

DSP Implementation of a 1961 Fender Champ Amplifier
by James Siegle

Advisor: Dr. Thomas L. Stewart
EE 452 Senior Laboratory II

May 12, 2002

 1

Table of Contents

Abstract ...3

Introduction ..4

Solid-State Amplifier Distortion ...4

Vacuum Tube Amplifier Distortion..5

Functional Description ..6

Overview ...6

Inputs/Outputs..6

Modes...7

System Description...7

Design Equations and Calculations..9

1961 Fender Champ Data Analysis ..9
Time Domain Display...9
Discrete Fourier Transform Computation for Amplifier Output ...10

Frequency Point Size Selection .. 10
Magnitude Spectrum Computation... 10
Analog Frequency Display Computation ... 10

Circuit Diagrams/PSPICE Simulations ...11

PSPICE Simulations of Vacuum Tube Amplifier Distortion...11

1961 Fender Champ Schematic ..13

MATLAB Simulations/Analysis/Implementation...14

Sinusoidal Frequency Selection...14

Verification of Highest Frequency Component from Guitar...15

1961 Fender Champ Outputs from Sinusoidal Inputs..16

1961 Fender Champ Output from Guitar Input ...17

Nonlinear Transfer Characteristic Computations ..18

FIR Filter Designs ..19

1961 Fender Champ DSP Model Simulation...20

1961 Fender Champ DSP Model Implementation ..20

Conclusions ...23

Research ..23

Accomplishments..23

Patents and Standards ...24

 2

Patents ...24

Standards ..24

References ...25

Appendix ...26

Texas Instruments Embedded Target for TI C6000TM DSP Block and Code Build
Configurations ..26

ADC and DAC Block Settings ..26
Simulation Parameters Settings ...27

MATLAB Code ..30
Champread.m – reads in 1961 Fender Champ Data from Sinusoidal Inputs............................30
Champtransfer.m – plots X-Y relationship between sinusoidal input and Champ output31
Champv2.m – final version of 1961 Fender Champ DSP Model Simulation32
Table.m – sorts X-Y relationship between sinusoidal inputs and Champ outputs38

1961 Fender Champ Model Executable Code from Embedded Target for TI C6000TM DSP
in MATLAB 6.5 ..40

 3

Abstract

Solid-state technology may dominate the present electronics world, but vacuum tubes continue to
hold influence in the guitar amplifier industry. The sound of a guitar playing through a vintage
vacuum tube amplifier has become a standard for most guitarists. Unlike solid-state guitar
amplifiers, vacuum tube amplifiers produce specific, distorted guitar sounds. The quality and
amount of harmonic distortion in overdriven vacuum tube guitar amplifiers has been found to be
pleasing to several musicians. This desirable effect has been termed "tube distortion." Even though
vacuum tube designs for guitar amplifiers are characterized by their superior sound, their
disadvantages include high cost, fragility, limited availability of components, high waste heat
generation, and manufacturing inconsistencies in the tubes. The objective of this project is to
reproduce the distinct harmonic distortion of a 1961 Fender Champ with a low-cost DSP and thus
implement a guitar amplifier with tube distortion without the bulky and awkward features of a tube
amplifier. Once the DSP-based design is completed for this small amplifier, the algorithm can be
reconfigured for other vintage vacuum tube amplifiers.

 4

Introduction

Solid-State Amplifier Distortion
As solid-state technology has become more advanced in recent years, devices, such as transistors
and ICs, are increasingly available to be used to design inexpensive guitar amplifiers. However,
these analog solid-state designs require much feedback to improve their linear transfer
characteristic. This heavy feedback results in a sharp clipping characteristic that produces
successive harmonics with high amplitudes when the configuration is driven at a high volume. This
typical nonlinear transfer characteristic for solid-state amplifiers has been plotted below followed
by the harmonic distortion performance for two basic solid-state circuit designs.

Figure 1: Typical Nonlinear Transfer Characteristic for Solid-State Amplifier Configuration

Figure 2: Solid-State Distortion for Basic Transistor Amplifier Configurations [1]

 5

As seen in Figure 2, one design contains a 2N2222 low-voltage bipolar transistor, and the other
configuration uses a 2N5457 low-voltage junction JFET. Measurements were made with an Audio
Precision System 2 with the analog oscillator set to an output level of 2.00 Vrms at 1 kHz [1].

Vacuum Tube Amplifier Distortion
Guitar amplifiers based on vacuum tube designs have been known to produce a superior sound to
solid-state amplifiers. There are several theories to explain the tube amplifier’s specific, distorted
guitar sounds as compared to the solid-state amplifier’s sound. Overall, the tube amplifier
configurations result in a frequency response with a dominant 1st harmonic component, followed by
a 2nd harmonic component that is around half the magnitude of the 1st harmonic, and higher
harmonics with decreasing amplitudes. Lower harmonics have the most presence and thus produce
a louder sound than solid-state amplifiers at high volumes as seen below for the same Audio
Precision System 2 input as described above.

Figure 3: Vacuum Tube Distortion for Basic Amplifier Configurations [1]

From Figure 3, one can see that the higher harmonics have amplitudes that are down by a factor of
100 as compared to the results in Figure 2 for solid-state amplifier configurations. As a result, the
quality and amount of harmonic distortion in overdriven vacuum tube guitar amplifiers has been
found to be pleasing to many musicians because of the "warmth" perceived in the amplified output.
Even though vacuum tubes produce high quality sound, there are disadvantages however, including
high cost, fragility, limited availability of components, high waste heat generation, and
manufacturing inconsistencies in the tubes. The project objective is to reproduce the distinct
harmonic distortion of a 1961 Fender Champ, a popular tube amplifier, using a low-cost DSP, thus
creating tube distortion sound without the drawbacks of a tube amplifier.

 6

Functional Description

Overview
This project uses the Texas Instruments TMS320C6711, a 32-bit floating-point DSP seen below, to
generate the transfer and distortion characteristics of a 1961 Fender Champ Amplifier at its 12
different volume settings. Audio signals generated by a guitar via an A/D interface to the DSP are
passed through C/C++ digital filters with different gains. The averaged nonlinear transfer
characteristic for each filter’s frequency range will reproduce the frequency response of the tube
amplifier. Nonlinearities produced from this configuration are thought to be the primary reason for
the improved quality of sound. The intention is to produce a vintage tube amplifier’s sound with a
low-cost DSP as opposed to paying $1000 and up for a rare amplifier with limited replacement
components.

Figure 4: Texas Instruments TMS320C6711 Evaluation DSP Board Layout [5]

Inputs/Outputs
The system inputs are an analog audio signal from a guitar A/D interface, and a software based
volume selection regulates the filters’ behavior. The output is an audio signal with similar effects to
a tube amplifier. This signal is sounded with the D/A converter output that is interfaced to a set of
4”x 5” speakers equipped with a headphone connector. Both A/D and D/A converters are
interfaced to standard headphone plug connectors. Therefore, only a 1/4” to 1/8” headphone plug
was needed to interface the guitar to the board.

 7

Modes
The system modes consist of the volume settings similar to those provided with the 12-volume
switch on the 1961 Fender Champ. The volume modeled for the amplifier was ‘6’ – the middle
volume.

Figure 5: Overall Block Diagram

System Description
The model consists of eight digital filters each cascaded with their own nonlinear transfer
characteristic that was representative of the filters’ frequency ranges from the collected amplifier
data. The output of each nonlinear model is filtered again to reduce any high frequency components
that are not present from the 1961 Fender Champ data. The eight filtered results are then summed
together and filtered once more by a bandpass filter with a wide passband to reduce any further high
frequency terms from the summation operation and any DC offset. Each input sample is placed in
memory after being collected on a frame basis and is processed on a sample-by-sample basis as
each input becomes available from the external buffer. The result is a real-time filter with infinite
duration once the DSP is initialized as shown in the software flow chart below.

Figure 6: Software Flowchart for DSP Model of 1961 Fender Champ

DSP with C/C++
Digital Filters

Analog Audio Signal
from Guitar

Audio Output with
Tube Amplifier Sound

Interfacing Circuitry
to Guitar Cable

Read in
Guitar Input

Buffer Input
Data to 64

Samples/Frame

Filter Data
and Apply

Nonlinearity

Software
Volume/Nonlinearity

Selection

Send out
Equivalent

Amplifier Output

Y

N

Run (F5)

Shift+F5?

Halt

 8

The digital filter banks were implemented with a 150-order FIR filter designs. If the algorithm’s
noise floor is greater than the 16-bit input’s noise floor, the FIR model provides the best response.
The figures below show the basic FIR filtering algorithm model, and the system block diagram
respectively. Finally, all executable code for Texas Instruments eXpressDSPTM software was
developed with MATLAB 6.5’s Embedded Target for the TI C6000TM DSP feature in Simulink®.

 Figure 7: FIR Digital Filter Algorithm

Figure 8: Parallel FIR Filter Bank Approach to 1961 Fender Champ DSP Model

Analog Audio Signal Input
 from Guitar

Summer

Equivalent Tube Amplifier
Signal Output

Mode of Operation (Software)

BP ...BP BP BP BP BP

Nonlinear Transfer Characteristics

BP ...BP BP BP BP BP

Final BP

 9

Design Equations and Calculations

1961 Fender Champ Data Analysis

Time Domain Display
For the amplifier data analysis in MATLAB, the 1961 Fender Champ outputs were plotted in both
the time and frequency domains. In order to view 4 periods of each output in the time domain the
following relation was used

N (Samples / period) = sampling frequency (Fs) (samples / sec) * ((1 / output frequency (F)) (sec /

period)

Four times the resulting product was then entered into the right Limits text field under the X tab in
the property editor window of MATLAB as shown below.

Figure 9: Samples/Period Entry in MATLAB for 1961 Fender Champ Data Plots

 10

Discrete Fourier Transform Computation for Amplifier Output
In order to display the magnitude spectrum for each of the 1961 Fender Champ outputs, the fft
command in MATLAB was used to compute the Discrete Fourier Transform based on the following
relation:

 N-1

X(k) = sum x(n)*e(-j*2*pi*(k)*(n)/N), 0 <= k <= N-1
 n=0

The fft command in MATLAB is passed the variable storing the signal in the time domain and the
number of frequency points to compute the Fourier Transform. This second parameter results in the
computation of the Fast Fourier Transform.

Frequency Point Size Selection
For data with over 1 million points collected from the amplifier from a guitar input, the Fast Fourier
Transform computation was preferred for its efficient results. The Fast Fourier Transform works
most efficiently when the number of frequency points is a power of 2. For the amplifier outputs
produced by sinusoidal inputs, the number of data points was between 80000 and 140000 thus
calling for 2^17 (131072) or 2^18 (262144) frequency points in the second argument of the fft
command. When amplifier data from a guitar input was plotted in the frequency domain, a power
of 21 was used (2097152 frequency points). These frequency points were chosen to be the least
power of two that resulted in the number of discrete frequency terms being greater than the number
of time domain points. This way the fft computation was as efficient as possible while accounting
for the periodic nature of the Discrete Fourier Transform and providing a higher resolution in the
frequency component magnitudes. If later in the data analysis, the frequency components were
shifted, the result would have zeros throughout the delay with the previous data appearing after the
delay.

Magnitude Spectrum Computation
In order to plot the magnitude spectrum from the fft results, the absolute value was computed
followed by a scaling factor of 2 divided by the number of data points in the time domain. When
the data was recorded with the CoolEdit Software in the Acoustics Laboratory, the amplifier output
was effectively turned on and then off as with a rectangular windowing function in the frequency
domain. The frequency components' amplitudes are each multiplied by M (the number of data
points) divided by 2 when this type of windowing is performed. This division is present to
represent that the spectrum is double-sided. In order to view a single-sided magnitude spectrum
with amplitudes representative of the amplifier data’s dynamic range, the absolute value of the fft
results were properly scaled.

Analog Frequency Display Computation
Finally, to display the magnitude response data correctly versus continuous frequency values, each
of the digital frequency terms, k, were scaled by the sampling frequency, Fs, divided by the number
of frequency points, N. Since each frequency sample is (1/N) spaces apart from the fft
computation, the analog frequency spacing from the computation is easily found by scaling the
frequency samples by Fs/N. The MATLAB code to perform the computations discussed above and
display the time domain and frequency domain content of the amplifier outputs can be found in the
Appendix section under Champread.m.

 11

Circuit Diagrams/PSPICE Simulations

PSPICE Simulations of Vacuum Tube Amplifier Distortion
Before beginning the development of the DSP model for the 1961 Fender Champ, some simulations
of basic vacuum tube amplifier configurations were performed to verify the findings in Figure 3, to
test the located vacuum tube PSPICE models, and to gain some insight into the source of vacuum
tube amplifier’s unique distortion.

First, PSPICE Transient Analysis simulations were completed for –20V to 60V sinusoidal inputs at
1 (kHz) for the 12AX7 triode. The schematic and simulation results can be seen below.

 Figure 10: 12AX7 Triode PSPICE Transient Analysis Simulation Results

 12

From the Figure 10 results, one can see that the first frequency component is dominant and all
successive harmonics are much smaller when the amplifier is overdriven by the size of the input as
in Figure 3. Overall, there is not much frequency content beyond the fifth harmonic component.

The schematic and simulation results can be seen below for the 6V6GT amplifier and the same
input specifications for the 12AX7 configuration were used as described on the previous page.

Figure 11: 6V6GT Pentode PSPICE Transient Analysis Simulation Results

From the results above, the output of the 6V6GT amplifier configuration consists of a dominant first
harmonic component followed by higher frequency components with much smaller magnitudes.
Again, there is not much frequency content beyond the fifth frequency component. However, the
high harmonic amplitudes are much smaller than seen in Figure 3. This result is from the circuit
configurations being different. Overall, both simulations show that the higher harmonics do not
exhibit the behavior seen in Figure 2.

 13

1961 Fender Champ Schematic
The 1961 Fender Champ schematic drawn in PSPICE can be seen below. The 12AX7 and 6V6GT
tube models were drawn and completed for this schematic and for Figure 10 and Figure 11 from
the Duncan’s Amp Pages tutorial [2]. The original 1961 Fender Champ schematic was obtained
from this site as well [4]. There was no data to be found on the 125A3A output transformer. All
vacuum tube amplifier websites simply had vacuum tube data sheets and PSPICE ‘.inc’ files for a
variety of vacuum tubes. Until the final component values can be found for the output transformer,
the 1961 Fender Champ cannot be simulated, but is shown here since inputs were applied to this
circuit to examine the amplifier output and model its nonlinear distortion.

Figure 12: 1961 Fender Champ (PSPICE) Schematic

 14

MATLAB Simulations/Analysis/Implementation

Sinusoidal Frequency Selection
In order to develop the most accurate DSP model of the 1961 Fender Champ’s sound, several
experiments had to be performed in the laboratory to gain a thorough understanding the amplifier’s
behavior for various inputs. Most test inputs to the Champ were sinusoidal with the exception of
one set of data taken from a 1952 Fender Telecaster. This data was later recorded directly from the
guitar so that the DSP Model could be simulated with a MATLAB program. Frequencies chosen
for the sinusoids were available from the guitar note frequency chart seen below [4].

Figure 13: Guitar Note Frequencies [3]

 15

Verification of Highest Frequency Component from Guitar
After collecting amplifier data from sinusoidal and guitar inputs, it was discovered that the Texas
Instruments TMS320C6711 DSK board DSK uses a fixed clock rate of 150 MHz and has a fixed
sampling frequency of 8 kHz on the A/D converter. This particular processor has been intended
more for speech applications that only require around 4 kHz of bandwidth. Based on the data
provided by Figure 13, it appeared that the last two notes on a standard 21-fret guitar would not be
sounded properly due to aliasing. Therefore, the highest frequency from a guitar was verified by
plugging the instrument into a 16-bit A/D converter configured for a 44.1 kHz sampling frequency
and 16-bit stereo data collection. The sounds played through the guitar are then recorded in ‘.wav’
format with CoodEdit software. The first E string was plucked at the 21st fret of my guitar, and the
time and frequency domain data were plotted below as discussed in the Design Equations
section.

Figure 14: Highest Frequency Note from a 21-Fret Guitar

From the right plot above, one can see that there is a frequency component around 4434.92 (Hz) as
indicated by Figure 13. However, the magnitude of this component is insignificant as compared to
the other magnitudes produced by this note. Therefore, the conclusion was that not much
information would be lost by prefiltering the guitar input within the 4 kHz range.

 16

1961 Fender Champ Outputs from Sinusoidal Inputs
Using the Figure 13 table as a reference, sinusoids at several frequencies were produced by a
function generator and applied to the amplifier at volumes 3, 6, and 12. These volumes were picked
to model since ‘3’ is the first audible volume, ‘6’ is the middle volume, and ‘12’ is the overdriven
volume input where the amplifier exhibits its best distortion characteristics. The sound was
recorded with a microphone connected to the 16-bit A/D converter configured for the settings
discussed above. With this setup, all of the data in the recording takes into account all the
components of the amplifier including the speaker and the transformer. The outputs were plotted in
the format shown below based on the Design Equations discussion and the MATLAB code
attached in the Appendix in Champread.m.

Figure 15: 523.25 (Hz) Sinusoidal Input (Top),

1961 Fender Champ Output and Magnitude Response (Bottom)

 17

1961 Fender Champ Output from Guitar Input
After all sinusoidal data was collected, a guitar input containing high and low frequency
components was applied to the amplifier set at volume 6 and recorded in a similar procedure
discussed in the previous section. The note sequence was played again with the guitar connected
directly to A/D converter. Below are the MATLAB plots of the response in the time domain and
the frequency domain.

Figure 16: Input to 1961 Fender Champ at Volume ‘6’

(Output of Guitar – 1952 Fender Telecaster)

Figure 17: Fender Champ Response at Volume ‘6’ to Figure 16

The results in Figure 16 were then applied to the MATLAB simulation of the DSP amplifier model.
The output of this model could be compared to Figure 17, in addition to sounding the result, in
order to verify the model’s accuracy in matching the Champ’s unique distortion.

 18

Nonlinear Transfer Characteristic Computations
To model the nonlinear distortion of the 1961 Fender Champ at different frequencies, an X-Y
relationship needed to be established between the sinusoidal inputs and their corresponding outputs.
In order to conserve the DSP board’s memory, equation fits for the nonlinear transfer characteristics
were performed iteratively with the polyfit command in MATLAB. Also, the nonlinearity for
each sinusoidal frequency was broken up into two parts since the output differed on the decreasing
side of the input as compared to the increasing portion of the input. The points were grouped by
first matching their zero crossing point. Two separate plots were produced for the increasing side of
the sinusoid and the decreasing side of the sinusoid. The MATLAB code to generate these plots is
included in the Appendix in Champtransfer.m. Polynomial fits of orders 3, 4, and 5 were
performed on the curves at random increments of the sinusoidal points on the command line. The
resulting polynomials for the eight selected frequencies in Figure 8 can be found in the final
MATLAB simulation code for the DSP amplifier model in the Appendix in Champv2.m. Below
are the nonlinear transfer characteristic curves for Figure 15.

Figure 18: Nonlinear Transfer Characteristics for Figure 15

From the similarities and differences between these nonlinear transfer characteristic curves, certain
nonlinearities were selected to be representative of certain frequency ranges as listed in the table
below.

Frequency Range (Hz) Nonlinear Transfer Characteristic Frequency (Hz)
250- 450 329.63
450-700 523.25
700-900 783.99
900-1200 1046.50
1200-1500 1318.51
1500-2000 1760.00
2000-3000 2637.02
3000-4000 4434.92

Table 1: Nonlinear Transfer Characteristic Curve Definitions for DSP Amplifier Model

 19

FIR Filter Designs
Since a significant amount of time was spent fitting the nonlinear transfer characteristic curves for
all the sinusoidal frequencies applied to the 1961 Fender Champ, the Filter Design and Analysis
Tool (FDATool), under the Signal Processing Toolbox in MATLAB, was used to design the FIR
filters used in the DSP amplifier model as shown below.

Figure 19: Filter Design and Analysis Tool (FDATool) in MATLAB

From the figure above, a filter design’s magnitude and phase response can be viewed after
specifying the cutoff frequency, sampling frequency, windowing function, filter order, and filter
type in the appropriate text fields. FIR filter orders were 2000 for the MATLAB code simulation of
the DSP amplifier model due to the 44.1 kHz sampling frequency that was used to collect the
Champ output data and the sharp cutoffs required by the filters in order to prevent amplifying the
signal out of the –1 to 1 range for the nonlinear transfer characteristic equations. When the design
would later be implemented on the TMS320C6711 DSK board with an 8 kHz sampling frequency,
the FIR filter orders could be reduced to an order below 200.

 20

1961 Fender Champ DSP Model Simulation
After correcting several nonlinear transfer characteristic curve fits and correcting several decision
case statements in the MATLAB code simulation of the amplifier’s DSP model in Figure 8, the
final result was produced below.

Figure 20: MATLAB Code Simulation of DSP Model for Volume 6 of 1961 Fender Champ

From the results above, the output is bounded within the –0.6 to 0.6 amplitude range as in Figure
17. Differences between the waves, noticeable around the 60000th sample, are partially due to the
fact that both sets of data were not played exactly the same. The frequency spectrum matches the
response in Figure 17 with the exception of the removal of the frequency components in the DC
range of 0-250 Hz and the range beyond 4500 (Hz). When the DC range was included in the model,
a significant amount of noise was produced in this range that in turn masked out the sound. The
Figure 8 model generated high frequency components greater than 10 kHz since the nonlinear
transfer characteristic curves were defined for single frequency inputs, and not a range of
frequencies. To alleviate this problem, the output from each of the eight nonlinear transfer
characteristic curves was filtered again to reduce high frequency content. Using the sound
command in MATLAB, the output still did not quite match the output of Figure 17, but there were
several similarities leaving the model to be implemented on the Texas Instruments DSP board.

1961 Fender Champ DSP Model Implementation
In order to implement the DSP amplifier model on the Texas Instruments DSP board, there is a
feature in MATLAB 6.5 that allows a DSP-based Simulink model to be translated to ANSI C
standard code to be executable in the Texas Instruments Code Composer Studio (CCS) development
software for a selection of Texas Instruments DSP developer boards. This feature is the Embedded
Target for the Texas Instruments C6000TM DSP. This embedded target supports the TMS320C6711
DSK board available for the project as shown by the blockset figure on the next page.

 21

Figure 21: Texas Instruments TMS320C6711 Blockset Support from MATLAB 6.5’s

Embedded Target for TI C6000TM DSP

The blocks of interest above to implement the Figure 8 design are the ADC, DAC, and the Reset
Blocks. Reset simply allows the user to reset the board to the original register and memory settings
from the Simulink model window. ADC and DAC enable the board to accept external signals from
the A/D converter and send signals out through the D/A converter respectively. The Embedded
Target settings for these blocks and code generation and execution are more thoroughly explained
on pages 26-29 of the Appendix. The Simulink block diagram of Figure 8 can be seen below.

Figure 22: Simulink Implementation of 1961 Fender Champ DSP Model

 22

From Figure 22, the nonlinear transfer characteristic equations have been replaced with lookup
tables since the S-function blocks in MATLAB 6.5 resulted in a build failure for the DSP board.
These blocks allow piecewise polynomial formula entries needed for the nonlinear transfer
characteristics listed in Table 1. The MATLAB help files indicated that the Embedded Target
feature is only defined for the DSP Blockset in Simulink and a few other blocks including the Look-
Up Table block. These look-up tables were generated by sorting the sinusoidal values in
monotonically increasing fashion for the nonlinear transfer characteristic curves. The
corresponding amplifier outputs were also sorted. MATLAB code to perform this sorting procedure
can be found in Table.m in the Appendix. The sorted version of Figure 18 can be seen below.

Figure 23: Sorted Nonlinear Transfer Characteristic for Figure 18

The above curve is similar to the preview curves generated Figure 22’s Look-Up Table blocks.
Once the FIR filter orders from the FDATool were reduced to 150 for the parallel filter bank, and
the input and output filter orders were reduced to 50, the TMS320C6711 was effectively
programmed and 1961 Fender Champ DSP model was ready for demonstration.

The output of the speakers was clean and loud for lower frequency notes on the guitar. For higher
frequency notes, a harsh sound was generated when the gain from the guitar was set to its highest
position. The source of this harsh sound may be the equivalent high frequency sound heard in the
MATLAB simulations from Figure 20. The real-time DSP Blockset sink scopes have not been
enabled correctly to obtain any real-time data from the board to be analyzed later in the time and
frequency domains. However, the overall sound was similar to the 1961 Fender Champ’s sound in
Figure 17.

 23

Conclusions

Research
Further research or improvements in the design that have been considered are locating the 1961
Fender Champ’s transformer data so that the circuit in Figure 12 can be simulated in PSPICE. The
simulation results can then be used to establish an X-Y relationship between the input and output of
the amplifier for a wider frequency range and for all 12 volumes. This approach would result in
simpler design. Also, the design can be implemented with a 12-state subband coding structure that
would divide the 4 kHz bandwidth input from the guitar into ~1 Hz frequency ranges. Each
nonlinearity can then be applied to single frequencies resulting in an improved sound. This design
will be more efficient since all the lowpass and highpass filters in the subband coding structure are
the same. Finally, an investigation into the source of the Embedded Target’s code generation
capabilities should be completed to have an appreciation of MATLAB 6.5’s new powerful feature.

Accomplishments
Overall, the project was successful in implementing the DSP-based 1961 Fender Champ amplifier
on the Texas Instruments TMS320C6711 DSK board for one volume setting. Only designs with
little complexity have been produced for past DSP boards. In general, DSP boards are difficult to
program as a result of poor accompanying documentation and unclear external peripheral layouts.
This project’s model was complex and implemented on a DSP evaluation board in less than a week.
MATLAB 6.5’s Embedded Target for the TI C6000TM feature is a powerful tool for implementing
DSP-based designs without the time-consuming programming task.

 24

Patents and Standards

Patents
Two patents have the same objective as this project, but both DSP algorithms do not involve any of
the approaches discussed in the Functional Description section. Also, neither patent intends to
specifically model the 1961 Fender Champ. The patents are listed below.

• Tube Modeling Programmable Digital Guitar Amplification System
• U.S. Patent 5,789,689 – August 4, 1998
• Employs a sampling rate conversion algorithm to model the nonlinear transfer function

of the tube circuitry.

• Electric instrument amplifier
• U.S. Patent 6,350,943 – February 26, 2002
• Employs a sampling rate conversion algorithm to model the nonlinear transfer function

of the tube circuitry.
• Includes a tube configuration and a solid-state power circuit on the D/A output of the

DSP board.

Figure 24: Patent Vacuum Tube Amplifier DSP Modeling Algorithm

Standards
N/A

Nonlinearity Filter Result for
Downsampling Upsample Linear Interpolation Downsample

 25

References

[1] Barbour, Eric. "The Cool Sound of Tubes." Ed., Michael J. Riezenman. IEEE Spectrum August

1998. 1998. Google. IEEE. 12 pp. Google. 11 Oct 2002.
<http://www.spectrum.ieee.org/select/0898/tube.html>.

[2] Generic Triode. 11 Nov 2002. <http://www.duncanamps.com/spicevalvesgt.html>.

[3] Guitar Note Frequencies. Google. 11 Nov 2002.

<http://home.pacbell.net/vaughn44/m3.music.notes.6.pdf>

[4] <http://www1.korksoft.com/~schem/fenderamps/champ_5f1_schem.pdf> 12 Oct 2002.

[5] Tool Folder: C6711 DSP Starter Kit (DSK). 25 April 2003.

<http://focus.ti.com/docs/tool/toolfolder.jhtml?PartNumber=TMDS320006711>.

 26

 Appendix

Texas Instruments Embedded Target for TI C6000TM DSP Block and Code Build
Configurations

ADC and DAC Block Settings
The ADC block in Simulink for the Texas Instruments Embedded Target was configured as shown
below to successfully produce the equivalent amplifier sound from the guitar.

Figure 25: C6711 DSK ADC Block Settings for 1961 Fender Champ DSP Model

As seen above, in order to process data from a microphone or guitar input, the ‘ADC source’ text
field must be set to “Mic In,” and the +20dB Mic gain boost must be enable to pick up the small
amplitude signals from the guitar. All other settings are default values.

The DAC block for the Texas Instruments Embedded Target was configured as shown below to its
default settings.

Figure 26: C6711 DSK DAC Block Settings for 1961 Fender Champ DSP Model

 27

Simulation Parameters Settings

Figure 27: C6711 DSK Simulation Parameters Settings for 1961 Fender Champ DSP Model

 28

Figure 28: Figure 27, contd.

 29

As seen in Figure 27 and Figure 28, most of the settings are disabled once the C6711 is selected in
the ‘Target Selection’ window. The most important windows are at the bottom of Figure 28. The
‘TI C6000 code generation’ options allow the user’s code to have a high speed of execution by
regenerating code for repeating blocks in their design, or generating code once for the repeating
structure. The default setting is ‘Inline DSP Blockset functions’ that generates the repetitive code.
For applications where conserving memory is an issue, the ‘target specific optimization’ option may
need to be enabled. However, this alternative option does result in computation errors (LSB
differences) as indicated in Figure 28. The ‘TI C6000 runtime’ options allow the user to only
generate code, build the project, create a project, or build and execute the project. In the “Overrun
action” field, the user can be warned that a board overrun has occurred by lighting an LED on the
board with the ‘Continue’ selection; the program can be stopped at a board overrun with the ‘Halt’
selection; or the program can continue running despite the overrun with ‘None’ selection. As seen
in Figure 28, ‘None’ was selected for the project implementation and no problems occurred, but
future users of the Embedded Target feature in MATLAB 6.5 may want to consider a different
setting. All other settings are self-explanatory from their description, and documentation on these
settings can be easily found in the Embedded Target for Texas Instruments C6000 DSP’s help
branch in the MATLAB 6.5 help files.

 30

MATLAB Code

Champread.m – reads in 1961 Fender Champ Data from Sinusoidal Inputs
% MATLAB '.wav' Reading Code to Plot Frequency Response Data
% from Sinusoidal Inputs to the 1961 Fender Champ

clear all;

Fs = 44100; % sampling frequency of recorded 16-bit precision data from amplifier

[m] = wavread ('james12.wav'); % load 16-bit 44.1 (kHz) Fender Champ output samples in time domain

% determine power of two frequency samples to take to avoid aliasing and ensure high frequency resolution
N = 2^17; % initially set number of frequency samples to 131072 since
 % most of the data has 105986 or less elements
if ((size (m, 1) > N)) % if power of 2 is less than size of Fender Champ output data
 N = 2^18; % N must be increased by a factor of 2
else
 N = 2^17; % N = # of frequency samples in FFT
end

% compute FFT of input wave data from Fender Champ and equivalent analog frequency terms
% from DFT dependent variable 'k'
mf = fft (m, N); % take the FFT of the sampled Fender Champ output
mfmag = 2/(size (m, 1))*abs (mf); % calculate magnitude frequency response, |Y(F)|, of Fender Champ output
mfmagdB = 20*log10(mfmag); % compute magnitude frequency response of Fender Champ output in 'dB'

k = 1:1:N; % array of frequency sample integer points
F = (Fs / N) * k; % conversion from array of frequency sample point, 'k', to analog frequency, 'F'

% plot Fender Champ output vs. 'n'
figure(2), plot(m), xlabel('n'), ylabel('Vo(n)'), title ('1961 Fender Champ Output from 523.25 (Hz) Sinusoidal Input')

% plot magnitude response of Fender Champ output vs. frequency
figure (3), plot (F, mfmag),
title ('Magnitude Response of 1961 Fender Champ (Volume 12) to 1Vp 523.25 (Hz) Sinusoidal Input'),
xlabel ('F'), ylabel ('|Vo(f)|'), axis([0 10000 0 0.5])

 31

Champtransfer.m – plots X-Y relationship between sinusoidal input and Champ output
% MATLAB code to generate the input-output transfer characteristic
% of the 1961 Fender Champ for both the decreasing and increasing
% portions of the sinusoidal input and corresponding output

clear all;

% load 16-bit 44.1 (kHz) Fender Champ output samples in time domain
[m] = wavread ('james12.wav');

% sinusoidal input to 1961 Fender Champ
A = 1; % 1Vp amplitude
F = 523.25; % input frequency
Fs = 44100; % sampling frequency
n = 1:1:(size(m,1)); % number of samples in the output
x = A*cos (2*pi*n*F/Fs); % sinusoidal input to the amplifier
n = Fs / F; % number of samples per period in the input and output
n = round(round (n) / 2); % round the above computation and divide by 2 (samples in negative to positive swing)
x = x(n:(2*n)); % limit input value range to negative and positive peaks of the wave

% initialize negative and positive peak indexes from amplifier output
M = size (m, 1); % recalculate number of samples from amplifier output
indexlower = 0; % set index of negative output peak to 0
indexhigher = 0; % set index of positive output peak to 0

% loop to find negative and positive peaks of amplifier output
i = 1; % initialize loop count to 1
while (i <= M & indexlower == 0 & indexhigher == 0), % while loop count is less than output size and no range
 % has been found for output negative to positive peaks
 if (m(i,2) < 0 & m(i+1,2) >= 0 & (i-(n/2)) > 0 & m(i+4,2) > 0.4) % if the current output is less than zero, later sample
 % output values are greater than or equal to 0, and there are
 % '(1/4)*output period' values for the negative output portion
 indexhigher = round (i + (n/2)); % store location of rising portion of output to positive peak
 indexlower = round(i - (n/2)); % store location of rising portion following negative peak
 else
 end
 i = i + 1; % increment loop count
end

% increment 'indexlower' index if 'indexlower' to 'indexhigher' will result in
% the output array ('y1') being one element larger than the sinusoidal input ('x')
if ((indexhigher - indexlower) == size (x,2))
 indexlower = indexlower + 1;
else
end

% transfer half the period of the output of the amplifier to 'y1'
y1 = m (indexlower:indexhigher, 2); % the amplifier output containing the negative and positive peaks
y1 = transpose (y1); % transpose 'y1' so it has the same dimensions as the input 'x

% determine transfer characteristic on decreasing wave portion before negative and after positive peaks
indexlower = round (indexhigher + n); % set 'indexlower' to higher sample value than 'indexhigher' for
 % transfer characteristic determination of the output's decreasing side
 % (other half of one period of the output)

if ((indexlower - indexhigher) == size (x,2)) % decrement 'indexlower' index if 'indexlower' to 'indexhigher' will result in
 indexlower = indexlower - 1; % the output array ('y1') being one element larger than the sinusoidal input ('x')
else
end

i = indexlower; % set 'i' index to 'indexlower' (higher index for special case)
j = 1; % set 'j' index variable to 1
while (i <= indexlower & i >= indexhigher), % loop from higher index value (negative peak) to lower index value (positive peak)
 y(j) = m(i,2); % and assign the appropriate values of the amplifier output
 j = j + 1; % increment 'y' assignment index
 i = i - 1; % decrement 'm' assignment index
end

% plot input(x)-output(y1) transfer characteristic for increasing negative peak to positive peak of the output
figure (3), plot(x,y1), title ('1961 Fender Champ (Volume 6) Positive Input-Output Transfer Characteristic for 1Vp 523.25 (Hz)
Sinusoidal Input'),
xlabel ('input x(n)'), ylabel ('output y(n)')

% plot input(x)-output(y1) transfer characteristic for decreasing negative peak to positive peak of the output
figure (4), plot(x,y), title ('1961 Fender Champ (Volume 6) Negative Input-Output Transfer Characteristic for 1Vp 523.25 (Hz)
Sinusoidal Input'),
xlabel ('input x(n)'), ylabel ('output y(n)')

 32

Champv2.m – final version of 1961 Fender Champ DSP Model Simulation
% MATLAB code to test 1961 Fender Champ DSP Model
% utilizing 'filter' command

clear all;

Fs = 44100; % sampling frequency of recorded 16-bit precision data from amplifier

% load guitar output data from Fender Telecaster that should be processed to match the
% frequency response seen in 'chuck.wav'
[m] = wavread ('chuck2.wav'); % load 16-bit 44.1 (kHz) Fender Telecaster output samples in time domain
M = size (m, 1); % number of guitar output samples

% load only the actual sound data from 'chuck2.wav' since the recording is 2-D from the 'Stereo' setting
% on the Cool Edit software
x = m(:,2); % second column of 'chuck2.wav' matrix contains sound information
clear m; % clear the 'm' variable for the original stereo recording is no longer
 % needed for the simulation
x = transpose (x); % transpose copied 'chuck2.wav' information into a 1xM matrix for filtering the data
M = size (x, 2) - 3000; % reevaluate the number of data points in the guitar output data if only
 % a section of the total number of points is analyzed

% initialize DSP model of 1961 Fender Champ output to a vector of zeros
y = zeros (1, M);

% load FIR filter coefficients generated by Signal Processing Toolbox's Filter Design and Analysis Tool (FDATool),
% apply each filter to the guitar output data, and apply the nonlinear transfer characteristic of the
% 1961 Fender Champ
h2 = load('coeffs2.mat'); % FIR filter coefficients for 250-450 (Hz) range of guitar input
y2 = filter (h2.Num, 1, x); % apply above filter to guitar output data
y2 = transpose (y2); % transpose the filtered data to one column
%clear h2; % clear filter bank 2 FIR filter coefficients
ynew = y2(3001:(M+3000),1);
clear y2;
y2 = ynew;
clear ynew;

% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (250 - 450 (Hz)) range
for i = 1:1:M,
 % filter bank 2 -- (250 - 450 (Hz))
 if (abs(y2(i,1)) <= 0.004)
 y2(i,1) = 0;
 elseif (i==M)
 if (y2(i,1) <= -0.88944828257914)
 y2(i,1) = (-68719.176757675*(y2(i,1)^5)) + (-321439.992203615*(y2(i,1)^4)) + (-601385.461757832*(y2(i,1)^3)) + (-
562529.277963019*(y2(i,1)^2)) + (-263071.235742067*y2(i,1)) - 49206.728315590;
 elseif (y2(i,1) > -0.88944828257914 & y2(i,1) <= -0.75869986216017)
 y2(i,1) = (16.98587396263879*(y2(i,1)^3)) + (41.09913525621555*(y2(i,1)^2)) + (33.10072652875094*y2(i,1)) +
8.75967605810567;
 elseif (y2(i,1) > -0.75869986216017 & y2(i,1) <= 0.03100205252333)
 y2(i,1) = (-0.14701551325883*(y2(i,1)^5)) + (0.03615492635897*(y2(i,1)^4)) + (0.14880292411304*(y2(i,1)^3)) + (-
0.03637528264439*(y2(i,1)^2)) + (0.10289228581507*y2(i,1)) - 0.00143102284955;
 elseif (y2(i,1) > 0.03100205252333 & y2(i,1) <= 0.67093705707496)
 y2(i,1) = (4.79726296439179*(y2(i,1)^5)) + (-7.00081342317531*(y2(i,1)^4)) + (3.20301006319392*(y2(i,1)^3)) + (-
0.39180654928700*(y2(i,1)^2)) + (0.08817524515470*y2(i,1)) - 0.00105798461333;
 elseif (y2(i,1) > 0.67093705707496)
 y2(i,1) = (37.824868981907*(y2(i,1)^4)) + (-121.264356223727 *(y2(i,1)^3)) + (144.089456829547*(y2(i,1)^2)) + (-
75.167464090098*y2(i,1)) + 14.612924524157;
 else
 end
 elseif (y2(i,1) <= y2(i+1,1) & y2(i,1) <= y2(i+16,1))
 if (y2(i,1) <= -0.88944828257914)
 y2(i,1) = (-68719.176757675*(y2(i,1)^5)) + (-321439.992203615*(y2(i,1)^4)) + (-601385.461757832*(y2(i,1)^3)) + (-
562529.277963019*(y2(i,1)^2)) + (-263071.235742067*y2(i,1)) - 49206.728315590;
 elseif (y2(i,1) > -0.88944828257914 & y2(i,1) <= -0.75869986216017)
 y2(i,1) = (16.98587396263879*(y2(i,1)^3)) + (41.09913525621555*(y2(i,1)^2)) + (33.10072652875094*y2(i,1)) +
8.75967605810567;
 elseif (y2(i,1) > -0.75869986216017 & y2(i,1) <= 0.03100205252333)
 y2(i,1) = (-0.14701551325883*(y2(i,1)^5)) + (0.03615492635897*(y2(i,1)^4)) + (0.14880292411304*(y2(i,1)^3)) + (-
0.03637528264439*(y2(i,1)^2)) + (0.10289228581507*y2(i,1)) - 0.00143102284955;
 elseif (y2(i,1) > 0.03100205252333 & y2(i,1) <= 0.67093705707496)
 y2(i,1) = (4.79726296439179*(y2(i,1)^5)) + (-7.00081342317531*(y2(i,1)^4)) + (3.20301006319392*(y2(i,1)^3)) + (-
0.39180654928700*(y2(i,1)^2)) + (0.08817524515470*y2(i,1)) - 0.00105798461333;
 elseif (y2(i,1) > 0.67093705707496)
 y2(i,1) = (37.824868981907*(y2(i,1)^4)) + (-121.264356223727 *(y2(i,1)^3)) + (144.089456829547*(y2(i,1)^2)) + (-
75.167464090098*y2(i,1)) + 14.612924524157;
 else
 end
 elseif (y2(i,1) >= y2(i+1,1) & y2(i,1) >= y2(i+110,1))
 if (y2(i,1) <= -0.88944828257914)
 y2(i,1) = (80497.490461401*(y2(i,1)^5)) + (378336.835142034*(y2(i,1)^4)) + (711025.161301063*(y2(i,1)^3)) +
(667897.401409708*(y2(i,1)^2)) + (313582.108419929*y2(i,1)) + 58870.403132302;
 elseif (y2(i,1) > -0.88944828257914 & y2(i,1) <= -0.75869986216017)
 y2(i,1) = (3.14413416173309 *(y2(i,1)^3)) + (8.99166573734725*(y2(i,1)^2)) + (8.33382289302432*y2(i,1)) +
2.40467059490994;
 elseif (y2(i,1) > -0.75869986216017 & y2(i,1) <= 0.03100205252333)
 y2(i,1) = (-1.25743859840562*(y2(i,1)^5)) + (-3.23903773112466*(y2(i,1)^4)) + (-2.72832708238533*(y2(i,1)^3)) + (-
0.92487892274217 *(y2(i,1)^2)) + (0.03063229848367*y2(i,1)) + 0.00308652852424;
 elseif (y2(i,1) > 0.03100205252333 & y2(i,1) <= 0.67093705707496)
 y2(i,1) = (-3.04280524415451*(y2(i,1)^5)) + (5.33092378965096*(y2(i,1)^4)) + (-3.30854903877957*(y2(i,1)^3)) +
(0.92566589621312*(y2(i,1)^2)) + (0.04231259620612*y2(i,1)) + 0.00297236917866;
 elseif (y2(i,1) > 0.67093705707496)
 y2(i,1) = (-199.224861301530*(y2(i,1)^4)) + (661.430283669455*(y2(i,1)^3)) + (-817.648895898231*(y2(i,1)^2)) +
(446.134220093739*y2(i,1)) - 90.550196341759;
 else
 end

 33

 else
 end
end

% clear filter coefficients for 2nd filter bank, add the result to the final output variable 'y',
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade
y2 = transpose (y2);
ynew = filter(h2.Num,1,y2);
clear h2;
clear y2;
y = y + ynew;
clear ynew;

h3 = load('coeffs3.mat'); % FIR filter coefficients for 450-700 (Hz) range of guitar input
y3 = filter (h3.Num, 1, x); % apply above filter to guitar output data
y3 = transpose (y3); % transpose the filtered data to one column
%clear h3; % clear filter bank 3 FIR filter coefficients
ynew = y3(3001:(M+3000),1);
clear y3;
y3 = ynew;
clear ynew;

% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (450 - 700 (Hz)) range
for i = 1:1:M,
 % filter bank 3 -- (450 - 700 (Hz))
 if (abs(y3(i,1)) <= 0.004)
 y3(i,1) = 0;
 elseif (i==M)
 if (y3(i,1) <= -0.37876399818939)
 y3(i,1) = (-0.56829800182878*(y3(i,1)^3)) + (-1.39700432370723*y3(i,1)*y3(i,1)) + (-0.82034863349647*y3(i,1)) -
0.14906816886078;
 elseif (y3(i,1) > -0.37876399818939 & y3(i,1) <= 0.60935468556281)
 y3(i,1) = (-8.72590467533686*(y3(i,1)^5)) + (2.76960583923815*(y3(i,1)^4)) + (2.54878830047786*(y3(i,1)^3)) +
(0.31170701431282*(y3(i,1)^2)) + (0.09371195611734*y3(i,1)) - 0.00098794722369;
 elseif (y3(i,1) > 0.60935468556281)
 y3(i,1) = (4.41438080207482*(y3(i,1)^3)) + (-9.42200546446084*(y3(i,1)^2)) + (5.88975202896697*y3(i,1)) -
0.68983704203876;
 else
 end
 elseif (y3(i,1) <= y3(i+1,1) & y3(i,1) <= y3(i+16,1))
 if (y3(i,1) <= -0.37876399818939)
 y3(i,1) = (-0.56829800182878*(y3(i,1)^3)) + (-1.39700432370723*y3(i,1)*y3(i,1)) + (-0.82034863349647*y3(i,1)) -
0.14906816886078;
 elseif (y3(i,1) > -0.37876399818939 & y3(i,1) <= 0.60935468556281)
 y3(i,1) = (-8.72590467533686*(y3(i,1)^5)) + (2.76960583923815*(y3(i,1)^4)) + (2.54878830047786*(y3(i,1)^3)) +
(0.31170701431282*(y3(i,1)^2)) + (0.09371195611734*y3(i,1)) - 0.00098794722369;
 elseif (y3(i,1) > 0.60935468556281)
 y3(i,1) = (4.41438080207482*(y3(i,1)^3)) + (-9.42200546446084*(y3(i,1)^2)) + (5.88975202896697*y3(i,1)) -
0.68983704203876;
 else
 end
 elseif (y3(i,1) >= y3(i+1,1) & y3(i,1) >= y3(i+110,1))
 if (y3(i,1) <= -0.37876399818939)
 y3(i,1) = (5.18832626964269*(y3(i,1)^3)) + (11.88114529606541*y3(i,1)*y3(i,1)) + (8.47854566859566*y3(i,1)) +
1.58420993203007;
 elseif (y3(i,1) > -0.37876399818939 & y3(i,1) <= 0.60935468556281)
 y3(i,1) = (0.01696796833807*(y3(i,1)^5)) + (0.51889623557768 *(y3(i,1)^4)) + (0.66348332600826*(y3(i,1)^3)) + (-
0.83548461536455*(y3(i,1)^2)) + (0.20212469351244*y3(i,1)) + 0.01128525692314;
 elseif (y3(i,1) > 0.60935468556281)
 y3(i,1) = (2.27216355952769*(y3(i,1)^3)) + (-5.56742398139630*(y3(i,1)^2)) + (4.78854451266702*y3(i,1)) -
1.32303764340606;
 else
 end
 else
 end
end

% clear filter coefficients for 3rd filter bank, add the result to the final output variable 'y',
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade
y3 = transpose (y3);
ynew = filter(h3.Num,1,y3);
clear y3; clear h3;
y = y + ynew;
clear ynew;

h4 = load('coeffs4.mat'); % FIR filter coefficients for 700-900 (Hz) range of guitar input
y4 = filter (h4.Num, 1, x); % apply above filter to guitar output data
y4 = transpose (y4); % transpose the filtered data to one column
%clear h4; % clear filter bank 4 FIR filter coefficients
ynew = y4(3001:(M+3000),1);
clear y4;
y4 = ynew;
clear ynew;

% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (700 - 900 (Hz)) range
for i = 1:1:M,
 % filter bank 4 -- (700 - 900 (Hz))
 if (abs(y4(i,1)) <= 0.004)
 y4(i,1) = 0;
 elseif (i==M)
 if (y4(i,1) <= 0.60454464003276)
 y4(i,1) = (-0.76301588450210*(y4(i,1)^5)) + (-1.38210529886798*(y4(i,1)^4)) + (-0.32589133502657*(y4(i,1)^3)) +
(0.71542261549090*y4(i,1)*y4(i,1)) + (0.70617798178237*y4(i,1)) + 0.00922286191193;
 elseif (y4(i,1) > 0.60454464003276)
 y4(i,1) = (6.66886369245563*(y4(i,1)^3)) + (-14.51427214179483*(y4(i,1)^2)) + (9.87341313725182*y4(i,1)) -
1.76179767260799;
 else

 34

 end
 elseif (y4(i,1) <= y4(i+1,1) & y4(i,1) <= y4(i+16,1))
 if (y4(i,1) <= 0.60454464003276)
 y4(i,1) = (-0.76301588450210*(y4(i,1)^5)) + (-1.38210529886798*(y4(i,1)^4)) + (-0.32589133502657*(y4(i,1)^3)) +
(0.71542261549090*y4(i,1)*y4(i,1)) + (0.70617798178237*y4(i,1)) + 0.00922286191193;
 elseif (y4(i,1) > 0.60454464003276)
 y4(i,1) = (6.66886369245563*(y4(i,1)^3)) + (-14.51427214179483*(y4(i,1)^2)) + (9.87341313725182*y4(i,1)) -
1.76179767260799;
 else
 end
 elseif (y4(i,1) >= y4(i+1,1) & y4(i,1) >= y4(i+110,1))
 if (y4(i,1) <= 0.60454464003276)
 y4(i,1) = (2.09304813350076*(y4(i,1)^5)) + (1.74672650135099*(y4(i,1)^4)) + (-1.71563186001010*(y4(i,1)^3)) + (-
0.77779628688163*y4(i,1)*y4(i,1)) + (0.87156039722568*y4(i,1)) + 0.00530299527817;
 elseif (y4(i,1) > 0.60454464003276)
 y4(i,1) = (2.38966467445579*(y4(i,1)^3)) + (-6.29908984515897*(y4(i,1)^2)) + (5.42407435628797*y4(i,1)) -
1.24896724190801;
 else
 end
 else
 end
end

% clear filter coefficients for 4th filter bank, add the result to the final output variable 'y',
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade
y4 = transpose (y4);
ynew = filter(h4.Num,1,y4);
clear y4; clear h4;
y = y + ynew;
clear ynew;

h5 = load('coeffs5.mat'); % FIR filter coefficients for 900-1200 (Hz) range of guitar input
y5 = filter (h5.Num, 1, x); % apply above filter to guitar output data
y5 = transpose (y5); % transpose the filtered data to one column
%clear h5; % clear filter bank 5 FIR filter coefficients
ynew = y5(3001:(M+3000),1);
clear y5;
y5 = ynew;
clear ynew;

% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (900 - 1200 (Hz)) range
for i = 1:1:M,
 % filter bank 5 -- (900 - 1200 (Hz))
 if (abs(y5(i,1)) <= 0.004)
 y5(i,1) = 0;
 elseif (i==M)
 if (y5(i,1) <= 0.34950665419487)
 y5(i,1) = (-0.02418519718077*(y5(i,1)^3)) + (0.44888677671994*y5(i,1)*y5(i,1)) + (0.49166920219708*y5(i,1)) +
0.01628062898090;
 elseif (y5(i,1) > 0.34950665419487)
 y5(i,1) = (10.49360895104914*(y5(i,1)^4)) + (-25.82368476523019*(y5(i,1)^3)) + (20.82181400941379*(y5(i,1)^2)) + (-
6.40454570897561*y5(i,1)) + 0.88847268188231;
 else
 end
 elseif (y5(i,1) <= y5(i+1,1) & y5(i,1) <= y5(i+16,1))
 if (y5(i,1) <= 0.34950665419487)
 y5(i,1) = (-0.02418519718077*(y5(i,1)^3)) + (0.44888677671994*y5(i,1)*y5(i,1)) + (0.49166920219708*y5(i,1)) +
0.01628062898090;
 elseif (y5(i,1) > 0.34950665419487)
 y5(i,1) = (10.49360895104914*(y5(i,1)^4)) + (-25.82368476523019*(y5(i,1)^3)) + (20.82181400941379*(y5(i,1)^2)) + (-
6.40454570897561*y5(i,1)) + 0.88847268188231;
 else
 end
 elseif (y5(i,1) >= y5(i+1,1) & y5(i,1) >= y5(i+110,1))
 if (y5(i,1) <= 0.34950665419487)
 y5(i,1) = (-0.98302598295889*(y5(i,1)^3)) + (-0.18407100389022*y5(i,1)*y5(i,1)) + (0.65197614415727*y5(i,1)) -
0.05629368368442;
 elseif (y5(i,1) > 0.34950665419487)
 y5(i,1) = (-7.08989790137859*(y5(i,1)^4)) + (17.94712268385248*(y5(i,1)^3)) + (-16.74968454949415*(y5(i,1)^2)) +
(6.76884737133075*y5(i,1)) - 0.88442910189754;
 else
 end
 else
 end
end

% clear filter coefficients for 5th filter bank, add the result to the final output variable 'y',
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade
y5 = transpose (y5);
ynew = filter(h5.Num,1,y5);
clear y5; clear h5;
y = y + ynew;
clear ynew;

h6 = load('coeffs6.mat'); % FIR filter coefficients for 1500-1900 (Hz) range of guitar input
y6 = filter (h6.Num, 1, x); % apply above filter to guitar output data
y6 = transpose (y6); % transpose the filtered data to one column
%clear h6; % clear filter bank 6 FIR filter coefficients
ynew = y6(3001:(M+3000),1);
clear y6;
y6 = ynew;
clear ynew;

% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (1500 - 1900 (Hz)) range
for i = 1:1:M,
 % filter bank 6 -- (1500 - 2000 (Hz))
 if (abs(y6(i,1)) <= 0.004)

 35

 y6(i,1) = 0;
 elseif (i==M)
 if (y6(i,1) <= -0.43452546052800)
 y6(i,1) = (0.99455095743274*(y6(i,1)^3)) + (2.06388674424519*y6(i,1)*y6(i,1)) + (1.22835632079628*y6(i,1)) +
0.14028398745250;
 elseif (y6(i,1) > -0.43452546052800 & y6(i,1) < 0.52568376981050)
 y6(i,1) = (-0.18829656824388*(y6(i,1)^3)) + (0.26554116918217*y6(i,1)*y6(i,1)) + (0.19154984309742*y6(i,1)) -
0.06748799219195;
 elseif (y6(i,1) > 0.52568376981050)
 y6(i,1) = (-1.05277282816339*(y6(i,1)^3)) + (1.53158295096551*(y6(i,1)^2)) + (-0.47277823343648*y6(i,1)) +
0.05690955278783;
 else
 end
 elseif (y6(i,1) <= y6(i+1,1) & y6(i,1) <= y6(i+16,1))
 if (y6(i,1) <= -0.43452546052800)
 y6(i,1) = (0.99455095743274*(y6(i,1)^3)) + (2.06388674424519*y6(i,1)*y6(i,1)) + (1.22835632079628*y6(i,1)) +
0.14028398745250;
 elseif (y6(i,1) > -0.43452546052800 & y6(i,1) < 0.52568376981050)
 y6(i,1) = (-0.18829656824388*(y6(i,1)^3)) + (0.26554116918217*y6(i,1)*y6(i,1)) + (0.19154984309742*y6(i,1)) -
0.06748799219195;
 elseif (y6(i,1) > 0.52568376981050)
 y6(i,1) = (-1.05277282816339*(y6(i,1)^3)) + (1.53158295096551*(y6(i,1)^2)) + (-0.47277823343648*y6(i,1)) +
0.05690955278783;
 else
 end
 elseif (y6(i,1) >= y6(i+1,1) & y6(i,1) >= y6(i+110,1))
 if (y6(i,1) <= -0.43452546052800)
 y6(i,1) = (0.89061643255058*(y6(i,1)^3)) + (1.98219795426592*y6(i,1)*y6(i,1)) + (1.17643507848724*y6(i,1)) +
0.07272390053118;
 elseif (y6(i,1) > -0.43452546052800 & y6(i,1) < 0.52568376981050)
 y6(i,1) = (-0.24311393184001*(y6(i,1)^3)) + (0.26089532014697*y6(i,1)*y6(i,1)) + (0.22949751684937*y6(i,1)) -
0.10670258817371;
 elseif (y6(i,1) > 0.52568376981050)
 y6(i,1) = (-0.56703346907528*(y6(i,1)^3)) + (0.63563544969577*(y6(i,1)^2)) + (0.07646239911448*y6(i,1)) -
0.08298649140525;
 else
 end
 else
 end
end

% clear filter coefficients for 6th filter bank, add the result to the final output variable 'y',
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade
y6 = transpose (y6);
ynew = filter(h6.Num,1,y6);
clear y6; clear h6;
y = y + ynew;
clear ynew;

h7 = load('coeffs7.mat'); % FIR filter coefficients for 2500-3000 (Hz) range of guitar input
y7 = filter (h7.Num, 1, x); % apply above filter to guitar output data
y7 = transpose (y7); % transpose the filtered data to one column
%clear h7; % clear filter bank 7 FIR filter coefficients
ynew = y7(3001:(M+3000),1);
clear y7;
y7 = ynew;
clear ynew;

% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (2500 - 3000 (Hz)) range
for i = 1:1:M,
 % filter bank 7 -- (2000 - 3000 (Hz))
 if (abs(y7(i,1)) <= 0.004)
 y7(i,1) = 0;
 elseif (i==M)
 if (y7(i,1) <= 0.52061799159661)
 y7(i,1) = (0.03050013585480 *(y7(i,1)^3)) + (0.08850998989652*y7(i,1)*y7(i,1)) + (0.09644520093631*y7(i,1)) -
0.05625591088734;
 elseif (y7(i,1) > 0.52061799159661)
 y7(i,1) = (1.49534318122681*(y7(i,1)^3)) + (-3.40774873854431*y7(i,1)*y7(i,1)) + (2.71163888974592*y7(i,1)) -
0.67708580295643;
 else
 end
 elseif (y7(i,1) <= y7(i+1,1) & y7(i,1) <= y7(i+16,1))
 if (y7(i,1) <= 0.52061799159661)
 y7(i,1) = (0.03050013585480 *(y7(i,1)^3)) + (0.08850998989652*y7(i,1)*y7(i,1)) + (0.09644520093631*y7(i,1)) -
0.05625591088734;
 elseif (y7(i,1) > 0.52061799159661)
 y7(i,1) = (1.49534318122681*(y7(i,1)^3)) + (-3.40774873854431*y7(i,1)*y7(i,1)) + (2.71163888974592*y7(i,1)) -
0.67708580295643;
 else
 end
 elseif (y7(i,1) >= y7(i+1,1) & y7(i,1) >= y7(i+110,1))
 if (y7(i,1) <= 0.52061799159661)
 y7(i,1) = (0.03792691113961*(y7(i,1)^3)) + (0.09344728588294*y7(i,1)*y7(i,1)) + (0.05600453500018*y7(i,1)) -
0.08951475188092;
 elseif (y7(i,1) > 0.52061799159661)
 y7(i,1) = (6.19509836095840*(y7(i,1)^3)) + (-13.94972622452190*y7(i,1)*y7(i,1)) + (10.40781191425343*y7(i,1)) -
2.54152264185540;
 else
 end
 else
 end
end

% clear filter coefficients for 7th filter bank, add the result to the final output variable 'y',
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade
y7 = transpose (y7);

 36

ynew = filter(h7.Num,1,y7);
clear y7; clear h7;
y = y + ynew;
clear ynew;

h8 = load('coeffs8.mat'); % FIR filter coefficients for 3000-4500 (Hz) range of guitar input
y8 = filter (h8.Num, 1, x); % apply above filter to guitar output data
y8 = transpose (y8); % transpose the filtered data to one column
%clear h8; % clear filter bank 8 FIR filter coefficients
ynew = y8(3001:(M+3000),1);
clear y8;
y8 = ynew;
clear ynew;

% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (3000 - 4500 (Hz)) range
for i = 1:1:M,
% filter bank 8 -- (3000 - 4500 (Hz))
 if (abs(y8(i,1)) <= 0.004)
 y8(i,1) = 0;
 elseif (i==M)
 y8(i,1) = (-0.02147657478764*(y8(i,1)^3)) + (-0.03289716983565*y8(i,1)*y8(i,1)) + (0.41065582745363*y8(i,1)) +
0.04327826151318;
 elseif (y8(i,1) <= y8(i+1,1) & y8(i,1) <= y8(i+16,1))
 y8(i,1) = (-0.02147657478764*(y8(i,1)^3)) + (-0.03289716983565*y8(i,1)*y8(i,1)) + (0.41065582745363*y8(i,1)) +
0.04327826151318;
 elseif (y8(i,1) >= y8(i+1,1) & y8(i,1) >= y8(i+110,1))
 y8(i,1) = (0.00486328528208*(y8(i,1)^3)) + (0.08884217340101*y8(i,1)*y8(i,1)) + (0.38127135497634*y8(i,1)) -
0.08786332217043;
 else
 end
end

% clear filter coefficients for 8th filter bank, add the result to the final output variable 'y',
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade
y8 = transpose (y8);
ynew = filter(h8.Num,1,y8);
clear y8; clear h8;
y = y + ynew;
clear ynew;

h1 = load('coeffs1.mat'); % FIR filter coefficients for 1200-1500 (Hz) range of guitar input
y1 = filter (h1.Num, 1, x); % apply above filter to guitar output data
y1 = transpose (y1); % transpose the filtered data to one column
%clear h1; % clear filter bank 1 FIR filter coefficients
ynew = y1(3001:(M+3000),1);
clear y1;
y1 = ynew;
clear ynew;

% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (1200 - 1500 (Hz)) range
for i = 1:1:M,
% filter bank 1 -- (1200 - 1500 (Hz))
 if (abs(y1(i,1)) <= 0.004)
 y1(i,1) = 0;
 elseif (i==M)
 if (y1(i,1) < 0.17101812752890)
 y1(i,1) = (0.28169043915516*(y1(i,1)^5)) + (1.12220302816665*(y1(i,1)^4)) + (1.17194247185579*(y1(i,1)^3)) +
(0.53754840671098*y1(i,1)*y1(i,1)) + (0.18109555950788*y1(i,1)) - 0.01999617906884;
 elseif (y1(i,1) >= 0.17101812752890)
 y1(i,1) = (-9.73317889343557*(y1(i,1)^5)) + (26.83625394673680*(y1(i,1)^4)) + (-30.19885117938932*(y1(i,1)^3)) +
(16.18597216298094*y1(i,1)*y1(i,1)) + (-3.33667917310204*y1(i,1)) + 0.26031478573559;
 else
 end
 elseif (y1(i,1) <= y1(i+1,1) & y1(i,1) <= y1(i+16,1))
 if (y1(i,1) < 0.17101812752890)
 y1(i,1) = (0.28169043915516*(y1(i,1)^5)) + (1.12220302816665*(y1(i,1)^4)) + (1.17194247185579*(y1(i,1)^3)) +
(0.53754840671098*y1(i,1)*y1(i,1)) + (0.18109555950788*y1(i,1)) - 0.01999617906884;
 elseif (y1(i,1) >= 0.17101812752890)
 y1(i,1) = (-9.73317889343557*(y1(i,1)^5)) + (26.83625394673680*(y1(i,1)^4)) + (-30.19885117938932*(y1(i,1)^3)) +
(16.18597216298094*y1(i,1)*y1(i,1)) + (-3.33667917310204*y1(i,1)) + 0.26031478573559;
 else
 end
 elseif (y1(i,1) >= y1(i+1,1) & y1(i,1) >= y1(i+110,1))
 if (y1(i,1) < 0.17101812752890)
 y1(i,1) = (1.28589118197780*(y1(i,1)^5)) + (1.41375171594779*(y1(i,1)^4)) + (-0.75777122854619*(y1(i,1)^3)) + (-
0.16082773353923*y1(i,1)*y1(i,1)) + (0.61589657776279*y1(i,1)) - 0.10175085682072;
 elseif (y1(i,1) >= 0.17101812752890)
 y1(i,1) = (1.71528798879591*(y1(i,1)^5)) + (-4.65770844862509*(y1(i,1)^4)) + (4.84706005908354*(y1(i,1)^3)) + (-
2.97149607714633*y1(i,1)*y1(i,1)) + (1.20302756105976*y1(i,1)) - 0.14302102205390;
 else
 end
 else
 end
end

% clear filter coefficients for 1st filter bank, add the result to the final output variable 'y',
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade
y1 = transpose (y1);
ynew = filter(h1.Num,1,y1);
clear y1; clear h1;
y = y + ynew;
clear ynew;

% post-filter output with 60-7100 (Hz) bandpass filter
ynew = y;
m = [0 0 1 1 0 0];
f = [0 0.00544 0.00567 0.159 0.161 0.5];

 37

h = fir2(2000,2*f,m);
y = filter(h,1,ynew);
clear ynew;

% compute FFT of filtered data from guitar and equivalent analog frequency terms
% from DFT dependent variable 'k'
N = 2^21; % number of frequency points
yf = fft (y, N); % take the FFT of the simulate Fender Champ output
yfmag = 2/(size (y, 2))*abs (yf); % calculate magnitude frequency response, |Y(f)|, of simulated Fender Champ output
clear yf;
k = 1:1:N; % array of frequency sample integer points
F = (Fs / N) * k; % conversion from array of frequency sample point, 'k', to analog frequency, 'F'

% plot simulated 1961 Fender Champ output
figure (1), plot(y),
title ('DSP model of 1961 Fender Champ at Volume 6')
xlabel ('n'), ylabel ('y(n)'),

% plot magnitude response of simulated Fender Champ output vs. frequency
figure (2), plot (F, yfmag),
title ('Magnitude Response from DSP Model of 1961 Fender Champ (Volume 6)'),
xlabel ('F'), ylabel ('|Y(f)|'), axis([0 10000 0 0.008])

% the resulting sound should be comparable to the distortion characteristics of a 1961 Fender Champ
sound (y,Fs)

 38

Table.m – sorts X-Y relationship between sinusoidal inputs and Champ outputs
% MATLAB code to generate the input-output transfer characteristic look-up
% table of the 1961 Fender Champ for both the decreasing and increasing
% portions of the sinusoidal input and corresponding output

clear all;

% load 16-bit 44.1 (kHz) Fender Champ output samples in time domain
[m] = wavread ('james12.wav');

% sinusoidal input to 1961 Fender Champ
A = 1; % 1Vp amplitude
F = 523.25; % input frequency
Fs = 44100; % sampling frequency
n = 1:1:(size(m,1)); % number of samples in the output
x = A*cos (2*pi*n*F/Fs); % sinusoidal input to the amplifier
n = Fs / F; % number of samples per period in the input and output
n = round(round (n) / 2); % round the above computation and divide by 2 (samples in negative to positive swing)

% allocate look-up table
table = zeros(((n+1)*2),2);

% fill in 1st column of table with sinusoidal look-up values
table(1:(n+1),1) = transpose(x((n):(2*n))); % increasing portion of the sinusoid
table((n+2):((n+1)*2),1) = flipud(transpose(x((2*n):(3*n)))); % decreasing portion of the sinusoid

% find look-up values for 1961 Fender Champ output
x = x(n:(2*n)); % limit input value range to negative and positive peaks of the wave

% initialize negative and positive peak indexes from amplifier output
M = size (m, 1); % recalculate number of samples from amplifier output
indexlower = 0; % set index of negative output peak to 0
indexhigher = 0; % set index of positive output peak to 0

% loop to find negative and positive peaks of amplifier output
i = 1; % initialize loop count to 1
while (i <= M & indexlower == 0 & indexhigher == 0), % while loop count is less than output size and no range
 % has been found for output negative to positive peaks
 if (m(i,2) < 0 & m(i+1,2) >= 0 & (i-(n/2)) > 0 & m(i+4,2) > 0.4) % if the current output is less than zero, later sample
 % output values are greater than or equal to 0, and there are
 % '(1/4)*output period' values for the negative output portion
 indexhigher = round (i + (n/2)); % store location of rising portion of output to positive peak
 indexlower = round(i - (n/2)); % store location of rising portion following negative peak
 else
 end
 i = i + 1; % increment loop count
end

% increment 'indexlower' index if 'indexlower' to 'indexhigher' will result in
% the output array ('y1') being one element larger than the sinusoidal input ('x')
if ((indexhigher - indexlower) == size (x,2))
 indexlower = indexlower + 1;
else
end

% transfer half the period of the output of the amplifier to 'y1'
y1 = m (indexlower:indexhigher, 2); % the amplifier output containing the negative and positive peaks
y1 = transpose (y1); % transpose 'y1' so it has the same dimensions as the input 'x

% determine transfer characteristic on decreasing wave portion before negative and after positive peaks
indexlower = round (indexhigher + n); % set 'indexlower' to higher sample value than 'indexhigher' for
 % transfer characteristic determination of the output's decreasing side
 % (other half of one period of the output)

if ((indexlower - indexhigher) == size (x,2)) % decrement 'indexlower' index if 'indexlower' to 'indexhigher' will result in
 indexlower = indexlower - 1; % the output array ('y1') being one element larger than the sinusoidal input ('x')
else
end

i = indexlower; % set 'i' index to 'indexlower' (higher index for special case)
j = 1; % set 'j' index variable to 1
while (i <= indexlower & i >= indexhigher), % loop from higher index value (negative peak) to lower index value (positive peak)
 y(j) = m(i,2); % and assign the appropriate values of the amplifier output
 j = j + 1; % increment 'y' assignment index
 i = i - 1; % decrement 'm' assignment index
end

% fill in second column of table with 1961 Fender Champ output look-up values
table(1:(n+1),2) = transpose(y1); % increasing portion of the sinusoid
table((n+2):((n+1)*2),2) = transpose(y); % decreasing portion of the sinusoid1

% temporary variables to swap values when sorting the look-up table array in ascending order
temp1 = zeros(1,1); % swapping variable for sinusoid values
temp2 = zeros(1,1); % swapping variable for Champ output values

% loop to sort look-up table in ascending order
for i=1:((n*2)+1),
 for k=2:((n+1)*2),
 if (table(k,1) > table(i,1))
 % sinusoid sort
 temp1 = table(i,1);
 table(i,1) = table(k,1);
 table(k,1) = temp1;

 % amplifier output sort

 39

 temp2 = table(i,2);
 table(i,2) = table(k,2);
 table(k,2) = temp2;
 else
 end
 end
end

% clear some variables
clear temp1; clear temp2; clear x; clear y1; clear y;

% plot input-output transfer characteristic
figure (1), plot(table(:,1),table(:,2)), title ('1961 Fender Champ (Volume 12) Input-Output Transfer Characteristic for 1Vp 523.25
(Hz) Sinusoidal Input'),
xlabel ('input x(n)'), ylabel ('output y(n)')

 40

1961 Fender Champ Model Executable Code from Embedded Target for TI C6000TM DSP in
MATLAB 6.5

