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Abstract 
 
 
Solid-state technology may dominate the present electronics world, but vacuum tubes continue to 
hold influence in the guitar amplifier industry. The sound of a guitar playing through a vintage 
vacuum tube amplifier has become a standard for most guitarists. Unlike solid-state guitar 
amplifiers, vacuum tube amplifiers produce specific, distorted guitar sounds. The quality and 
amount of harmonic distortion in overdriven vacuum tube guitar amplifiers has been found to be 
pleasing to several musicians. This desirable effect has been termed "tube distortion." Even though 
vacuum tube designs for guitar amplifiers are characterized by their superior sound, their 
disadvantages include high cost, fragility, limited availability of components, high waste heat 
generation, and manufacturing inconsistencies in the tubes. The objective of this project is to 
reproduce the distinct harmonic distortion of a 1961 Fender Champ with a low-cost DSP and thus 
implement a guitar amplifier with tube distortion without the bulky and awkward features of a tube 
amplifier. Once the DSP-based design is completed for this small amplifier, the algorithm can be 
reconfigured for other vintage vacuum tube amplifiers. 
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Introduction 
 
 
Solid-State Amplifier Distortion 
As solid-state technology has become more advanced in recent years, devices, such as transistors 
and ICs, are increasingly available to be used to design inexpensive guitar amplifiers.  However, 
these analog solid-state designs require much feedback to improve their linear transfer 
characteristic.  This heavy feedback results in a sharp clipping characteristic that produces 
successive harmonics with high amplitudes when the configuration is driven at a high volume.  This 
typical nonlinear transfer characteristic for solid-state amplifiers has been plotted below followed 
by the harmonic distortion performance for two basic solid-state circuit designs. 

 
Figure 1: Typical Nonlinear Transfer Characteristic for Solid-State Amplifier Configuration 

Figure 2: Solid-State Distortion for Basic Transistor Amplifier Configurations [1] 
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As seen in Figure 2, one design contains a 2N2222 low-voltage bipolar transistor, and the other 
configuration uses a 2N5457 low-voltage junction JFET.  Measurements were made with an Audio 
Precision System 2 with the analog oscillator set to an output level of 2.00 Vrms at 1 kHz [1].   
 
Vacuum Tube Amplifier Distortion 
Guitar amplifiers based on vacuum tube designs have been known to produce a superior sound to 
solid-state amplifiers.  There are several theories to explain the tube amplifier’s specific, distorted 
guitar sounds as compared to the solid-state amplifier’s sound.  Overall, the tube amplifier 
configurations result in a frequency response with a dominant 1st harmonic component, followed by 
a 2nd harmonic component that is around half the magnitude of the 1st harmonic, and higher 
harmonics with decreasing amplitudes.  Lower harmonics have the most presence and thus produce 
a louder sound than solid-state amplifiers at high volumes as seen below for the same Audio 
Precision System 2 input as described above.   

 
Figure 3: Vacuum Tube Distortion for Basic Amplifier Configurations [1] 

 
From Figure 3, one can see that the higher harmonics have amplitudes that are down by a factor of 
100 as compared to the results in Figure 2 for solid-state amplifier configurations.  As a result, the 
quality and amount of harmonic distortion in overdriven vacuum tube guitar amplifiers has been 
found to be pleasing to many musicians because of the "warmth" perceived in the amplified output. 
Even though vacuum tubes produce high quality sound, there are disadvantages however, including 
high cost, fragility, limited availability of components, high waste heat generation, and 
manufacturing inconsistencies in the tubes.  The project objective is to reproduce the distinct 
harmonic distortion of a 1961 Fender Champ, a popular tube amplifier, using a low-cost DSP, thus 
creating tube distortion sound without the drawbacks of a tube amplifier. 
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Functional Description 
 
 
Overview 
This project uses the Texas Instruments TMS320C6711, a 32-bit floating-point DSP seen below, to 
generate the transfer and distortion characteristics of a 1961 Fender Champ Amplifier at its 12 
different volume settings.  Audio signals generated by a guitar via an A/D interface to the DSP are 
passed through C/C++ digital filters with different gains.  The averaged nonlinear transfer 
characteristic for each filter’s frequency range will reproduce the frequency response of the tube 
amplifier.  Nonlinearities produced from this configuration are thought to be the primary reason for 
the improved quality of sound.  The intention is to produce a vintage tube amplifier’s sound with a 
low-cost DSP as opposed to paying $1000 and up for a rare amplifier with limited replacement 
components. 
 

 
Figure 4: Texas Instruments TMS320C6711 Evaluation DSP Board Layout [5] 

 
Inputs/Outputs 
The system inputs are an analog audio signal from a guitar A/D interface, and a software based 
volume selection regulates the filters’ behavior.  The output is an audio signal with similar effects to 
a tube amplifier.  This signal is sounded with the D/A converter output that is interfaced to a set of 
4”x 5” speakers equipped with a headphone connector.  Both A/D and D/A converters are 
interfaced to standard headphone plug connectors.  Therefore, only a 1/4” to 1/8” headphone plug 
was needed to interface the guitar to the board. 
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Modes 
The system modes consist of the volume settings similar to those provided with the 12-volume 
switch on the 1961 Fender Champ.  The volume modeled for the amplifier was ‘6’ – the middle 
volume. 

 
Figure 5:  Overall Block Diagram 

 
System Description 
The model consists of eight digital filters each cascaded with their own nonlinear transfer 
characteristic that was representative of the filters’ frequency ranges from the collected amplifier 
data.  The output of each nonlinear model is filtered again to reduce any high frequency components 
that are not present from the 1961 Fender Champ data.  The eight filtered results are then summed 
together and filtered once more by a bandpass filter with a wide passband to reduce any further high 
frequency terms from the summation operation and any DC offset.  Each input sample is placed in 
memory after being collected on a frame basis and is processed on a sample-by-sample basis as 
each input becomes available from the external buffer.  The result is a real-time filter with infinite 
duration once the DSP is initialized as shown in the software flow chart below. 

Figure 6: Software Flowchart for DSP Model of 1961 Fender Champ 

DSP with C/C++ 
Digital Filters

Analog Audio Signal 
from Guitar

Audio Output with
Tube Amplifier Sound

Interfacing Circuitry
to Guitar Cable

Read in
Guitar Input

Buffer Input
Data to 64

Samples/Frame

Filter Data
and Apply

Nonlinearity

Software 
Volume/Nonlinearity

Selection

Send out 
Equivalent 

Amplifier Output

Y

N

Run (F5)

Shift+F5?

Halt



 8

The digital filter banks were implemented with a 150-order FIR filter designs.  If the algorithm’s 
noise floor is greater than the 16-bit input’s noise floor, the FIR model provides the best response. 
The figures below show the basic FIR filtering algorithm model, and the system block diagram 
respectively.  Finally, all executable code for Texas Instruments eXpressDSPTM software was 
developed with MATLAB 6.5’s Embedded Target for the TI C6000TM DSP feature in Simulink®. 
  

 
 Figure 7: FIR Digital Filter Algorithm 

 
Figure 8: Parallel FIR Filter Bank Approach to 1961 Fender Champ DSP Model 
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Design Equations and Calculations 
 
 
1961 Fender Champ Data Analysis 
 
Time Domain Display 
For the amplifier data analysis in MATLAB, the 1961 Fender Champ outputs were plotted in both 
the time and frequency domains.  In order to view 4 periods of each output in the time domain the 
following relation was used 
 
N (Samples / period) = sampling frequency (Fs) (samples / sec) * ((1 / output frequency (F)) (sec / 

period) 
 
Four times the resulting product was then entered into the right Limits text field under the X tab in 
the property editor window of MATLAB as shown below. 

 
Figure 9:  Samples/Period Entry in MATLAB for 1961 Fender Champ Data Plots 

 
 
 
 
 
 



 10

Discrete Fourier Transform Computation for Amplifier Output 
In order to display the magnitude spectrum for each of the 1961 Fender Champ outputs, the fft 
command in MATLAB was used to compute the Discrete Fourier Transform based on the following 
relation: 
  
                                               N-1 

X(k) = sum  x(n)*e(-j*2*pi*(k)*(n)/N),   0 <= k <= N-1 
                                               n=0 
 
The fft command in MATLAB is passed the variable storing the signal in the time domain and the 
number of frequency points to compute the Fourier Transform.  This second parameter results in the 
computation of the Fast Fourier Transform.   
 
Frequency Point Size Selection 
For data with over 1 million points collected from the amplifier from a guitar input, the Fast Fourier 
Transform computation was preferred for its efficient results.  The Fast Fourier Transform works 
most efficiently when the number of frequency points is a power of 2.  For the amplifier outputs 
produced by sinusoidal inputs, the number of data points was between 80000 and 140000 thus 
calling for 2^17 (131072) or 2^18 (262144) frequency points in the second argument of the fft 
command.  When amplifier data from a guitar input was plotted in the frequency domain, a power 
of 21 was used (2097152 frequency points).  These frequency points were chosen to be the least 
power of two that resulted in the number of discrete frequency terms being greater than the number 
of time domain points.  This way the fft computation was as efficient as possible while accounting 
for the periodic nature of the Discrete Fourier Transform and providing a higher resolution in the 
frequency component magnitudes.  If later in the data analysis, the frequency components were 
shifted, the result would have zeros throughout the delay with the previous data appearing after the 
delay.   
 
Magnitude Spectrum Computation 
In order to plot the magnitude spectrum from the fft results, the absolute value was computed 
followed by a scaling factor of 2 divided by the number of data points in the time domain.  When 
the data was recorded with the CoolEdit Software in the Acoustics Laboratory, the amplifier output 
was effectively turned on and then off as with a rectangular windowing function in the frequency 
domain.  The frequency components' amplitudes are each multiplied by M (the number of data 
points) divided by 2 when this type of windowing is performed.  This division is present to 
represent that the spectrum is double-sided.  In order to view a single-sided magnitude spectrum 
with amplitudes representative of the amplifier data’s dynamic range, the absolute value of the fft 
results were properly scaled.   
 
Analog Frequency Display Computation 
Finally, to display the magnitude response data correctly versus continuous frequency values, each 
of the digital frequency terms, k, were scaled by the sampling frequency, Fs, divided by the number 
of frequency points, N.  Since each frequency sample is (1/N) spaces apart from the fft 
computation, the analog frequency spacing from the computation is easily found by scaling the 
frequency samples by Fs/N.  The MATLAB code to perform the computations discussed above and 
display the time domain and frequency domain content of the amplifier outputs can be found in the 
Appendix section under Champread.m. 
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Circuit Diagrams/PSPICE Simulations 
 
 
PSPICE Simulations of Vacuum Tube Amplifier Distortion 
Before beginning the development of the DSP model for the 1961 Fender Champ, some simulations 
of basic vacuum tube amplifier configurations were performed to verify the findings in Figure 3, to 
test the located vacuum tube PSPICE models, and to gain some insight into the source of vacuum 
tube amplifier’s unique distortion. 
 
First, PSPICE Transient Analysis simulations were completed for –20V to 60V sinusoidal inputs at 
1 (kHz) for the 12AX7 triode.  The schematic and simulation results can be seen below. 

 
 Figure 10:  12AX7 Triode PSPICE Transient Analysis Simulation Results 
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From the Figure 10 results, one can see that the first frequency component is dominant and all 
successive harmonics are much smaller when the amplifier is overdriven by the size of the input as 
in Figure 3.  Overall, there is not much frequency content beyond the fifth harmonic component.   
 
The schematic and simulation results can be seen below for the 6V6GT amplifier and the same 
input specifications for the 12AX7 configuration were used as described on the previous page. 

 
Figure 11:  6V6GT Pentode PSPICE Transient Analysis Simulation Results 

 
From the results above, the output of the 6V6GT amplifier configuration consists of a dominant first 
harmonic component followed by higher frequency components with much smaller magnitudes.  
Again, there is not much frequency content beyond the fifth frequency component.  However, the 
high harmonic amplitudes are much smaller than seen in Figure 3.  This result is from the circuit 
configurations being different.  Overall, both simulations show that the higher harmonics do not 
exhibit the behavior seen in Figure 2. 
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1961 Fender Champ Schematic 
The 1961 Fender Champ schematic drawn in PSPICE can be seen below.  The 12AX7 and 6V6GT 
tube models were drawn and completed for this schematic and for Figure 10 and Figure 11 from 
the Duncan’s Amp Pages tutorial [2].  The original 1961 Fender Champ schematic was obtained 
from this site as well [4].  There was no data to be found on the 125A3A output transformer.  All 
vacuum tube amplifier websites simply had vacuum tube data sheets and PSPICE ‘.inc’ files for a 
variety of vacuum tubes.  Until the final component values can be found for the output transformer, 
the 1961 Fender Champ cannot be simulated, but is shown here since inputs were applied to this 
circuit to examine the amplifier output and model its nonlinear distortion. 
 

  
Figure 12: 1961 Fender Champ (PSPICE) Schematic 
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MATLAB Simulations/Analysis/Implementation 
 
 
Sinusoidal Frequency Selection 
In order to develop the most accurate DSP model of the 1961 Fender Champ’s sound, several 
experiments had to be performed in the laboratory to gain a thorough understanding the amplifier’s 
behavior for various inputs.  Most test inputs to the Champ were sinusoidal with the exception of 
one set of data taken from a 1952 Fender Telecaster.  This data was later recorded directly from the 
guitar so that the DSP Model could be simulated with a MATLAB program.  Frequencies chosen 
for the sinusoids were available from the guitar note frequency chart seen below [4].   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13: Guitar Note Frequencies [3] 
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Verification of Highest Frequency Component from Guitar 
After collecting amplifier data from sinusoidal and guitar inputs, it was discovered that the Texas 
Instruments TMS320C6711 DSK board DSK uses a fixed clock rate of 150 MHz and has a fixed 
sampling frequency of 8 kHz on the A/D converter.  This particular processor has been intended 
more for speech applications that only require around 4 kHz of bandwidth.  Based on the data 
provided by Figure 13, it appeared that the last two notes on a standard 21-fret guitar would not be 
sounded properly due to aliasing.  Therefore, the highest frequency from a guitar was verified by 
plugging the instrument into a 16-bit A/D converter configured for a 44.1 kHz sampling frequency 
and 16-bit stereo data collection.  The sounds played through the guitar are then recorded in ‘.wav’ 
format with CoodEdit software.  The first E string was plucked at the 21st fret of my guitar, and the 
time and frequency domain data were plotted below as discussed in the Design Equations 
section. 
 

 
Figure 14: Highest Frequency Note from a 21-Fret Guitar 

 
From the right plot above, one can see that there is a frequency component around 4434.92 (Hz) as 
indicated by Figure 13.  However, the magnitude of this component is insignificant as compared to 
the other magnitudes produced by this note.  Therefore, the conclusion was that not much 
information would be lost by prefiltering the guitar input within the 4 kHz range. 
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1961 Fender Champ Outputs from Sinusoidal Inputs 
Using the Figure 13 table as a reference, sinusoids at several frequencies were produced by a 
function generator and applied to the amplifier at volumes 3, 6, and 12.  These volumes were picked 
to model since ‘3’ is the first audible volume, ‘6’ is the middle volume, and ‘12’ is the overdriven 
volume input where the amplifier exhibits its best distortion characteristics.  The sound was 
recorded with a microphone connected to the 16-bit A/D converter configured for the settings 
discussed above.  With this setup, all of the data in the recording takes into account all the 
components of the amplifier including the speaker and the transformer.  The outputs were plotted in 
the format shown below based on the Design Equations discussion and the MATLAB code 
attached in the Appendix in Champread.m.   
 

 

 
Figure 15: 523.25 (Hz) Sinusoidal Input (Top),  

1961 Fender Champ Output and Magnitude Response (Bottom) 
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1961 Fender Champ Output from Guitar Input 
After all sinusoidal data was collected, a guitar input containing high and low frequency 
components was applied to the amplifier set at volume 6 and recorded in a similar procedure 
discussed in the previous section.  The note sequence was played again with the guitar connected 
directly to A/D converter.  Below are the MATLAB plots of the response in the time domain and 
the frequency domain. 
 

 
Figure 16: Input to 1961 Fender Champ at Volume ‘6’ 

(Output of Guitar – 1952 Fender Telecaster) 

 
Figure 17: Fender Champ Response at Volume ‘6’ to Figure 16 

 
The results in Figure 16 were then applied to the MATLAB simulation of the DSP amplifier model.  
The output of this model could be compared to Figure 17, in addition to sounding the result, in 
order to verify the model’s accuracy in matching the Champ’s unique distortion. 
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Nonlinear Transfer Characteristic Computations 
To model the nonlinear distortion of the 1961 Fender Champ at different frequencies, an X-Y 
relationship needed to be established between the sinusoidal inputs and their corresponding outputs.  
In order to conserve the DSP board’s memory, equation fits for the nonlinear transfer characteristics 
were performed iteratively with the polyfit command in MATLAB.  Also, the nonlinearity for 
each sinusoidal frequency was broken up into two parts since the output differed on the decreasing 
side of the input as compared to the increasing portion of the input.  The points were grouped by 
first matching their zero crossing point.  Two separate plots were produced for the increasing side of 
the sinusoid and the decreasing side of the sinusoid.  The MATLAB code to generate these plots is 
included in the Appendix in Champtransfer.m.  Polynomial fits of orders 3, 4, and 5 were 
performed on the curves at random increments of the sinusoidal points on the command line.  The 
resulting polynomials for the eight selected frequencies in Figure 8 can be found in the final 
MATLAB simulation code for the DSP amplifier model in the Appendix in Champv2.m.  Below 
are the nonlinear transfer characteristic curves for Figure 15.   

 
Figure 18: Nonlinear Transfer Characteristics for Figure 15 

 
From the similarities and differences between these nonlinear transfer characteristic curves, certain 
nonlinearities were selected to be representative of certain frequency ranges as listed in the table 
below. 
 

Frequency Range (Hz) Nonlinear Transfer Characteristic Frequency (Hz) 
250- 450 329.63 
450-700 523.25 
700-900 783.99 
900-1200 1046.50 
1200-1500 1318.51 
1500-2000 1760.00 
2000-3000 2637.02 
3000-4000 4434.92 

 
Table 1: Nonlinear Transfer Characteristic Curve Definitions for DSP Amplifier Model 
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FIR Filter Designs 
Since a significant amount of time was spent fitting the nonlinear transfer characteristic curves for 
all the sinusoidal frequencies applied to the 1961 Fender Champ, the Filter Design and Analysis 
Tool (FDATool), under the Signal Processing Toolbox in MATLAB, was used to design the FIR 
filters used in the DSP amplifier model as shown below. 

 
Figure 19: Filter Design and Analysis Tool (FDATool) in MATLAB 

 
From the figure above, a filter design’s magnitude and phase response can be viewed after 
specifying the cutoff frequency, sampling frequency, windowing function, filter order, and filter 
type in the appropriate text fields.  FIR filter orders were 2000 for the MATLAB code simulation of 
the DSP amplifier model due to the 44.1 kHz sampling frequency that was used to collect the 
Champ output data and the sharp cutoffs required by the filters in order to prevent amplifying the 
signal out of the –1 to 1 range for the nonlinear transfer characteristic equations.  When the design 
would later be implemented on the TMS320C6711 DSK board with an 8 kHz sampling frequency, 
the FIR filter orders could be reduced to an order below 200.   
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1961 Fender Champ DSP Model Simulation 
After correcting several nonlinear transfer characteristic curve fits and correcting several decision 
case statements in the MATLAB code simulation of the amplifier’s DSP model in Figure 8, the 
final result was produced below. 

 
Figure 20: MATLAB Code Simulation of DSP Model for Volume 6 of 1961 Fender Champ 

 
From the results above, the output is bounded within the –0.6 to 0.6 amplitude range as in Figure 
17.  Differences between the waves, noticeable around the 60000th sample, are partially due to the 
fact that both sets of data were not played exactly the same.  The frequency spectrum matches the 
response in Figure 17 with the exception of the removal of the frequency components in the DC 
range of 0-250 Hz and the range beyond 4500 (Hz).  When the DC range was included in the model, 
a significant amount of noise was produced in this range that in turn masked out the sound.  The 
Figure 8 model generated high frequency components greater than 10 kHz since the nonlinear 
transfer characteristic curves were defined for single frequency inputs, and not a range of 
frequencies.  To alleviate this problem, the output from each of the eight nonlinear transfer 
characteristic curves was filtered again to reduce high frequency content.  Using the sound 
command in MATLAB, the output still did not quite match the output of Figure 17, but there were 
several similarities leaving the model to be implemented on the Texas Instruments DSP board. 
 
1961 Fender Champ DSP Model Implementation 
In order to implement the DSP amplifier model on the Texas Instruments DSP board, there is a 
feature in MATLAB 6.5 that allows a DSP-based Simulink model to be translated to ANSI C 
standard code to be executable in the Texas Instruments Code Composer Studio (CCS) development 
software for a selection of Texas Instruments DSP developer boards.  This feature is the Embedded 
Target for the Texas Instruments C6000TM DSP.  This embedded target supports the TMS320C6711 
DSK board available for the project as shown by the blockset figure on the next page. 
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Figure 21: Texas Instruments TMS320C6711 Blockset Support from MATLAB 6.5’s 

Embedded Target for TI C6000TM DSP 
 
The blocks of interest above to implement the Figure 8 design are the ADC, DAC, and the Reset 
Blocks.  Reset simply allows the user to reset the board to the original register and memory settings 
from the Simulink model window.  ADC and DAC enable the board to accept external signals from 
the A/D converter and send signals out through the D/A converter respectively.  The Embedded 
Target settings for these blocks and code generation and execution are more thoroughly explained 
on pages 26-29 of the Appendix.  The Simulink block diagram of Figure 8 can be seen below. 

Figure 22: Simulink Implementation of 1961 Fender Champ DSP Model 
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From Figure 22, the nonlinear transfer characteristic equations have been replaced with lookup 
tables since the S-function blocks in MATLAB 6.5 resulted in a build failure for the DSP board.  
These blocks allow piecewise polynomial formula entries needed for the nonlinear transfer 
characteristics listed in Table 1.  The MATLAB help files indicated that the Embedded Target 
feature is only defined for the DSP Blockset in Simulink and a few other blocks including the Look-
Up Table block.  These look-up tables were generated by sorting the sinusoidal values in 
monotonically increasing fashion for the nonlinear transfer characteristic curves.  The 
corresponding amplifier outputs were also sorted.  MATLAB code to perform this sorting procedure 
can be found in Table.m in the Appendix.  The sorted version of Figure 18 can be seen below. 

 
Figure 23: Sorted Nonlinear Transfer Characteristic for Figure 18 

 
The above curve is similar to the preview curves generated Figure 22’s Look-Up Table blocks.  
Once the FIR filter orders from the FDATool were reduced to 150 for the parallel filter bank, and 
the input and output filter orders were reduced to 50, the TMS320C6711 was effectively 
programmed and 1961 Fender Champ DSP model was ready for demonstration. 
 
The output of the speakers was clean and loud for lower frequency notes on the guitar.  For higher 
frequency notes, a harsh sound was generated when the gain from the guitar was set to its highest 
position.  The source of this harsh sound may be the equivalent high frequency sound heard in the 
MATLAB simulations from Figure 20.  The real-time DSP Blockset sink scopes have not been 
enabled correctly to obtain any real-time data from the board to be analyzed later in the time and 
frequency domains.  However, the overall sound was similar to the 1961 Fender Champ’s sound in 
Figure 17. 
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Conclusions 
 
Research 
Further research or improvements in the design that have been considered are locating the 1961 
Fender Champ’s transformer data so that the circuit in Figure 12 can be simulated in PSPICE.  The 
simulation results can then be used to establish an X-Y relationship between the input and output of 
the amplifier for a wider frequency range and for all 12 volumes.  This approach would result in 
simpler design.  Also, the design can be implemented with a 12-state subband coding structure that 
would divide the 4 kHz bandwidth input from the guitar into ~1 Hz frequency ranges.  Each 
nonlinearity can then be applied to single frequencies resulting in an improved sound.  This design 
will be more efficient since all the lowpass and highpass filters in the subband coding structure are 
the same.  Finally, an investigation into the source of the Embedded Target’s code generation 
capabilities should be completed to have an appreciation of MATLAB 6.5’s new powerful feature. 
 
Accomplishments 
Overall, the project was successful in implementing the DSP-based 1961 Fender Champ amplifier 
on the Texas Instruments TMS320C6711 DSK board for one volume setting. Only designs with 
little complexity have been produced for past DSP boards.  In general, DSP boards are difficult to 
program as a result of poor accompanying documentation and unclear external peripheral layouts.  
This project’s model was complex and implemented on a DSP evaluation board in less than a week.  
MATLAB 6.5’s Embedded Target for the TI C6000TM feature is a powerful tool for implementing 
DSP-based designs without the time-consuming programming task. 
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Patents and Standards 
 
 
Patents 
Two patents have the same objective as this project, but both DSP algorithms do not involve any of 
the approaches discussed in the Functional Description section.  Also, neither patent intends to 
specifically model the 1961 Fender Champ.  The patents are listed below. 
 

• Tube Modeling Programmable Digital Guitar Amplification System 
• U.S. Patent 5,789,689 – August 4, 1998 
• Employs a sampling rate conversion algorithm to model the nonlinear transfer function 

of the tube circuitry.   
 

• Electric instrument amplifier 
• U.S. Patent 6,350,943 – February 26, 2002 
• Employs a sampling rate conversion algorithm to model the nonlinear transfer function 

of the tube circuitry.   
• Includes a tube configuration and a solid-state power circuit on the D/A output of the 

DSP board. 

 
Figure 24: Patent Vacuum Tube Amplifier DSP Modeling Algorithm 

 
Standards 
N/A 
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 Appendix 
 
 

Texas Instruments Embedded Target for TI C6000TM DSP Block and Code Build 
Configurations 

ADC and DAC Block Settings 
The ADC block in Simulink for the Texas Instruments Embedded Target was configured as shown 
below to successfully produce the equivalent amplifier sound from the guitar.   

Figure 25: C6711 DSK ADC Block Settings for 1961 Fender Champ DSP Model 
 
As seen above, in order to process data from a microphone or guitar input, the ‘ADC source’ text 
field must be set to “Mic In,” and the +20dB Mic gain boost must be enable to pick up the small 
amplitude signals from the guitar.  All other settings are default values.   
 
The DAC block for the Texas Instruments Embedded Target was configured as shown below to its 
default settings. 

 
Figure 26: C6711 DSK DAC Block Settings for 1961 Fender Champ DSP Model 
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Simulation Parameters Settings 

Figure 27: C6711 DSK Simulation Parameters Settings for 1961 Fender Champ DSP Model  
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Figure 28: Figure 27, contd. 
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As seen in Figure 27 and Figure 28, most of the settings are disabled once the C6711 is selected in 
the ‘Target Selection’ window.  The most important windows are at the bottom of Figure 28.  The 
‘TI C6000 code generation’ options allow the user’s code to have a high speed of execution by 
regenerating code for repeating blocks in their design, or generating code once for the repeating 
structure.  The default setting is ‘Inline DSP Blockset functions’ that generates the repetitive code.  
For applications where conserving memory is an issue, the ‘target specific optimization’ option may 
need to be enabled.  However, this alternative option does result in computation errors (LSB 
differences) as indicated in Figure 28.    The ‘TI C6000 runtime’ options allow the user to only 
generate code, build the project, create a project, or build and execute the project.  In the “Overrun 
action” field, the user can be warned that a board overrun has occurred by lighting an LED on the 
board with the ‘Continue’ selection; the program can be stopped at a board overrun with the ‘Halt’ 
selection; or the program can continue running despite the overrun with ‘None’ selection.  As seen 
in Figure 28, ‘None’ was selected for the project implementation and no problems occurred, but 
future users of the Embedded Target feature in MATLAB 6.5 may want to consider a different 
setting.  All other settings are self-explanatory from their description, and documentation on these 
settings can be easily found in the Embedded Target for Texas Instruments C6000 DSP’s help 
branch in the MATLAB 6.5 help files. 
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MATLAB Code 
 
Champread.m – reads in 1961 Fender Champ Data from Sinusoidal Inputs 
% MATLAB '.wav' Reading Code to Plot Frequency Response Data 
% from Sinusoidal Inputs to the 1961 Fender Champ 
 
clear all; 
 
Fs = 44100;                        % sampling frequency of recorded 16-bit precision data from amplifier 
 
[m] = wavread ('james12.wav');     % load 16-bit 44.1 (kHz) Fender Champ output samples in time domain 
 
% determine power of two frequency samples to take to avoid aliasing and ensure high frequency resolution 
N = 2^17;                          % initially set number of frequency samples to 131072 since 
                                   % most of the data has 105986 or less elements 
if ((size (m, 1) > N))             % if power of 2 is less than size of Fender Champ output data 
    N = 2^18;                      % N must be increased by a factor of 2 
else 
    N = 2^17;                      % N = # of frequency samples in FFT 
end                                 
 
% compute FFT of input wave data from Fender Champ and equivalent analog frequency terms  
% from DFT dependent variable 'k' 
mf = fft (m, N);                   % take the FFT of the sampled Fender Champ output 
mfmag = 2/(size (m, 1))*abs (mf);  % calculate magnitude frequency response, |Y(F)|, of Fender Champ output 
mfmagdB = 20*log10(mfmag);         % compute magnitude frequency response of Fender Champ output in 'dB' 
                         
k = 1:1:N;                         % array of frequency sample integer points 
F = (Fs / N) * k;                  % conversion from array of frequency sample point, 'k', to analog frequency, 'F' 
 
% plot Fender Champ output vs. 'n' 
figure(2), plot(m), xlabel('n'), ylabel('Vo(n)'), title ('1961 Fender Champ Output from 523.25 (Hz) Sinusoidal Input') 
 
% plot magnitude response of Fender Champ output vs. frequency 
figure (3), plot (F, mfmag),  
title ('Magnitude Response of 1961 Fender Champ (Volume 12) to 1Vp 523.25 (Hz) Sinusoidal Input'), 
xlabel ('F'), ylabel ('|Vo(f)|'), axis([0 10000 0 0.5]) 
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Champtransfer.m – plots X-Y relationship between sinusoidal input and Champ output 
% MATLAB code to generate the input-output transfer characteristic 
% of the 1961 Fender Champ for both the decreasing and increasing 
% portions of the sinusoidal input and corresponding output 
 
clear all; 
 
% load 16-bit 44.1 (kHz) Fender Champ output samples in time domain 
[m] = wavread ('james12.wav');   
 
% sinusoidal input to 1961 Fender Champ 
A = 1;                    % 1Vp amplitude 
F = 523.25;               % input frequency 
Fs = 44100;               % sampling frequency  
n = 1:1:(size(m,1));      % number of samples in the output 
x = A*cos (2*pi*n*F/Fs);  % sinusoidal input to the amplifier 
n = Fs / F;               % number of samples per period in the input and output 
n = round(round (n) / 2); % round the above computation and divide by 2 (samples in negative to positive swing)  
x = x(n:(2*n));           % limit input value range to negative and positive peaks of the wave 
 
% initialize negative and positive peak indexes from amplifier output 
M = size (m, 1);  % recalculate number of samples from amplifier output  
indexlower = 0;   % set index of negative output peak to 0 
indexhigher = 0;  % set index of positive output peak to 0 
 
% loop to find negative and positive peaks of amplifier output 
i = 1;                                                % initialize loop count to 1 
while (i <= M & indexlower == 0 & indexhigher == 0),  % while loop count is less than output size and no range 
                                                      % has been found for output negative to positive peaks 
    if (m(i,2) < 0 & m(i+1,2) >= 0 & (i-(n/2)) > 0 & m(i+4,2) > 0.4)   % if the current output is less than zero, later sample  
                                                      % output values are greater than or equal to 0, and there are 
                                                      % '(1/4)*output period' values for the negative output portion 
        indexhigher = round (i + (n/2));              % store location of rising portion of output to positive peak 
        indexlower = round(i - (n/2));                % store location of rising portion following negative peak     
    else 
    end 
    i = i + 1;                                        % increment loop count 
end 
 
% increment 'indexlower' index if 'indexlower' to 'indexhigher' will result in 
% the output array ('y1') being one element larger than the sinusoidal input ('x') 
if ((indexhigher - indexlower) == size (x,2))                          
    indexlower = indexlower + 1; 
else 
end 
 
% transfer half the period of the output of the amplifier to 'y1' 
y1 = m (indexlower:indexhigher, 2);  % the amplifier output containing the negative and positive peaks 
y1 = transpose (y1);                 % transpose 'y1' so it has the same dimensions as the input 'x 
 
 
% determine transfer characteristic on decreasing wave portion before negative and after positive peaks 
indexlower = round (indexhigher + n);            % set 'indexlower' to higher sample value than 'indexhigher' for  
                                                 % transfer characteristic determination of the output's decreasing side 
                                                 % (other half of one period of the output) 
 
if ((indexlower - indexhigher) == size (x,2))    % decrement 'indexlower' index if 'indexlower' to 'indexhigher' will result in 
    indexlower = indexlower - 1;                 % the output array ('y1') being one element larger than the sinusoidal input ('x') 
else 
end                                                  
 
i = indexlower;                                  % set 'i' index to 'indexlower' (higher index for special case) 
j = 1;                                           % set 'j' index variable to 1 
while (i <= indexlower & i >= indexhigher),      % loop from higher index value (negative peak) to lower index value (positive peak) 
    y(j) = m(i,2);                               % and assign the appropriate values of the amplifier output 
    j = j + 1;                                   % increment 'y' assignment index 
    i = i - 1;                                   % decrement 'm' assignment index 
end       
 
% plot input(x)-output(y1) transfer characteristic for increasing negative peak to positive peak of the output 
figure (3), plot(x,y1), title ('1961 Fender Champ (Volume 6) Positive Input-Output Transfer Characteristic for 1Vp 523.25 (Hz) 
Sinusoidal Input'), 
xlabel ('input x(n)'), ylabel ('output y(n)') 
 
% plot input(x)-output(y1) transfer characteristic for decreasing negative peak to positive peak of the output 
figure (4), plot(x,y), title ('1961 Fender Champ (Volume 6) Negative Input-Output Transfer Characteristic for 1Vp 523.25 (Hz) 
Sinusoidal Input'), 
xlabel ('input x(n)'), ylabel ('output y(n)') 
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Champv2.m – final version of 1961 Fender Champ DSP Model Simulation 
% MATLAB code to test 1961 Fender Champ DSP Model 
% utilizing 'filter' command 
 
clear all; 
 
Fs = 44100;                    % sampling frequency of recorded 16-bit precision data from amplifier 
 
% load guitar output data from Fender Telecaster that should be processed to match the 
% frequency response seen in 'chuck.wav' 
[m] = wavread ('chuck2.wav');  % load 16-bit 44.1 (kHz) Fender Telecaster output samples in time domain 
M = size (m, 1);               % number of guitar output samples                    
 
% load only the actual sound data from 'chuck2.wav' since the recording is 2-D from the 'Stereo' setting 
% on the Cool Edit software 
x = m(:,2);                    % second column of 'chuck2.wav' matrix contains sound information 
clear m;                       % clear the 'm' variable for the original stereo recording is no longer  
                               % needed for the simulation 
x = transpose (x);             % transpose copied 'chuck2.wav' information into a 1xM matrix for filtering the data 
M = size (x, 2) - 3000;        % reevaluate the number of data points in the guitar output data if only 
                               % a section of the total number of points is analyzed 
                                
% initialize DSP model of 1961 Fender Champ output to a vector of zeros 
y = zeros (1, M); 
 
% load FIR filter coefficients generated by Signal Processing Toolbox's Filter Design and Analysis Tool (FDATool), 
% apply each filter to the guitar output data, and apply the nonlinear transfer characteristic of the  
% 1961 Fender Champ 
h2 = load('coeffs2.mat');    % FIR filter coefficients for 250-450 (Hz) range of guitar input 
y2 = filter (h2.Num, 1, x);  % apply above filter to guitar output data 
y2 = transpose (y2);         % transpose the filtered data to one column 
%clear h2;                    % clear filter bank 2 FIR filter coefficients 
ynew = y2(3001:(M+3000),1); 
clear y2; 
y2 = ynew; 
clear ynew; 
 
% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (250 - 450 (Hz)) range 
for i = 1:1:M, 
    % filter bank 2 -- (250 - 450 (Hz)) 
    if (abs(y2(i,1)) <= 0.004) 
        y2(i,1) = 0; 
    elseif (i==M) 
        if (y2(i,1) <= -0.88944828257914) 
            y2(i,1) = (-68719.176757675*(y2(i,1)^5)) + (-321439.992203615*(y2(i,1)^4)) + (-601385.461757832*(y2(i,1)^3)) + (-
562529.277963019*(y2(i,1)^2)) + (-263071.235742067*y2(i,1)) - 49206.728315590; 
        elseif (y2(i,1) > -0.88944828257914 & y2(i,1) <= -0.75869986216017) 
            y2(i,1) = (16.98587396263879*(y2(i,1)^3)) + (41.09913525621555*(y2(i,1)^2)) + (33.10072652875094*y2(i,1)) + 
8.75967605810567; 
        elseif (y2(i,1) > -0.75869986216017 & y2(i,1) <= 0.03100205252333) 
            y2(i,1) = (-0.14701551325883*(y2(i,1)^5)) + (0.03615492635897*(y2(i,1)^4)) + (0.14880292411304*(y2(i,1)^3)) + (-
0.03637528264439*(y2(i,1)^2)) + (0.10289228581507*y2(i,1)) - 0.00143102284955; 
        elseif (y2(i,1) > 0.03100205252333 & y2(i,1) <= 0.67093705707496) 
            y2(i,1) = (4.79726296439179*(y2(i,1)^5)) + (-7.00081342317531*(y2(i,1)^4)) + (3.20301006319392*(y2(i,1)^3)) + (-
0.39180654928700*(y2(i,1)^2)) + (0.08817524515470*y2(i,1)) - 0.00105798461333; 
        elseif (y2(i,1) > 0.67093705707496)     
            y2(i,1) = (37.824868981907*(y2(i,1)^4)) + (-121.264356223727 *(y2(i,1)^3)) + (144.089456829547*(y2(i,1)^2)) + (-
75.167464090098*y2(i,1)) + 14.612924524157; 
        else 
        end 
    elseif (y2(i,1) <= y2(i+1,1) & y2(i,1) <= y2(i+16,1)) 
        if (y2(i,1) <= -0.88944828257914) 
            y2(i,1) = (-68719.176757675*(y2(i,1)^5)) + (-321439.992203615*(y2(i,1)^4)) + (-601385.461757832*(y2(i,1)^3)) + (-
562529.277963019*(y2(i,1)^2)) + (-263071.235742067*y2(i,1)) - 49206.728315590; 
        elseif (y2(i,1) > -0.88944828257914 & y2(i,1) <= -0.75869986216017) 
            y2(i,1) = (16.98587396263879*(y2(i,1)^3)) + (41.09913525621555*(y2(i,1)^2)) + (33.10072652875094*y2(i,1)) + 
8.75967605810567; 
        elseif (y2(i,1) > -0.75869986216017 & y2(i,1) <= 0.03100205252333) 
            y2(i,1) = (-0.14701551325883*(y2(i,1)^5)) + (0.03615492635897*(y2(i,1)^4)) + (0.14880292411304*(y2(i,1)^3)) + (-
0.03637528264439*(y2(i,1)^2)) + (0.10289228581507*y2(i,1)) - 0.00143102284955; 
        elseif (y2(i,1) > 0.03100205252333 & y2(i,1) <= 0.67093705707496) 
            y2(i,1) = (4.79726296439179*(y2(i,1)^5)) + (-7.00081342317531*(y2(i,1)^4)) + (3.20301006319392*(y2(i,1)^3)) + (-
0.39180654928700*(y2(i,1)^2)) + (0.08817524515470*y2(i,1)) - 0.00105798461333; 
        elseif (y2(i,1) > 0.67093705707496)     
            y2(i,1) = (37.824868981907*(y2(i,1)^4)) + (-121.264356223727 *(y2(i,1)^3)) + (144.089456829547*(y2(i,1)^2)) + (-
75.167464090098*y2(i,1)) + 14.612924524157; 
        else 
        end 
    elseif (y2(i,1) >= y2(i+1,1) & y2(i,1) >= y2(i+110,1)) 
        if (y2(i,1) <= -0.88944828257914) 
            y2(i,1) = (80497.490461401*(y2(i,1)^5)) + (378336.835142034*(y2(i,1)^4)) + (711025.161301063*(y2(i,1)^3)) + 
(667897.401409708*(y2(i,1)^2)) + (313582.108419929*y2(i,1)) + 58870.403132302; 
        elseif (y2(i,1) > -0.88944828257914 & y2(i,1) <= -0.75869986216017) 
            y2(i,1) = (3.14413416173309 *(y2(i,1)^3)) + (8.99166573734725*(y2(i,1)^2)) + (8.33382289302432*y2(i,1)) + 
2.40467059490994; 
        elseif (y2(i,1) > -0.75869986216017 & y2(i,1) <= 0.03100205252333) 
            y2(i,1) = (-1.25743859840562*(y2(i,1)^5)) + (-3.23903773112466*(y2(i,1)^4)) + (-2.72832708238533*(y2(i,1)^3)) + (-
0.92487892274217 *(y2(i,1)^2)) + (0.03063229848367*y2(i,1)) + 0.00308652852424; 
        elseif (y2(i,1) > 0.03100205252333 & y2(i,1) <= 0.67093705707496) 
            y2(i,1) = (-3.04280524415451*(y2(i,1)^5)) + (5.33092378965096*(y2(i,1)^4)) + (-3.30854903877957*(y2(i,1)^3)) + 
(0.92566589621312*(y2(i,1)^2)) + (0.04231259620612*y2(i,1)) + 0.00297236917866; 
        elseif (y2(i,1) > 0.67093705707496) 
            y2(i,1) = (-199.224861301530*(y2(i,1)^4)) + (661.430283669455*(y2(i,1)^3)) + (-817.648895898231*(y2(i,1)^2)) + 
(446.134220093739*y2(i,1)) - 90.550196341759; 
        else 
        end 
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    else 
    end 
end 
 
% clear filter coefficients for 2nd filter bank, add the result to the final output variable 'y', 
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade 
y2 = transpose (y2); 
ynew = filter(h2.Num,1,y2); 
clear h2; 
clear y2; 
y = y + ynew; 
clear ynew; 
 
h3 = load('coeffs3.mat');    % FIR filter coefficients for 450-700 (Hz) range of guitar input 
y3 = filter (h3.Num, 1, x);  % apply above filter to guitar output data 
y3 = transpose (y3);         % transpose the filtered data to one column 
%clear h3;                    % clear filter bank 3 FIR filter coefficients 
ynew = y3(3001:(M+3000),1); 
clear y3; 
y3 = ynew; 
clear ynew; 
 
% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (450 - 700 (Hz)) range 
for i = 1:1:M, 
    % filter bank 3 -- (450 - 700 (Hz)) 
    if (abs(y3(i,1)) <= 0.004) 
        y3(i,1) = 0; 
    elseif (i==M) 
        if (y3(i,1) <= -0.37876399818939) 
            y3(i,1) = (-0.56829800182878*(y3(i,1)^3)) + (-1.39700432370723*y3(i,1)*y3(i,1))  + (-0.82034863349647*y3(i,1)) - 
0.14906816886078; 
        elseif (y3(i,1) > -0.37876399818939 & y3(i,1) <= 0.60935468556281) 
            y3(i,1) = (-8.72590467533686*(y3(i,1)^5)) + (2.76960583923815*(y3(i,1)^4)) + (2.54878830047786*(y3(i,1)^3)) + 
(0.31170701431282*(y3(i,1)^2)) + (0.09371195611734*y3(i,1)) - 0.00098794722369; 
        elseif (y3(i,1) > 0.60935468556281) 
            y3(i,1) = (4.41438080207482*(y3(i,1)^3)) + (-9.42200546446084*(y3(i,1)^2)) + (5.88975202896697*y3(i,1)) - 
0.68983704203876;   
        else 
        end 
    elseif (y3(i,1) <= y3(i+1,1) & y3(i,1) <= y3(i+16,1)) 
        if (y3(i,1) <= -0.37876399818939) 
            y3(i,1) = (-0.56829800182878*(y3(i,1)^3)) + (-1.39700432370723*y3(i,1)*y3(i,1))  + (-0.82034863349647*y3(i,1)) - 
0.14906816886078; 
        elseif (y3(i,1) > -0.37876399818939 & y3(i,1) <= 0.60935468556281) 
            y3(i,1) = (-8.72590467533686*(y3(i,1)^5)) + (2.76960583923815*(y3(i,1)^4)) + (2.54878830047786*(y3(i,1)^3)) + 
(0.31170701431282*(y3(i,1)^2)) + (0.09371195611734*y3(i,1)) - 0.00098794722369; 
        elseif (y3(i,1) > 0.60935468556281) 
            y3(i,1) = (4.41438080207482*(y3(i,1)^3)) + (-9.42200546446084*(y3(i,1)^2)) + (5.88975202896697*y3(i,1)) - 
0.68983704203876;   
        else 
        end 
    elseif (y3(i,1) >= y3(i+1,1) & y3(i,1) >= y3(i+110,1)) 
        if (y3(i,1) <= -0.37876399818939) 
            y3(i,1) = (5.18832626964269*(y3(i,1)^3)) + (11.88114529606541*y3(i,1)*y3(i,1))  + (8.47854566859566*y3(i,1)) + 
1.58420993203007; 
        elseif (y3(i,1) > -0.37876399818939 & y3(i,1) <= 0.60935468556281) 
            y3(i,1) = (0.01696796833807*(y3(i,1)^5)) + (0.51889623557768 *(y3(i,1)^4)) + (0.66348332600826*(y3(i,1)^3)) + (-
0.83548461536455*(y3(i,1)^2)) + (0.20212469351244*y3(i,1)) + 0.01128525692314; 
        elseif (y3(i,1) > 0.60935468556281) 
            y3(i,1) = (2.27216355952769*(y3(i,1)^3)) + (-5.56742398139630*(y3(i,1)^2)) + (4.78854451266702*y3(i,1)) - 
1.32303764340606;   
        else 
        end 
    else 
    end 
end 
 
% clear filter coefficients for 3rd filter bank, add the result to the final output variable 'y', 
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade 
y3 = transpose (y3); 
ynew = filter(h3.Num,1,y3); 
clear y3; clear h3; 
y = y + ynew; 
clear ynew; 
 
h4 = load('coeffs4.mat');    % FIR filter coefficients for 700-900 (Hz) range of guitar input 
y4 = filter (h4.Num, 1, x);  % apply above filter to guitar output data 
y4 = transpose (y4);         % transpose the filtered data to one column 
%clear h4;                    % clear filter bank 4 FIR filter coefficients 
ynew = y4(3001:(M+3000),1); 
clear y4; 
y4 = ynew; 
clear ynew; 
 
% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (700 - 900 (Hz)) range 
for i = 1:1:M, 
    % filter bank 4 -- (700 - 900 (Hz)) 
    if (abs(y4(i,1)) <= 0.004) 
        y4(i,1) = 0; 
    elseif (i==M) 
        if (y4(i,1) <= 0.60454464003276) 
            y4(i,1) = (-0.76301588450210*(y4(i,1)^5)) + (-1.38210529886798*(y4(i,1)^4)) + (-0.32589133502657*(y4(i,1)^3)) + 
(0.71542261549090*y4(i,1)*y4(i,1))  + (0.70617798178237*y4(i,1)) + 0.00922286191193;  
        elseif (y4(i,1) > 0.60454464003276) 
            y4(i,1) = (6.66886369245563*(y4(i,1)^3)) + (-14.51427214179483*(y4(i,1)^2)) + (9.87341313725182*y4(i,1)) - 
1.76179767260799;     
        else 
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        end 
    elseif (y4(i,1) <= y4(i+1,1) & y4(i,1) <= y4(i+16,1)) 
        if (y4(i,1) <= 0.60454464003276) 
            y4(i,1) = (-0.76301588450210*(y4(i,1)^5)) + (-1.38210529886798*(y4(i,1)^4)) + (-0.32589133502657*(y4(i,1)^3)) + 
(0.71542261549090*y4(i,1)*y4(i,1))  + (0.70617798178237*y4(i,1)) + 0.00922286191193;  
        elseif (y4(i,1) > 0.60454464003276) 
            y4(i,1) = (6.66886369245563*(y4(i,1)^3)) + (-14.51427214179483*(y4(i,1)^2)) + (9.87341313725182*y4(i,1)) - 
1.76179767260799;     
        else 
        end 
    elseif (y4(i,1) >= y4(i+1,1) & y4(i,1) >= y4(i+110,1)) 
        if (y4(i,1) <= 0.60454464003276) 
            y4(i,1) = (2.09304813350076*(y4(i,1)^5)) + (1.74672650135099*(y4(i,1)^4)) + (-1.71563186001010*(y4(i,1)^3)) + ( -
0.77779628688163*y4(i,1)*y4(i,1))  + (0.87156039722568*y4(i,1)) + 0.00530299527817;    
        elseif (y4(i,1) > 0.60454464003276) 
            y4(i,1) = (2.38966467445579*(y4(i,1)^3)) + (-6.29908984515897*(y4(i,1)^2)) + (5.42407435628797*y4(i,1)) - 
1.24896724190801; 
        else 
        end 
    else 
    end 
end 
 
% clear filter coefficients for 4th filter bank, add the result to the final output variable 'y', 
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade 
y4 = transpose (y4); 
ynew = filter(h4.Num,1,y4); 
clear y4; clear h4; 
y = y + ynew; 
clear ynew; 
 
h5 = load('coeffs5.mat');    % FIR filter coefficients for 900-1200 (Hz) range of guitar input 
y5 = filter (h5.Num, 1, x);  % apply above filter to guitar output data 
y5 = transpose (y5);         % transpose the filtered data to one column 
%clear h5;                    % clear filter bank 5 FIR filter coefficients 
ynew = y5(3001:(M+3000),1); 
clear y5; 
y5 = ynew; 
clear ynew; 
 
% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (900 - 1200 (Hz)) range 
for i = 1:1:M, 
    % filter bank 5 -- (900 - 1200 (Hz)) 
    if (abs(y5(i,1)) <= 0.004) 
        y5(i,1) = 0; 
    elseif (i==M) 
         if (y5(i,1) <= 0.34950665419487) 
            y5(i,1) = (-0.02418519718077*(y5(i,1)^3)) + (0.44888677671994*y5(i,1)*y5(i,1))  + (0.49166920219708*y5(i,1)) + 
0.01628062898090;  
        elseif (y5(i,1) > 0.34950665419487) 
            y5(i,1) = (10.49360895104914*(y5(i,1)^4)) + (-25.82368476523019*(y5(i,1)^3)) + (20.82181400941379*(y5(i,1)^2)) + (-
6.40454570897561*y5(i,1)) + 0.88847268188231;     
        else 
        end 
    elseif (y5(i,1) <= y5(i+1,1) & y5(i,1) <= y5(i+16,1)) 
        if (y5(i,1) <= 0.34950665419487) 
            y5(i,1) = (-0.02418519718077*(y5(i,1)^3)) + (0.44888677671994*y5(i,1)*y5(i,1))  + (0.49166920219708*y5(i,1)) + 
0.01628062898090;  
        elseif (y5(i,1) > 0.34950665419487) 
            y5(i,1) = (10.49360895104914*(y5(i,1)^4)) + (-25.82368476523019*(y5(i,1)^3)) + (20.82181400941379*(y5(i,1)^2)) + (-
6.40454570897561*y5(i,1)) + 0.88847268188231;     
        else 
        end 
    elseif (y5(i,1) >= y5(i+1,1) & y5(i,1) >= y5(i+110,1)) 
        if (y5(i,1) <= 0.34950665419487) 
            y5(i,1) = (-0.98302598295889*(y5(i,1)^3)) + (-0.18407100389022*y5(i,1)*y5(i,1))  + (0.65197614415727*y5(i,1)) - 
0.05629368368442;  
        elseif (y5(i,1) > 0.34950665419487) 
            y5(i,1) = (-7.08989790137859*(y5(i,1)^4)) + (17.94712268385248*(y5(i,1)^3)) + (-16.74968454949415*(y5(i,1)^2)) + 
(6.76884737133075*y5(i,1)) - 0.88442910189754;    
        else 
        end 
    else 
    end 
end 
 
% clear filter coefficients for 5th filter bank, add the result to the final output variable 'y', 
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade 
y5 = transpose (y5); 
ynew = filter(h5.Num,1,y5); 
clear y5; clear h5; 
y = y + ynew; 
clear ynew; 
 
h6 = load('coeffs6.mat');    % FIR filter coefficients for 1500-1900 (Hz) range of guitar input 
y6 = filter (h6.Num, 1, x);  % apply above filter to guitar output data 
y6 = transpose (y6);         % transpose the filtered data to one column 
%clear h6;                    % clear filter bank 6 FIR filter coefficients 
ynew = y6(3001:(M+3000),1); 
clear y6; 
y6 = ynew; 
clear ynew; 
 
% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (1500 - 1900 (Hz)) range 
for i = 1:1:M, 
    % filter bank 6 -- (1500 - 2000 (Hz)) 
    if (abs(y6(i,1)) <= 0.004) 
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        y6(i,1) = 0; 
    elseif (i==M) 
        if (y6(i,1) <= -0.43452546052800) 
            y6(i,1) = (0.99455095743274*(y6(i,1)^3)) + (2.06388674424519*y6(i,1)*y6(i,1))  + (1.22835632079628*y6(i,1)) + 
0.14028398745250;  
        elseif (y6(i,1) > -0.43452546052800 & y6(i,1) < 0.52568376981050)     
            y6(i,1) = (-0.18829656824388*(y6(i,1)^3)) + (0.26554116918217*y6(i,1)*y6(i,1))  + (0.19154984309742*y6(i,1)) - 
0.06748799219195;  
        elseif (y6(i,1) > 0.52568376981050) 
            y6(i,1) = (-1.05277282816339*(y6(i,1)^3)) + (1.53158295096551*(y6(i,1)^2)) + (-0.47277823343648*y6(i,1)) + 
0.05690955278783;     
        else 
        end 
    elseif (y6(i,1) <= y6(i+1,1) & y6(i,1) <= y6(i+16,1)) 
        if (y6(i,1) <= -0.43452546052800) 
            y6(i,1) = (0.99455095743274*(y6(i,1)^3)) + (2.06388674424519*y6(i,1)*y6(i,1))  + (1.22835632079628*y6(i,1)) + 
0.14028398745250;  
        elseif (y6(i,1) > -0.43452546052800 & y6(i,1) < 0.52568376981050)     
            y6(i,1) = (-0.18829656824388*(y6(i,1)^3)) + (0.26554116918217*y6(i,1)*y6(i,1))  + (0.19154984309742*y6(i,1)) - 
0.06748799219195;  
        elseif (y6(i,1) > 0.52568376981050) 
            y6(i,1) = (-1.05277282816339*(y6(i,1)^3)) + (1.53158295096551*(y6(i,1)^2)) + (-0.47277823343648*y6(i,1)) + 
0.05690955278783;     
        else 
        end 
    elseif (y6(i,1) >= y6(i+1,1) & y6(i,1) >= y6(i+110,1)) 
        if (y6(i,1) <= -0.43452546052800) 
            y6(i,1) = (0.89061643255058*(y6(i,1)^3)) + (1.98219795426592*y6(i,1)*y6(i,1))  + (1.17643507848724*y6(i,1)) + 
0.07272390053118;  
        elseif (y6(i,1) > -0.43452546052800 & y6(i,1) < 0.52568376981050)    
            y6(i,1) = (-0.24311393184001*(y6(i,1)^3)) + (0.26089532014697*y6(i,1)*y6(i,1))  + (0.22949751684937*y6(i,1)) - 
0.10670258817371;  
        elseif (y6(i,1) > 0.52568376981050) 
            y6(i,1) = (-0.56703346907528*(y6(i,1)^3)) + (0.63563544969577*(y6(i,1)^2)) + (0.07646239911448*y6(i,1)) - 
0.08298649140525;        
        else 
        end 
    else 
    end 
end 
 
% clear filter coefficients for 6th filter bank, add the result to the final output variable 'y', 
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade 
y6 = transpose (y6); 
ynew = filter(h6.Num,1,y6); 
clear y6; clear h6; 
y = y + ynew; 
clear ynew; 
 
h7 = load('coeffs7.mat');    % FIR filter coefficients for 2500-3000 (Hz) range of guitar input 
y7 = filter (h7.Num, 1, x);  % apply above filter to guitar output data 
y7 = transpose (y7);         % transpose the filtered data to one column 
%clear h7;                    % clear filter bank 7 FIR filter coefficients 
ynew = y7(3001:(M+3000),1); 
clear y7; 
y7 = ynew; 
clear ynew; 
 
% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (2500 - 3000 (Hz)) range 
for i = 1:1:M, 
    % filter bank 7 -- (2000 - 3000 (Hz)) 
    if (abs(y7(i,1)) <= 0.004) 
        y7(i,1) = 0; 
    elseif (i==M) 
        if (y7(i,1) <= 0.52061799159661) 
            y7(i,1) = (0.03050013585480 *(y7(i,1)^3)) + (0.08850998989652*y7(i,1)*y7(i,1))  + (0.09644520093631*y7(i,1)) - 
0.05625591088734;      
        elseif (y7(i,1) > 0.52061799159661) 
            y7(i,1) = (1.49534318122681*(y7(i,1)^3)) + (-3.40774873854431*y7(i,1)*y7(i,1))  + (2.71163888974592*y7(i,1)) - 
0.67708580295643; 
        else 
        end 
    elseif (y7(i,1) <= y7(i+1,1) & y7(i,1) <= y7(i+16,1)) 
        if (y7(i,1) <= 0.52061799159661) 
            y7(i,1) = (0.03050013585480 *(y7(i,1)^3)) + (0.08850998989652*y7(i,1)*y7(i,1))  + (0.09644520093631*y7(i,1)) - 
0.05625591088734;      
        elseif (y7(i,1) > 0.52061799159661) 
            y7(i,1) = (1.49534318122681*(y7(i,1)^3)) + (-3.40774873854431*y7(i,1)*y7(i,1))  + (2.71163888974592*y7(i,1)) - 
0.67708580295643; 
        else 
        end 
    elseif (y7(i,1) >= y7(i+1,1) & y7(i,1) >= y7(i+110,1)) 
        if (y7(i,1) <= 0.52061799159661) 
            y7(i,1) = (0.03792691113961*(y7(i,1)^3)) + (0.09344728588294*y7(i,1)*y7(i,1))  + (0.05600453500018*y7(i,1)) - 
0.08951475188092;      
        elseif (y7(i,1) > 0.52061799159661) 
            y7(i,1) = (6.19509836095840*(y7(i,1)^3)) + (-13.94972622452190*y7(i,1)*y7(i,1)) + (10.40781191425343*y7(i,1)) - 
2.54152264185540; 
        else 
        end 
    else 
    end 
end 
 
% clear filter coefficients for 7th filter bank, add the result to the final output variable 'y', 
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade 
y7 = transpose (y7); 
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ynew = filter(h7.Num,1,y7); 
clear y7; clear h7; 
y = y + ynew; 
clear ynew; 
 
h8 = load('coeffs8.mat');    % FIR filter coefficients for 3000-4500 (Hz) range of guitar input 
y8 = filter (h8.Num, 1, x);  % apply above filter to guitar output data 
y8 = transpose (y8);         % transpose the filtered data to one column 
%clear h8;                    % clear filter bank 8 FIR filter coefficients 
ynew = y8(3001:(M+3000),1); 
clear y8; 
y8 = ynew; 
clear ynew; 
 
% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (3000 - 4500 (Hz)) range 
for i = 1:1:M, 
% filter bank 8 -- (3000 - 4500 (Hz)) 
    if (abs(y8(i,1)) <= 0.004) 
        y8(i,1) = 0; 
    elseif (i==M) 
        y8(i,1) = (-0.02147657478764*(y8(i,1)^3)) + (-0.03289716983565*y8(i,1)*y8(i,1))  + (0.41065582745363*y8(i,1)) + 
0.04327826151318;        
    elseif (y8(i,1) <= y8(i+1,1) & y8(i,1) <= y8(i+16,1)) 
        y8(i,1) = (-0.02147657478764*(y8(i,1)^3)) + (-0.03289716983565*y8(i,1)*y8(i,1))  + (0.41065582745363*y8(i,1)) + 
0.04327826151318; 
    elseif (y8(i,1) >= y8(i+1,1) & y8(i,1) >= y8(i+110,1)) 
        y8(i,1) = (0.00486328528208*(y8(i,1)^3)) + (0.08884217340101*y8(i,1)*y8(i,1))  + (0.38127135497634*y8(i,1)) - 
0.08786332217043;      
    else 
    end 
end 
 
% clear filter coefficients for 8th filter bank, add the result to the final output variable 'y', 
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade 
y8 = transpose (y8); 
ynew = filter(h8.Num,1,y8); 
clear y8; clear h8; 
y = y + ynew; 
clear ynew; 
 
h1 = load('coeffs1.mat');    % FIR filter coefficients for 1200-1500 (Hz) range of guitar input 
y1 = filter (h1.Num, 1, x);  % apply above filter to guitar output data 
y1 = transpose (y1);         % transpose the filtered data to one column 
%clear h1;                    % clear filter bank 1 FIR filter coefficients 
ynew = y1(3001:(M+3000),1); 
clear y1; 
y1 = ynew; 
clear ynew; 
 
% loop to apply nonlinear transfer characteristics of 1961 Fender Champ to guitar input for (1200 - 1500 (Hz)) range 
for i = 1:1:M, 
% filter bank 1 -- (1200 - 1500 (Hz)) 
    if (abs(y1(i,1)) <= 0.004) 
        y1(i,1) = 0; 
    elseif (i==M) 
        if (y1(i,1) < 0.17101812752890) 
            y1(i,1) = (0.28169043915516*(y1(i,1)^5)) + (1.12220302816665*(y1(i,1)^4)) + (1.17194247185579*(y1(i,1)^3)) + 
(0.53754840671098*y1(i,1)*y1(i,1))  + (0.18109555950788*y1(i,1)) - 0.01999617906884;        
        elseif (y1(i,1) >= 0.17101812752890) 
            y1(i,1) = (-9.73317889343557*(y1(i,1)^5)) + (26.83625394673680*(y1(i,1)^4)) + (-30.19885117938932*(y1(i,1)^3)) + 
(16.18597216298094*y1(i,1)*y1(i,1))  + (-3.33667917310204*y1(i,1)) + 0.26031478573559; 
        else 
        end 
    elseif (y1(i,1) <= y1(i+1,1) & y1(i,1) <= y1(i+16,1)) 
        if (y1(i,1) < 0.17101812752890) 
            y1(i,1) = (0.28169043915516*(y1(i,1)^5)) + (1.12220302816665*(y1(i,1)^4)) + (1.17194247185579*(y1(i,1)^3)) + 
(0.53754840671098*y1(i,1)*y1(i,1))  + (0.18109555950788*y1(i,1)) - 0.01999617906884;        
        elseif (y1(i,1) >= 0.17101812752890) 
            y1(i,1) = (-9.73317889343557*(y1(i,1)^5)) + (26.83625394673680*(y1(i,1)^4)) + (-30.19885117938932*(y1(i,1)^3)) + 
(16.18597216298094*y1(i,1)*y1(i,1))  + (-3.33667917310204*y1(i,1)) + 0.26031478573559; 
        else 
        end 
    elseif (y1(i,1) >= y1(i+1,1) & y1(i,1) >= y1(i+110,1)) 
        if (y1(i,1) < 0.17101812752890) 
            y1(i,1) = (1.28589118197780*(y1(i,1)^5)) + (1.41375171594779*(y1(i,1)^4)) + (-0.75777122854619*(y1(i,1)^3)) + (-
0.16082773353923*y1(i,1)*y1(i,1))  + (0.61589657776279*y1(i,1)) - 0.10175085682072;        
        elseif (y1(i,1) >= 0.17101812752890) 
            y1(i,1) = (1.71528798879591*(y1(i,1)^5)) + (-4.65770844862509*(y1(i,1)^4)) + (4.84706005908354*(y1(i,1)^3)) + (-
2.97149607714633*y1(i,1)*y1(i,1))  + (1.20302756105976*y1(i,1)) - 0.14302102205390; 
        else 
        end 
    else 
    end 
end 
 
% clear filter coefficients for 1st filter bank, add the result to the final output variable 'y', 
% and clear the immediate output for the current filter bank-nonlinear transfer characteristic cascade 
y1 = transpose (y1); 
ynew = filter(h1.Num,1,y1); 
clear y1; clear h1; 
y = y + ynew; 
clear ynew; 
 
% post-filter output with 60-7100 (Hz) bandpass filter 
ynew = y; 
m = [0 0 1 1 0 0]; 
f = [0 0.00544 0.00567 0.159 0.161 0.5]; 
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h = fir2(2000,2*f,m); 
y = filter(h,1,ynew); 
clear ynew; 
 
% compute FFT of filtered data from guitar and equivalent analog frequency terms  
% from DFT dependent variable 'k' 
N = 2^21;                          % number of frequency points 
yf = fft (y, N);                   % take the FFT of the simulate Fender Champ output 
yfmag = 2/(size (y, 2))*abs (yf);  % calculate magnitude frequency response, |Y(f)|, of simulated Fender Champ output 
clear yf;                         
k = 1:1:N;                         % array of frequency sample integer points 
F = (Fs / N) * k;                  % conversion from array of frequency sample point, 'k', to analog frequency, 'F' 
 
% plot simulated 1961 Fender Champ output 
figure (1), plot(y), 
title ('DSP model of 1961 Fender Champ at Volume 6') 
xlabel ('n'), ylabel ('y(n)'), 
 
% plot magnitude response of simulated Fender Champ output vs. frequency 
figure (2), plot (F, yfmag),  
title ('Magnitude Response from DSP Model of 1961 Fender Champ (Volume 6)'), 
xlabel ('F'), ylabel ('|Y(f)|'), axis([0 10000 0 0.008]) 
 
% the resulting sound should be comparable to the distortion characteristics of a 1961 Fender Champ 
sound (y,Fs) 
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Table.m – sorts X-Y relationship between sinusoidal inputs and Champ outputs 
% MATLAB code to generate the input-output transfer characteristic look-up 
% table of the 1961 Fender Champ for both the decreasing and increasing 
% portions of the sinusoidal input and corresponding output 
 
clear all; 
 
% load 16-bit 44.1 (kHz) Fender Champ output samples in time domain 
[m] = wavread ('james12.wav');   
 
% sinusoidal input to 1961 Fender Champ 
A = 1;                    % 1Vp amplitude 
F = 523.25;               % input frequency 
Fs = 44100;               % sampling frequency  
n = 1:1:(size(m,1));      % number of samples in the output 
x = A*cos (2*pi*n*F/Fs);  % sinusoidal input to the amplifier 
n = Fs / F;               % number of samples per period in the input and output 
n = round(round (n) / 2); % round the above computation and divide by 2 (samples in negative to positive swing) 
 
% allocate look-up table 
table = zeros(((n+1)*2),2); 
 
% fill in 1st column of table with sinusoidal look-up values 
table(1:(n+1),1) = transpose(x((n):(2*n)));                    % increasing portion of the sinusoid 
table((n+2):((n+1)*2),1) = flipud(transpose(x((2*n):(3*n))));  % decreasing portion of the sinusoid 
 
% find look-up values for 1961 Fender Champ output 
x = x(n:(2*n));           % limit input value range to negative and positive peaks of the wave 
 
% initialize negative and positive peak indexes from amplifier output 
M = size (m, 1);  % recalculate number of samples from amplifier output  
indexlower = 0;   % set index of negative output peak to 0 
indexhigher = 0;  % set index of positive output peak to 0 
 
% loop to find negative and positive peaks of amplifier output 
i = 1;                                                % initialize loop count to 1 
while (i <= M & indexlower == 0 & indexhigher == 0),  % while loop count is less than output size and no range 
                                                      % has been found for output negative to positive peaks 
    if (m(i,2) < 0 & m(i+1,2) >= 0 & (i-(n/2)) > 0 & m(i+4,2) > 0.4)   % if the current output is less than zero, later sample  
                                                      % output values are greater than or equal to 0, and there are 
                                                      % '(1/4)*output period' values for the negative output portion 
        indexhigher = round (i + (n/2));              % store location of rising portion of output to positive peak 
        indexlower = round(i - (n/2));                % store location of rising portion following negative peak     
    else 
    end 
    i = i + 1;                                        % increment loop count 
end 
 
% increment 'indexlower' index if 'indexlower' to 'indexhigher' will result in 
% the output array ('y1') being one element larger than the sinusoidal input ('x') 
if ((indexhigher - indexlower) == size (x,2))                          
    indexlower = indexlower + 1; 
else 
end 
 
% transfer half the period of the output of the amplifier to 'y1' 
y1 = m (indexlower:indexhigher, 2);  % the amplifier output containing the negative and positive peaks 
y1 = transpose (y1);                 % transpose 'y1' so it has the same dimensions as the input 'x 
 
 
% determine transfer characteristic on decreasing wave portion before negative and after positive peaks 
indexlower = round (indexhigher + n);            % set 'indexlower' to higher sample value than 'indexhigher' for  
                                                 % transfer characteristic determination of the output's decreasing side 
                                                 % (other half of one period of the output) 
 
if ((indexlower - indexhigher) == size (x,2))    % decrement 'indexlower' index if 'indexlower' to 'indexhigher' will result in 
    indexlower = indexlower - 1;                 % the output array ('y1') being one element larger than the sinusoidal input ('x') 
else 
end                                                  
 
i = indexlower;                                  % set 'i' index to 'indexlower' (higher index for special case) 
j = 1;                                           % set 'j' index variable to 1 
while (i <= indexlower & i >= indexhigher),      % loop from higher index value (negative peak) to lower index value (positive peak) 
    y(j) = m(i,2);                               % and assign the appropriate values of the amplifier output 
    j = j + 1;                                   % increment 'y' assignment index 
    i = i - 1;                                   % decrement 'm' assignment index 
end 
 
% fill in second column of table with 1961 Fender Champ output look-up values 
table(1:(n+1),2) = transpose(y1);   % increasing portion of the sinusoid 
table((n+2):((n+1)*2),2) = transpose(y);  % decreasing portion of the sinusoid1 
 
% temporary variables to swap values when sorting the look-up table array in ascending order 
temp1 = zeros(1,1);  % swapping variable for sinusoid values 
temp2 = zeros(1,1);  % swapping variable for Champ output values 
 
% loop to sort look-up table in ascending order 
for i=1:((n*2)+1), 
    for k=2:((n+1)*2), 
        if (table(k,1) > table(i,1)) 
            % sinusoid sort 
            temp1 = table(i,1); 
            table(i,1) = table(k,1); 
            table(k,1) = temp1; 
             
            % amplifier output sort 
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            temp2 = table(i,2); 
            table(i,2) = table(k,2); 
            table(k,2) = temp2; 
        else 
        end 
    end 
end 
 
% clear some variables 
clear temp1; clear temp2; clear x; clear y1; clear y; 
 
% plot input-output transfer characteristic 
figure (1), plot(table(:,1),table(:,2)), title ('1961 Fender Champ (Volume 12) Input-Output Transfer Characteristic for 1Vp 523.25 
(Hz) Sinusoidal Input'), 
xlabel ('input x(n)'), ylabel ('output y(n)') 
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1961 Fender Champ Model Executable Code from Embedded Target for TI C6000TM DSP in 
MATLAB 6.5 

 


