04/8 12in/300mm above the floor, that should be OK. If you mount them lower, you may need to point
them upwards slightly to avoid reflections from the carpet pile or ridges in a concrete floor.

Q. Can we replace the transducers with sealed weatherproof types?
A. No. We have tried these on both the SRF04 and SRF08 and they do not work. The characteristics of the sealed devices requires a
new design which is on our future plans list.

Q. What is the RH limit for the transducers?
A. This is not specified by the transducer manufacturers and is not listed in the data sheet. The following is the manufacturers response
to an email "The RH here in Taiwan is normally higher than 95%. Just if this sensor(400ST/R160) is used in the air, it should be okay.
Don’t use in outdoors. Exposing in rainy day or underwater is not allowed."

Q. Is there a need for us to change the SRF08 address when using the sensor, can't I just use the default address?
A. Yes, if you only have one sensor you can use the default shipped address of 0xE0. You only need to set addresses if you are using
more than one SRF08 on the same I2C bus.

Q. Can I fire two or more sonar's at the same time?
A. No! If two or more sonar's are fired together then they could pick up each other "ping" resulting in a false readings. Fire them
sequentially 65mS apart

 48

A. Yes! We do this all the time on our test robot, firing 8 SRF08's at the same time. They are facing outwards and fitted around a
15inch diameter circle. The gain is set to minimum and they are fired using the I2C general call at address 0, and read individually at
their set addresses. Under these circumstances there is no direct interference.
A. Possibly! - Try it, and compare the results with firing them sequentially at 65mS intervals..

Q. If I change the SRF08 I2C address, will it stay at that address next time I switch on or do I need to set it every time?
A. You only need to set it once and it stays set to the new address - even when you power up again. The I2C address is stored in
EEPROM and stays the same until you deliberately change it.

Q. If I change the SRF08 Range and Gain registers, will they stay the same the next time I switch on or do I need to set them every
time?
A. Unlike the address, which is permanent, You will need to set the Range and Gain when you power up again.

Q. Can I change the sonar frequency of 40KHz to something else?
A. No. The frequency must be 40KHz, because that is the only frequency the transducers will operate at. Also the circuitry is designed
to operate at 40KHz so you cannot change the transducers to other frequency types.

Q. If I reduce the range setting of the SRF08, can I fire the sonar faster?
A. Yes, but be careful. If you fire the sonar and there is nothing in the immediate range, than on the second firing, you may pick up an
echo of the first ping which has only just arrived from a distant object. The second ranging will falsely interpret this as an echo from a
nearby object. To avoid this, don't fire the sonar more frequently than every 60mS or so.

 49

Appendix D1:
Specifications for Team Novak Rooster ESC

Source: http://www.teamnovak.com/products/ESC_Specs/revers_spec/reverse_index.htm

REVERSIBLE MODELS
(CURRENT)

SPEC / FEATURE ROOSTER
Part Number #1850
List Price $139.00
Input Voltage (cells) 7-Jun
Case Size (in) 1.63 x 2.02

x 1.22

Case Size (cm) 4.14 x 5.13
x 3.10

Weight (ounces/grams) 3.0 / 85.0
On-Resistance* (ohms) 0.018
Motor Limit 15 turns (at

6 cells)
One-Touch Set-Up Yes
Drive Frequency (Hz) 1250
Brake Frequency (Hz) 1250
Discrete Steps 64: 32

Forward, 32
Reverse

Rated Fwd. Current* (Amps) 100
Rated Rev. Current* (Amps) 100
Braking Current* (Amps) 100
B.E.C. (volts / amps) 5.7 / 0.5
Wire Size (gauge) 16
Polar Drive Circuitry Yes
Radio Priority Circuitry Yes
Digital Anti-Glitch Circuitry Yes
Reverse Voltage Protection No
Thermal Protection Yes: Dual-

Level
Reverse Disable Yes
Smart Braking Circuitry Yes
Heat Sinks Factory

Installed
Brake Light Circuitry Yes
Brake Light Kit Optional
Battery Plug Installed Tamiya
Motor Plug Installed Bullet-Style

 50

Appendix D2:
Definitions of Team Novak Rooster ESC

Source: http://www.teamnovak.com/Tech_info/glossary/index.html

Note: Definitions below from source website.

BEC:
The Abbreviation for Battery Elimination Circuitry. The BEC is a built-in voltage
regulator that supplies a constant voltage to the receiver and servo.

Brake Light Circuitry:
The tiny circuit in the ESC that allows high intensity red LEDs to be illuminated when
the ESC is in neutral or brakes. The LEDs are attached to the vehicle to function as brake
lights. A Brake Light Kit is available from Novak (#5655).

Brake PWM Frequency:
The frequency at which the duty cycle information is being sent from the speed control to
the motor for braking. It also controls the deceleration characteristics of your vehicle with
respect to trigger movement in the Full Brake direction. Brake PWM Frequency is
measured in Hertz (Hz).

Braking Current:
The amount of force or power the brake circuit can deliver; usually the more the better.
ESC's with higher braking currents can provide better braking without fading.

Digital Anti-Glitch Circuitry:
An exclusive feature from Novak that rejects signals read by the speed control from the
receiver that are caused by radio interference.

Discrete Steps:
The smallest motion change that can be distinguished from neutral to full throttle. The
more steps a speed control uses to accelerate (or decelerate), the smoother the driving
will be. Most racing ESCs have 64 steps, but the Novak Atom or Cyclone has 256 steps
to create the smoothest trigger response available.

Drive PWM Frequency:
The frequency at which the duty cycle information is being sent from the speed control to
the motor during forward drive (How many times-per-second the motor is being cycled
on and off to control its speed). It also controls the acceleration characteristics of your
vehicle with respect to trigger movement in the Full Throttle direction. Drive PWM
Frequency is measured in Hertz (Hz).

Input Voltage:
The minimum or maximum voltage in which the ESC is designed to operate. To obtain
Input Voltage, multiply the number of cells by 1.2 volts. For example, when we specify
that the ESC will work from 4-10 cells, the input voltage is 4.8 to 12.0 volts.

 51

Motor Limit:
A guideline for the lowest recommended number of turns that can be used with a
particular ESC. The turns in a motor are the number of windings on the armature of the
motor. The lower the number of turns, the lower the resistance of the motor. This lowered
resistance results in a potentially higher current draw, which can cause the ESC to run
hotter. Our motor limits are based on using a single motor in 1/10th scale vehicle, with 6-
cells, and a gear ratio of 4:1 or higher. Your gearing, driving style, number of cells, tire
size, ambient temperature, vehicle weight, and the amount of air flow over the heat sinks
will effect the amount of heat build-up in the ESC, motor, and batteries. If you use a
motor with fewer than the recommended minimum number of turns, you will need to
monitor the ESC for excessive heat. If you use more than 6-cells you will need to
increase the number of turns on the motor to prevent damage to your ESC. For dual
motor recommendations, see the "Wire Dual Motors" page in our "How To..." section.

On-Resistance:
The restriction an ESC offers to the flow of the current to the motor at full speed. The
lower the on-resistance, the higher the efficiency (performance) of the ESC. We measure
the ESC's on-resistance based on the transistor's rating at 25 degrees Celsius junction
temperature. For example, our Cyclone uses 6 HYPERFET III transistors in parallel that
are rated by the manufacturer at 0.004 ohms each. To determine the Cyclone's total on-
resistance, we use the following formula: [Transistor Rating] / [Number of Transistors] =
[0.004 ohms] / [6 transistors] = 0.00067 ohms.

One-Touch Set-Up:
One-Touch Set-Up: A Novak first! Our One-Touch system allows the user to
automatically adjust the speed control to the transmitter with the touch of a button. This
system eliminates the need for manual transmitter adjustments using the neutral and high
speed pots. In our Cyclone and Atom ESCs, the One-Touch button is also used to select a
driving profile.

Polar Drive Circuitry:
A Novak exclusive feature which allows the circuitry to stay cool while enabling the
speed control to handle higher powered motors. The results include a smoother
performance, increased acceleration, longer run time and increased radio system range.

Radio Priority Circuitry:
When battery power is running low, this circuitry makes sure that power keeps being sent
to the receiver. This maintains control of the model, even after the batteries have
discharged.

Rated Current:
Rated current, or peak current, is the MOSFET's ability to handle high current surges for
a very short duration (1-2 microseconds).

Reverse Disable:

 52

A feature in all currently manufactured Novak Reversible Electronic Speed Controls
which enables a driver to turn off or "lock out" reverse for racing situations. When
reverse is disabled, the ESC operates as a forward-only speed control with brakes.
Reverse Disabling is turned on and off using the One-Touch Set-Up button.

Reverse Voltage:
When the power source (battery pack) is connected backwards to the ESC's red and black
wires.

Smart Braking:
A feature in all currently manufactured Novak Reversible Electronic Speed Controls
which is designed to help reduce wear and tear on the model's drive train and also reduce
the amount of heat build up in the ESC. When reverse throttle is applied (while the model
is moving forward), the Smart Braking Circuitry will apply brakes until the vehicle is
moving at a slow enough speed where damage and excessive heat are not likely to occur.
When the model slows to a safe speed, the Smart Braking Circuitry will then allow
reverse to engage. Smart Braking only occurs when the ESC's reverse is enabled (see
definition on Reverse Disable), the vehicle is moving, and reverse throttle is applied.

Thermal Overload Protection (Also referred to as Thermal Protection):
Thermal Overload Protection is a built-in sensor, which shuts down the MOSFET(s)
when its temperature exceeds a preset level. This circuitry provides protection from
overloads. Dual-level protection cuts the throttle in half when the ESC temperature
reaches unsafe levels. If the temperature continues to climb, it will shut down.

 53

Appendix D3:
Operation Instructions for Team Novak Rooster ESC

Source: http://www.teamnovak.com/Download/acrobat/rooster_superr.pdf

 54

 55

Appendix E:

Specifications for Hitec HS-303 Servo
Source: www.hitecrcd.com/support/manuals/servomanual.pdf

