
1

Introduction

The goal of this project was to develop a remote locator device that is used to find
lost items by sending an RF signal to small remote units connected to various items in the
home, such as keys, TV remotes, etc. When an item is lost, the user scrolls through a
LCD screen located on the base unit. The name of the lost item is found in a list of saved
names and is selected for location. The remote unit attached to the desired item receives
the RF transmitted digital ID code from the base unit and produces an audible alert tone
to allow the user to locate the item. Each additional remote unit also receives the signal,
but they do not produce the audible alert. The user is able to turn the alert off on the
portable device or use a button on the base unit.

Significance of the Project

This product will benefit those people that have multiple items in their home that
tend to get lost on a regular basis. The user will no longer have to spend time searching
their home for remotes, keys, or other items that are used and misplaced regularly. The
target audience for this device will be homeowners or renters between the ages of 25 and
55 that own TVs, VCRs, stereos, and/or a car. These people will have multiple remote
controls and keys that may be misplaced on a regular basis. Consumers that have enough
money to purchase these items will have enough money to purchase this device. This
product will end the frustration of having to search one’s home repeatedly for lost items.

System Description

This project was divided into two major components, the base unit and the remote
unit. The base unit was microcontroller based, utilizing a LCD and a keypad.
A user menu is displayed on the LCD and allows three different modes of operation: save
mode, alert mode, and load mode. The base unit is controlled by a user input from the
keypad and outputs a packed serial bit-stream through a RF transmitter. This is shown in
figure 1. The remote unit was implemented on a CPLD development board using VHDL
code. The transmitted packed serial bit-stream acts as the input to the remote unit. The
remote unit produces an audible alert tone through the speaker so that it can be located.

2

Figure 1
Base Unit System Block Diagram

 VDC

 Serial Bit-Stream

 TTL Signal

 Transmitted
 RF Signal
 Output

 To The Remote Unit
 RF Receiver Input

Figure 2
Remote Unit Top Level Block Diagram

Transmitted RF TTL Wave

 Signal Input Output

EMAC 8051
Microcontroller

AC/DC
Wall Unit

LCD
Screen

On/Off
Button

Alert
Button

Keypad

1
abc

2
def

3
ghi

4
jkl

5
mno

6
pqr

7
stu

8
vwx

9
yz

ENT
0

Spac
e

RF
Transmitter

Audible
Tone Off
Button

Reciever

MACH 4 64/32
CPLD Chip with

VHDL Remote Unit
Circuitry Encoded

Speaker

Alert Off
Button

3.3V Vcc
Power
Source

3

Modes of Operation

Save Mode: This mode is used to save the name of each item to be located and
to assign each item to its remote device. The names are entered
into the list using the keypad. When the names of the items are
saved into the menu, the user is then able to scroll through the list
of names and locate the desired item when in the alert mode.

Alert Mode: The keypad is used to scroll down the list of saved items in order
to find the desired item. The user can then select the desired item
and press the alert button to transmit the RF signal to each remote
unit. Upon receiving, the signal is delivered to a comparator
circuit where each remote unit can compare the signal to its own
ID number. When the correct remote receives the signal, it sounds
the alert on the remote so that the item can be found.

Load Mode: The load mode is used when the user wants to add or replace a
remote device in the system. The additional remotes each have a
preset code that is entered into the base unit and stored so that the
base unit knows what signal to send in order to activate the remote.

Base Unit Inputs

Vcc: An AC to DC wall transformer is used to power the base unit.

Keypad: The keypad is used to enter the names of the items, select the
items, and store the ID numbers of the locators. Ideally, the
keypad would be a twelve button alpha numeric keypad that
interfaces with a microcontroller and consists of a back button, an
enter button, a scrolling button, all the letters of the alphabet, and
the numbers 0-9.

On/Off button: This button turns the power to the base unit on and off.

Alert Button: This button is pressed in order to send the signal to the locator
devices when it is desired to locate an item.

Audible Tone
Off Button: This button allows the user to turn the audible alert tone off from

the base unit. The alert tone is turned off by sending a reset signal
to each remote unit. The remote units will then automatically go
into an idle state.

Base Unit Outputs

LCD: The display outputs the main menu and the modes of operation on
the display screen.

Microcontroller: When the alert button is pressed, the microprocessor in the base
unit outputs a UART compatible packed bit-stream to the

4

transmitter. The structure of the bit-stream is described in the
UART circuitry section on page 5.

RF Transmitter: The packed bit-stream transmits to all of the remote units. The
transmitter being used is the LINX Technologies SC series RF
transceiver. (Appendix B shows the data sheet and pin
configuration for the transceiver)

Remote Unit Inputs

Figure 3
Subsystem Block Diagram Of The Remote Unit

 VDC
 Transmitted Demodulated
 RF Signal Base-Band Unpacked

 From The Signal ID Number
 Base Unit

 Electric
 Tone

 Audible Tone
 Output

Vcc: A small battery is used to power each remote unit and all of their
components.

Receiver: The transmitted RF signal is then received from the base unit and
demodulated. The receiver then outputs the demodulated base-
band signal to the UART circuitry. The receiver used is the LINX
Technologies SC series RF transceiver. (Appendix B shows the
data sheet and pin configurations for the transceiver)

Off Button When pressed, this button turns the audible alert tone off by
resetting the remote unit latch circuitry.

Remote Signal: Each remote unit receives the RF signal transmitted from the base
unit, through the RF receiver, every time the alert button is
pressed.

RF
Receiver

Digital
Decoding/
Comparing
Circuitry

Tone
Generating
Circuitry

Alert Off
Button

DC
Battery
Source

Speaker

UART
Circuitry

5

UART Circuitry: The UART is used to separate the ID number from the packed
serial bit-stream transmitted from the base unit. The UART
receives the demodulated base-band signal from the receiver and
then unpacks the ID code from the serial bit-stream received by
determining the beginning and the end of the transmitted signal.
The UART then removes the start and stop bits that were added to
the ID number prior to transmission and triggers the compare
circuitry to begin comparing its preset ID code to the code in the
shift register circuitry.

In order to determine what ID code has been transmitted, the UART determines
the start and stop bits of the remote signal. An initial stream of high bits indicates that
the remote signal is being received. The UART then waits for the first low bit to be
received. This initial low bit is also known as the start bit of the signal. This bit is how
the UART recognizes the start of the input signal. After the UART receives the start bit,
it knows that the next eight bits will be data bits that represent the ID number and the last
bit is the stop bit. The stop bit is always high and it signals the end of the transmitted
signal. The UART then outputs a high bit to the shift register/compare circuitry. At this
time, the values stored in the shift register are compared to the preset ID code of the
remote unit. Figure 4 is a representation of how the UART will unpack the ID number.

Figure 4
UART Signal Packing and Unpacking

When the initial high bits received by the UART first drop low, a sample is taken
halfway through the pulse in order to determine if the negative transition is due to noise
or the start bit. If the pulse sampled is high again, the UART determines that the
negagive transition was due to noise. If the pulse is still low when it is sampled, the
circuitry assumes that the start bit has been received. After determining the start bit, the
UART acquires samples halfway through each of the eight data bits. This is done by
having the UART clock run a standard 16 times faster than the input signal rate. Every
time the UART clock counts to 16, it will be able to sample the next bit. Sampling
halfway through the pulses at 16 times the receiver clock keeps the UART from
accidentally missing a pulse while unpacking the ID number. After the UART samples
the eight data bits, it samples the last bit to make sure it is a high stop bit. If the UART

6

counts eight bits and then the ninth bit is not a high bit, then it will assume that a mistake
has occurred and will begin waiting for the next negative transition in the signal. The
unpacked ID number is then sent to the digital decoding and compare circuitry. Quatech
uses Figure 5 compare the ideal asynchronous data sampling used to unpack the ID
number to non-ideal data sampling that has corrupted the signal. In addition, figure 5
shows how sampling 16 times the speed of the input clock benefits the system. By
sampling at this rate, the UART is able to check each bit in the approximate middle of the
pulse as shown in the top of the figure. The bottom half of figure 5 shows what would
happen if the UART did not sample half way through the pulse. Eventually the UART
may accidentally miss a bit and corrupt the data.

Figure 5
Asynchronous Signal Sampling

Digital Decoding/
Comparing Circuitry: The purpose of this circuitry is to determine the ID code that has

been transmitted and to compare this code to the preset code of the
remote unit. Each bit of the ID number is stored in a different flip-
flop of an eight-bit shift register in order to decode and determine
the ID number. The output of each flip-flop will be compared to
the preset number for each remote unit. If each flip-flop output
matches the preset number, the circuitry produces a high output to
the tone generating circuitry. If the ID codes do not match, the
output of the decoding logic remains low. If a remote unit receives
the reset code from the base unit, it will reset the tone generating
circuitry. Figure 6 shows the schematic for an eight-bit Shift
register with compare circuitry.

7

Figure 6
8-Bit Shift Register With Compare

Tone Generating
Circuitry: When the correct ID has been received and compared correctly,

this circuitry generates a TTL wave output to the speaker.

The tone generating circuitry consists of a latch and a frequency divider. After
the UART has determined the start bit, stop bit, the eight data bits, and the compare
circuitry has compared correctly, the latch produces a high output to the frequency
divider. The frequency divider divides the 2kHz UART clock four times in order to
produce a 500Hz TTL wave. A 500Hz pulse was needed in order for the speaker to
produce the desired tone. The circuitry will produce this wave until the latch is reset by
the audible tone off button on the base or remote unit.

Remote Unit Output

Speaker: The speaker on the locator device produces an audible alert tone
when it receives a TTL frequency wave input from the tone
generating circuitry.

Figure 3 shows the subsystem block diagram for the remote units. Figure 7 shows
the basic hardware schematic for the remote units with the output shown in figure 8. The
VHDL code for the remote unit is shown in Appendix A-II. The CPLD pin assignments,
as well as the CPLD memory cell limitations, are shown in Appendix B.

8

Figure 7
Hardware Schematic Of The Remote Units

Figure 8
Digital Decoding/Compare Circuitry Hardware Simulation Output

The operation of the remote units is shown in figure 8 above. The circuitry is
activated when the first start bit causes a negative transition in the input bit-stream. The
UART circuitry counts each bit as they are shifted through the shift register. When the
ninth bit is counted, the UART samples it to make sure that it is a high bit. If the ninth
bit is a high bit, the UART assumes that the stop bit has been reached and allows the
compare circuitry to asses whether or not the correct ID code has been received. IF the

9

input matches the preset ID, the compare circuitry outputs high. This final output leads
to the latching circuitry that produces the continuous TTL output wave to the speaker.

Software

Base Unit

Overall, seven different assembly code modules control the base unit. These
modules are titled "setup", "main", "LCD", "keypad", "top menu", "serial port", and "alert
menu". The functions of each module are shown in the base unit module section below.
These modules are implemented using the Micropac 80515 (EMAC) microcontroller.
The different components of the base unit are described in the base unit section. The
operation by mode section describes the intended flow of each mode of operation.
Appendix A-I shows the assembly code written.

Base Unit Modules

Setup: Initializes the LCD, Keypad, and serial port.

Main: Calls the different modules.

LCD: Includes all LCD output code and displays using the LCD screen.

Keypad: Recognizes what button is pressed on the keypad. Used to select
 Modes, Items, and to alert.

Serial: Has all the serial port definitions and transmits the desired ID code.

Alert Menu: Displays the names of all the saved items. Allows the user to scroll
 through the names in order to select an item and alerts the item. The
 user can also chose the back button to go back to the main menu.

Top Menu: Utilizes LCD code to display the Main menu as shown below.
 (1) ALERT (2) SAVE

 (3) LOAD
 The written assembly code of all of these modules is shown in Appendix A-I.

Operation By Mode

Main Menu: The main menu allows the user to choose which mode of operation to use.
This menu is displayed on the LCD and the user selects the desired mode
by pressing a key. Figure 9 show the software flow chart for the main
menu.

Save Mode: The user is prompted by the LCD to select which remote unit to name.
The user then utilizes the keypad to select the desired remote unit. Next,

10

the name of the remote unit is entered into the system using the keypad.
The microcontroller then saves the entered name in a module and the LCD
goes back to displaying the main menu. The remote unit is not used
during this mode of operation. Figure 10 shows the software flow chart
for the Save Mode.

Load Mode: The LCD prompts the user to choose which remote unit is being added or
replaced. The keypad is then used to choose the proper remote unit for
loading. Next, the LCD prompts the user to enter the new ID number for
the remote unit, using the keypad. When this is complete, the
microcontroller saves the ID number in a module and the LCD goes back
to displaying the main menu. The remote unit is not used during this
mode of operation. Figure 11 shows the software flow chart for the Load
Mode.

Alert Mode: The LCD prompts the user to choose which remote unit is to be found.
The keypad is used to scroll through the list and choose the name of the
desired item to be located. The microcontroller repeatedly sends the saved
ID number to the RF transmitter for a preset number of times. The remote
ID number is then transmitted to each remote unit receiver. The receiver
then demodulates the received signal and outputs the signal to the
decoding circuitry. The decoding circuitry determines the ID number and
compares it to the preset number of each remote unit. The remote unit that
has the matching ID number produces the audible alert tone until the user
turns it off on the base unit or the remote unit itself, using the alert off
button. Figure 12 shows the software flow chart for the Alert Mode.

Figure 9
Software Flow Chart For The Main Menu

Exit To The
Desired
Mode Of
Operation

Display The
Modes Of

Operation On
The LCD

Screen

Wait For
Desired

Mode To Be
Chosen Using
The Keypad

11

Figure 10
Software Flow Chart For The Save Mode

Figure 11
Software Flowchart For The Load Mode

Load
Menu

Display List
Of Remote
Units And
Prompt To

Enter Desired
Remote Unit

To Be
Loaded

Enter The
Number Of The

Desired
Remote Unit

To Be Loaded

Display Keypad
ID Number Entry

Prompt

Keypad
Entry Of

The Desired
ID Number

Save To
Number

List

Exit Back To Main Menu

Save
Menu

Display List
Of Remote
Units And
Prompt To

Enter Desired
Remote Unit
To Be Saved

Enter The
Number Of The

Desired
Remote Unit
To Be Saved

Display Keypad
Name Entry

Prompt

Keypad
Entry Of

The Desired
Name

Save To
Name
List

Exit Back To Main Menu

12

Figure 12
Software Flowchart For Alert Mode

Remote Units

Figure 13 shows the functionality of the remote units. As soon as rst_n goes high
the system becomes functional. The first action that takes place is the generation of
slow_clk. This is generated using a frequency divider (counter) in the clock generation
portion of the VHDL code shown in Appendix A-II. The counter divides clk four times,
creating a 16 times slower clock called slow_clk. Slow_clk is used for the shift register
and compare circuitry, while clk is used for all other subsystems.

The next part of the code is the start bit detection. This code waits for the input,
rin, to drop low and then the signal start_bit is latched low. At this point the UART
circuitry begins to sample at sixteen times the rate of rin. The UART signal, test_start,
then counts eight times from a negative transition in order to reach half the length of an
input pulse, where the UART then takes another sample. Beginning at 1000b, test_start
counts up to 1111b. At this point, the UART checks to make sure that rin is still low. If
rin is not low then the UART assumes the initial negative transition was due to noise in
the transmission. The UART then resets the start bit latch and waits for the next rin
negative transition. If it is low, then the UART assumes that this is the start bit.

At this point sampler begins to count all the way to 16 in order to obtain a sample
halfway through each transmitted bit. Every time sampler reaches 16, bit_counter
increments. Bit_counter is initially loaded to 0110b so that when it reaches 1111b, it will
have counted nine bits (eight data bits and one stop bit). When bit_counter reaches
1111b, the circuitry checks to make sure the last bit received, the stop bit, is a high bit. If
the stop bit is not high, the system will reset and wait for the rin negative transition. If
the stop bit is a high bit, check_compare goes high.

When check_compare is high, the UART circuitry acknowledges that all eight
data bits have been received and the stop bit has been checked. When the values in the
shift register match the values of the preset ID code, the compare output goes high. If the

Alert
Menu

Display List
Of Remote
Units And
Prompt To

Enter Desired
Remote Unit

To Be
Alerted

Enter The
Number Of The

Desired
Remote Unit

To Be Alerted

Load 8-bit ID
Code From ID
Number List
Into Register

Shift ID Code
Out Through
Serial Port Of

Microprocessor

Output ID
Code To RF
Transmitter

Exit Back To Main Menu

13

compare output and check_compare are high at the same time, meaning all bits have been
checked counted and compare correctly, latch_out goes high.

Latch_out holds the output high until the user resets by pressing the appropriate
alert tone off button. This circuitry is another frequency divider that divides clk by four,
producing a 500Hz TTL output wave to the speaker. This wave is necessary in order to
produce the desired tone from the speaker for alerting. At this point the system will wait
for the user to press the tone off button on the remote. Otherwise, the remote unit will
wait to receive a signal from the base unit stating that the user has pressed the button on
the base unit. The signal needed to turn off the remote unit from the base unit is
0000000001b. When the unit receives this from the base unit, the output latch will be
reset and TTL_out[1] will stop. The system will then wait for the next transmission to
occur, as shown in figure 13. The written VHDL code is shown in Appendix A-II.

Figure 13
VHDL Simulation Output Of The Remote Units

14

Results

All components of this project that were implemented worked successfully. Due
to time constraints, the save mode, load mode, and transceivers were not implemented.
The base unit displayed the main menu and allowed the user to select the alert menu
option. In this menu, the user has the ability to scroll through a list of saved items, select
an item to be alerted, or go back to the main menu. When an item is selected, the EMAC
inverts the ID code and then correctly packs it for transmission. Due to the ID code
inversion, the preset values of the remote units will have to be inverted so that the
compare circuitry will match the transmitted ID code. For example: if the ID code is
11111111b, the output of the serial port will be 00000000b. The output of the serial port
for an ID code of 37h is shown in figure 14. The start bit is the low bit on the far right
and the stop bit is the high bit on the left of the figure. Figure 14 shows how the onboard
UART of the microcontroller inverts the signal. The actual signal is 00110111b (37h),
but the serial port outputs 11001000b (C8h). For this reason, the preset ID code for this
particular remote unit will be set to C8h.

The receiver successfully determines the start bit, eight data bits, and the stop bit
of the transmitted packed serial bit stream. When the correct ID is sent, the
corresponding remote unit produces the audible alert tone until the tone off button is
pressed on the remote unit. At this time, all other remote units remain silent.

Figure 14
Serial Port Output Of 37h

Conclusions

A necessary improvement for the actual production of this product is a power
saving mode for the remote units. This would be advantageous to the owner of the
product because it would increase the battery life of the remote unit. A second
improvement would be to implement the remote unit with a microprocessor. The

15

microprocessor would have code that would perform all of the VHDL functionality, in
addition to having its own embedded transmission modules, eliminating the need for
manually entering ID codes into the base station. A final improvement for the production
of this product would be finding cheaper transceiver chips, LED screens, and keypads so
that the price of the system would be less.

16

Appendix A
Software

I. Assembly Code For The Base Unit

Module #1: Setup

; The following "$" commands must be included in every module

$NOMOD51 ; Omit assembler predefined registers.
$INCLUDE(reg515.inc) ; Include 515/535 microcontroller definitions.

NAME SETUP ; Optional parameter; if no name is provided,
 ; the filename will be used by default.

EXTRN CODE (MAIN_LOOP,SERINIT)
EXTRN CODE (LCDINIT,KPD) ; Makes subroutine MAIN_LOOP in the
 ; main.a51 module available to module
 ; setup.a51 .

;***

ST_ADDR equ 8000h ; Set program starting address at 8000h.

CSEG AT ST_ADDR ; Places beginning of code at in a fixed memory
 ; location specified by ST_ADDR = 8000h.
 ; This is referred to as an
 ; "absolute code segment", and cannot be relocated.
BEGIN:
 LJMP START ; Jump to start of program.

ST_SEG SEGMENT CODE ; Reserve RAM space for 80535 initialization
 ; code segment, ST_SEG. Again, since this is a
 ; "generic segment", it is relocatable.

 RSEG ST_SEG ; Places the code segement containing
 ; START at this point in assembled code.

 ; The selected segment remains "active" until
 ; a different segment is specified.

 USING 0 ; Indicates to the assembler that register
 ; bank 0 will be used, but does not
 ; actually select register bank 0.

; Place code for initializations specific to the fundamental operation of the
; EMAC MicroPac 80535 microcontroller board here.

START:
 CLR PSW.4 ; Selects register bank 0.
 CLR PSW.3 ; PSW bits 3 and 4 dictate register bank.

 MOV SP,#60h ; Initialize stack pointer to 60h. Note that

; the stack pointer could be initialized
 ; to any value between 20h and 7Fh. However, the programmer must
 ; ensure (1) stack has enough space to expand adequately, and
 ; (2) does not overwrite user data.

 MOV IEN0,#0 ; Disable all interrupts.

 SETB P5.5 ; Activates the external reset line.
 CLR P5.5 ; De-activates the external reset line.

 SETB P5.0 ; Make A16 of 128K RAM; system can use only
 ; the high 128K of the RAM space.

17

 ; Note that A16 MUST BE SET, with no exceptions.

 CLR P5.2 ; Disable EEPROM by setting the EEPROM
 ; clock to its low level.

 CLR P5.1 ; Enable memory mapped input/output (MMIO)
 ; to enable the keypad and LCD panel.

; Add other initialization code here specific to the operation of interrupts,
; keypad, LCD, serial port, A/D, etc..

 SETB EAL ; Enable all interrupts
CALL SERINIT

 CALL LCDINIT ; initialize LCD display
 ; this is possible because subroutine LCDINIT
 ; has been made public and has been defined
 ; as external code in module lcd.a51

;CALL KPD
 MOV R0,#2Fh ; Clear a block of RAM (for example only).

CLR_RAM:
MOV @R0,#0
DEC R0

 CJNE R0,#1Fh,CLR_RAM

 LJMP MAIN_LOOP ; Transfer control to MAIN_LOOP code in
 ; module main.a51.

 END

Module #2: Main

; main.a51 (Module #2)
;
; The following "$" commands must be included in every module

$NOMOD51 ; Omit assembler predefined registers.
$INCLUDE(reg515.inc) ; Include 515/535 microcontroller definitions.

NAME MAIN ; Optional parameter; if no name is provided,
 ; the filename will be used by default.

PUBLIC MAIN_LOOP ; Lets other modules access this section of code
 ; from "public domain" utilizing the EXTRN command.

EXTRN CODE (LCDOUT, DISPMENU, KPD, ALERT, ALERTMENU)
;EXTRN CODE (LOAD, SAVE)
 ; Makes subroutines LCDINIT and LCDOUT in the
 ; lcd.a51 module available to module main.a51 .

;***

MAIN SEGMENT CODE ; Reserve RAM space for the generic code
 ; segment, MAIN. The name segment name is referred
 ; to by the following RSEG directive.

 RSEG MAIN ; Selects the MAIN code segement, and makes it
 ; "active" at this point in assembled code.
 ; The selected segment remains "active" until
 ; a different segment is specified.

 USING 0 ; Indicates to the assembler that register
 ; bank 0 will be used, but does not actually
 ; select register bank 0 .

; The module main.a51 should be used primarily to call subroutines in the
; various modules in the project, as opposed to incorporating detailed functions
; within module main.a51 (i.e., main.a51 should be relatively short).

18

MAIN_LOOP:

 CALL DISPMENU
 CALL KPD

 CJNE A,#31h,SV
 CALL ALERTMENU ;ALERT

SV:
 CJNE A,#32h,LD
 ;CALL SAVE
LD:
 ;CALL LOAD

 ;CALL LCDOUT ; The call to LCDOUT is possible because
 ; subroutine LCDOUT has been made public, and
 ; has been defined as external code in
 ; module lcd.a51 .

LOOP:
JMP LOOP ; Infinite loop.

 END

Module #3: LCD Output Code

$NOMOD51 ; omit assembler micro definitions
$Include(reg515.inc) ; define 515 micro

Name LCD

PUBLIC LCDOUT, LCDINIT
EXTRN CODE (KPD)

LCD_DRVSEGMENTCODE

 RSEG LCD_DRV ; switch to this code segment

USING 0 ; use register_bank 0

;***

; definitions

escflagequ psw.5 ; LCD equate
lcdcmd equ 28h ; value for P2 to select lcd command port

initdata:

 db 38h,08,01,06,0eh,80h,0

LCDOUT:
MOV R2,A ; SAVE CHAR IN R2
MOV P2,#LCDCMD ; POINT TO COMMAND PORT
jnb ESCflag,lcdnt5 ; skip if no ESC
clr escflag
sjmp reg0out ; write directly to lcd reg 0

lcdnt5:
ANL A,#11100000B ; SEE IF ANY OF UPPER 3 BITS SET
JNZ REG1OUT ; IF YES, PRINT IT
MOV A,R2 ; RESTORE CHAR
ANL A,#11111000B ; SEE IF CHAR IS < 7
JZ REG1OUT ; IF LESS, A=0 SO PRINT USER DEF CHAR 0-7

MOV A,R2 ; SEE IF CONTROL CHAR
CJNE A,#0DH,LCNT1 ; IF NOT CR, SKIP

19

MOVX A,@R1 ; READ COMMAND PORT TO FIND CURSOR POS
SETB ACC.7 ; SET BIT 7 FOR DDRAM ADDR
ANL A,#11100000B ; MOVE TO LEFT (ONLY VALID ON 2 LINE DISPL)
MOV R2,A
SJMP REG0OUT

LCNT1:
CJNE A,#0AH,LCNT2 ; IF NOT LF, SKIP
MOVX A,@R1 ; READ COMMAND PORT TO FIND CURSOR POS
CPL ACC.6 ; SWITCH LINE (ONLY VALID ON 2 LINE DISPL)
SETB ACC.7 ; SET BIT 7 FOR DDRAM ADDR
MOV R2,A
SJMP REG0OUT

LCNT2:
CJNE A,#1BH,LCNT3 ; IF NOT ESC, SKIP
setb ESCflag ; indicate ESC received
JMP LCDEXIT

LCNT3:
CJNE A,#1AH,LCNT4 ; EXIT IF NOT CLEAR SCREEN
MOV R2,#1 ; CLEAR COMMAND
SJMP REG0OUT

; OUTPUT THE CHAR IN R2 TO REG 1
REG1OUT:

MOVX A,@R1 ; READ LCD COMMAND PORT
JB ACC.7,REG1OUT ; LOOP IF BUSY FLAG SET
INC P2 ; POINT TO LCD DATA PORT
MOV A,R2 ; RESTORE CHAR
MOVX @R1,A ; OUTPUT IT

LCNT4:

JMP LCDEXIT

 ; OUTPUT THE CHAR IN R2 TO REG 0
REG0OUT:

MOVX A,@R1 ; READ LCD COMMAND PORT
JB ACC.7,REG0OUT ; LOOP IF BUSY FLAG SET
MOV A,R2 ; RESTORE CHAR
MOVX @R1,A ; OUTPUT IT

 JMP LCDEXIT

;
; LCDINIT: Init the LCD
;
LCDINIT:

clr ESCflag ; indicate no esc found
MOV P2,#LCDCMD ; POINT TO COMMAND PORT
LCALL DLAYA ; 5MS DELAY
LCALL DLAYA ; 5MS DELAY
LCALL DLAYA ; 5MS DELAY
LCALL DLAYA ; 5MS DELAY
MOV A,#30H
MOVX @R1,A ; OUT TO LCD COMMAND PORT
LCALL DLAYA ; 5MS DELAY
MOVX @R1,A ; OUT TO LCD COMMAND PORT
LCALL DLAYA ; 5MS DELAY
MOVX @R1,A ; OUT TO LCD COMMAND PORT

MOV DPTR,#INITDATA ; POINT TO INIT DATA
 ; the last command should take no more than 40 uS.
 mov b,#80 ; for timeout of 80*3 * (12/clock)

LCDINIT2:
movx a,@r1 ; read lcd command port

 jnb acc.7,LCDINIT1 ; exit if not busy
 djnz b,LCDINIT2 ; loop till timeout
 sjmp lcdexit ; exit if timeout

20

LCDINIT1:
MOVX A,@R1 ; READ LCD COMMAND PORT

 JB ACC.7,LCDINIT1 ; LOOP IF BUSY FLAG SET
 CLR A
 MOVC A,@A+DPTR ; GET BYTE FROM INIT TABLE
 JZ LCDEXIT ; EXIT IF 0
 INC DPTR ; POINT TO NEXT BYTE
 MOVX @R1,A ; OUTPUT BYTE
 SJMP LCDINIT1 ; LOOP

LCDEXIT:
RET

;
; MISCELLANEOUS DELAYS added to keep the LCD from scrolling
; when the buttons are held down

DLAYA:
PUSH ACC

 MOV A,#100
 AJMP DLAYA2

DLAYB:
PUSH ACC

 MOV A,#128
 AJMP DLAYA2

DLAYC:
PUSH ACC

 MOV A,#255
 AJMP DLAYA2

dlayd:
PUSH ACC

 MOV A,#8

DLAYA2:
 PUSH ACC
 MOV A,#0FFH
DLAYA1:
 MOV A,#0FFH
 DJNZ ACC,$; LEVEL 3 LOOP
 POP ACC
 DJNZ ACC,DLAYA2 ; LEVEL 1 LOOP

 POP ACC
RET

END

Module #4: Main Menu

;The following "$" commands must be included in every module

$NOMOD51 ; Omit assembler predefined registers.
$INCLUDE(reg515.inc) ; Include 515/535 microcontroller definitions.

NAME TOPMENU ; Optional parameter; if no name is provided,
 ; the filename will be used by default.

PUBLIC DISPMENU ; Lets other modules access this section of code
 ; from "public domain" utilizing the EXTRN command.

 ; Makes subroutines LCDINIT and LCDOUT in the

21

 ; lcd.a51 module available to module main.a51.

EXTRN CODE (LCDOUT)

;***

TOPMENU SEGMENT CODE ; Reserve RAM space for the generic code
 ; segment, TOPMENU. The name segment name is referred
 ; to by the following RSEG directive.

 RSEG TOPMENU ; Selects the MAIN code segement, and makes it
 ; "active" at this point in assembled code.
 ; The selected segment remains "active" until
 ; a different segment is specified.

 USING 0 ; Indicates to the assembler that register
 ; bank 0 will be used, but does not actually
 ; select register bank 0 .

; The module main.a51 should be used primarily to call subroutines in the
; various modules in the project, as opposed to incorporating detailed functions
; within module main.a51 (i.e., main.a51 should be relatively short).

DISPMENU:

 ;PUT MAIN MENU CODE HERE FOR DISPLAYING ALERT, SAVE, LOAD

 MOV DPTR,#LINE1 ; initialize pointer

DISPLOOP:

 CLR A
 MOVC A,@A+DPTR
 JZ NEXTLINE

 CALL LCDOUT
 INC DPTR
 SJMP DISPLOOP

LOOPEXIT:

RET

NEXTLINE:
 MOV DPTR,#LINE2

 SJMP DISPLOOP

LINE1:
 db "(1) Alert (2) Save (3) Load ",0

LINE2:
 RET

 END

Module #5: Keypad Code

;***
;
; KEYPAD subroutine: waits for key pressed and returns it in ACC.
; (MODULE #5)
;
;***
$NOMOD51 ; omit assembler micro definitions
$Include(reg515.inc) ; define 515 micro

Name KEYPAD
PUBLIC KPD

EXTRN CODE (LCDOUT)
KEYPAD SEGMENTCODE

22

 RSEG KEYPAD ; switch to this code segment

USING 0 ; use register_bank 0

; Dempsey Note:
; This code was provided by EMAC
; It is not an efficient way to use keypad
; Normally must do other main code processing
;
; local definitions

KEYSEL EQU 38H ; KEYPAD PORT

KPD:
JNB IE1,KPD ; LOOP TILL KEY PRESSED

 CLR IE1 ; clear for next transition

 PUSH DPH
 PUSH DPL ; SAVE DPTR
 MOV DPTR,#KEYTABL ; POINT TO TRANSLATE TABLE
 MOV P2,#KEYSEL ; POINT TO KEYPAD PORT
 MOVX A,@R1 ; GET KEY FROM PORT
 ANL A,#00011111B ; ONLY 5 BITS
 MOVC A,@A+DPTR ; TRANSLATE TO KEY FROM TABLE (ASCII)
 POP DPL
 POP DPH
 RET

KEYTABL: DB '123C456D789EA0BF'

 END

Module #6: Alert Mode Code

; ALERT MENU (MODULE #6)

$NOMOD51 ; omit assembler micro definitions
$Include(reg515.inc) ; define 515 micro

Name ALERT_MENU

PUBLIC ALERTMENU

EXTRN CODE (KPD,LCDOUT,ALERT,LCDINIT,MAIN_LOOP)

ALRT SEGMENTCODE

 RSEG ALRT ; switch to this code segment

USING 0 ; use register_bank 0

;**

ALERTMENU:

MOV A,#1AH ;CLEARS LCD SCREEN
CALL LCDOUT ;
MOV B,#4
CLR A
MOV DPTR,#ASCII ;MOVES DATA TABLE INTO DPTR
MOVC A,@A+DPTR ;MOVES DPTR INTO ACC
MOV R0,#15 ;MOVES 15 INTO REGISTER 0

ALERTMENU2:

JZ LOOPEXIT
CALL LCDOUT

23

INC DPTR ;INCREMENTS THE MEMORY LOCATION IN DPTR TO
;THE NEXT LETTER TO DISPLAY

MOVX A,@DPTR

ALERT_LOOP:

DJNZ R0,ALERTMENU2 ;LOOPS UNTIL R0 IS 0 IN ORDER TO DISPLAY ALL THE
;TEXT SAVED IN ACC

 MOV @R1,A ;STORE ID# IN R0
 CALL KPD

 DJNZ B,KPD_LOOP ;WHEN THE LAST ITEM IS REACHED (B=0)
CJNE A,#45H,RETURN ;DOUBLE CHECK KEYPAD FOR E BEFORE DISPLAYING

;EACH ITEM AGAIN
SJMP ENTER ;OTHERWISE WAIT FOR KEY

RETURN:

CJNE A,#42H,ALERTMENU ;DOUBLE CHECKS THE KEYPAD BEFORE RETURNING
 SJMP BACK ;TO THE TOP OF THE LIST (B = BACK TO MAIN MENU)

 ;WAIT FOR KEYPAD ENTRY, ENTER OR NEXT ITEM
 ;IF ENTER: ADD 1 TO A (PUSH A FIRST TO REOPEN SAVED VALUE)
 ;IF NEXT: ADD 2 TO A TO MOVE ONTO THE NEXT ITEM NAME

KPD_LOOP:

 CJNE A,#42H,COMMANDS ;B = BACK TO MAIN MENU
 SJMP BACK

BACK:
 ;IF B IS PRESSED, THE LCD WILL
 MOV A,#1AH ;CLEAR THE SCREEN AND
 CALL LCDOUT ;

JMP MAIN_LOOP ;DISPLAY THE MAIN MENU AGAIN

COMMANDS:

 CJNE A,#46H,ENTER ;F = NEXT
 SJMP NEXT

ENTER:

 CJNE A,#45H,WAIT ;E = ENTER

 MOV A,#0AH ;SKIPS TO THE NEXT LINE ON THE LCD
 CALL LCDOUT
 MOV DPTR,#TRANS ;MOVES "TRANSMITTING..." INTO DPTR
 MOV A,#0DH ;MOVES CURSOR TO BEGINNING OF LINE 2
 CALL LCDOUT

TRANSMITTING: ;THIS CODE DISPLAYS "Transmitting..."
 ;UNDER THE ITEM NAME WHEN THE ALERT

CLR A ;BUTTON IS PRESSED
MOVC A,@A+DPTR
JZ TRANSEXIT
CALL LCDOUT
INC DPTR
CALL TRANSMITTING ;LOOP UNTIL ALL LETTERS ARE DISPLAYED

 CALL ALERT
 MOV A,#1AH ;CLEAR LCD
 CALL LCDOUT ;

 JMP MAIN_LOOP ;AFTER TRANSMISSION, THE LCD WILL
 ;DIPLAY THE MAIN MENU AGAIN
TRANSEXIT:

RET

NEXT:

24

 MOV A,#1AH ;CLEARS LCD FOR NEXT
CALL LCDOUT ;ITEM TO BE DISPLAYED

 INC DPTR ;MOVES THE DPTR TO THE NEXT LINE ON THE ASCII
;TABLE

 MOVX A,@DPTR ;STORES THE NEXT LINE IN ACC
 MOV R0,#15
 JNZ ALERTMENU2
 SJMP ALERTMENU

WAIT:

 CALL KPD
 JMP KPD_LOOP

LOOPEXIT:

 RET

ASCII:

 ;PUT ASCII TABLE HERE
 ;first item name(in ASCII),ID#

;DB Ph,Hh,Oh,Nh,Eh,sph,sph,sph,sph,sph,sph,sph,sph,sph,sph,IDh
 ;second item
 ;db , , , , , , , , , , , , , , , ,ID2h

 db 50h,48h,4Fh,4Eh,45h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,33h ;PHONE
 db 52h,45h,4Dh,4Fh,54h,45h,20h,20h,20h,20h,20h,20h,20h,20h,20h,55h ;REMOTE
 db 4Bh,45h,59h,53h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,0FFh ;KEYS
 db 48h,45h,41h,44h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,39h ;HEAD

TRANS:

DB "Transmitting....",0 ;Displays "Transmitting...." when alert
 ;button is pressed

 END

Module #7: Serial Port Output Code

; The following "$" commands must be included in every module
$NOMOD51 ; Omit assembler predefined registers.
$INCLUDE(reg515.inc) ; Include 515/535 microcontroller definitions.

NAME SERIAL ; Optional parameter; if no name is provided,
 ; the filename will be used by default.

PUBLIC SERINIT, SEROUT, ALERT; Lets other modules access this section of code
 ; from "public domain" utilizing the EXTRN command.

EXTRN CODE (LCDOUT)
 ; Makes subroutines LCDINIT and LCDOUT in the
 ; lcd.a51 module available to module main.a51 .

MR1BDAT EQU 00010011B
MR2BDAT EQU 00000111B ;Set stop bit length = 1
 ;Put registers in memory spaces

ACR EQU 04H ;Auxiliary Control Register

MR1B EQU 08H ;Mode Register B (1-receiver 2-transmitter)
SRB EQU 09H ;Channel B Status Register
CSRB EQU 09H ;Clock Select Register B
CRB EQU 0AH ;Channel A Command Register
THRB EQU 0BH ;Tx holding register

25

;***

SERIAL SEGMENT CODE ; Reserve RAM space for the generic code
 ; segment, MAIN. The name segment name is referred
 ; to by the following RSEG directive.

 RSEG SERIAL ; Selects the MAIN code segement, and makes it
 ; "active" at this point in assembled code.
 ; The selected segment remains "active" until
 ; a different segment is specified.

 USING 0 ; Indicates to the assembler that register
 ; bank 0 will be used, but does not actually
 ; select register bank 0 .

SERINIT:

MOV A,#01010000B ;Do from this command, down to 00010000

COM_B_RESET:

MOV P2,#CRB
MOVX @R1,A
ADD A,#-16 ;Subtracts 1 from the upper nibble; loop until = 0000
 ;0101=Reset channel A interrupt

;0100=Reset error status. Clears channel A received break,
; parity error, and overrun error bits.
;0011=Reset transmitter.
;0010=Reset receiver.
;0001=Reset MR pointer. Points MR pointer to MR1.
;0000=No command, exit loop.

JNZ COM_B_RESET ;If the first 4 bits don't equal 0000 jump back to
COM_B_RESET.

COM_B_SETUP:

MOV P2,#MR1B ;Points Mode Register 1B to Port 2
MOV A,#MR1BDAT ;Initializes MR1B receiver first in order to
MOVX @R1,A ;initialize MR2B next for transmission.

MOV A,#MR2BDAT ;Stores mode register parameters in acc
MOVX @R1,A ;Move MR2BDAT into MR2B

MOV P2,#ACR ;
MOV A,#80H ;Points 80H into ACR in Port 2
MOVX @R1,A ;Baud Rate Generator Set Select = 1

 MOV P2,#CSRB ;Set BAUD rate to 1.8kHz
 MOV A,#01000100B
 MOVX @R1,A

MOV A,#00000101B ;Points data bits for CRB into Acc
MOV P2,#CRB ;Points CRB into Port 2
MOVX @R1,A ;Points data bits into CRB at Port 2
RET ;Enables the COM B - transmitter and reciever

ALERT:

 MOV B,#20 ;WILL TRANSMIT THE NUMBER OF TIMES OF THE
;NUMBER STORED IN B

SEROUT:

 MOV A,@R1
 ;POP ACC ;PUTS THE ID# INTO THE ACC

;MOV A,#37H ;Test data to be sent to the transmitter

26

SEROUTB:

MOV P2,#SRB
PUSH ACC ; SAVE CHAR for later use

SOUTB1:

MOVX A,@R1 ;Point external Port 2 to Acc
JNB ACC.2,SOUTB1 ;Loop until SRB-bit 2 (TXrdy) is ready to transmit
POP ACC
MOV P2,#THRB ;Send out the serial bit stored
MOVX @R1,A

DJNZ B,SEROUT
RET

END

II. VHDL Code For The Remote Unit

-- Re_enable has been commented out because it is not a necessary signal for the code.
-- The purpose of re_enable was to have a second reset so that rst_n could be a main reset
-- and re_enable could be a user reset.

library IEEE;
use IEEE.std_logic_1164.all;
use ieee.numeric_std.all;

entity shftreg is
port

(
clk,rin,enable : in std_logic;
rst_n : in std_logic;
TTL_out : out unsigned(1 downto 0)
--Q : buffer std_logic_vector(8 downto 0);

);
end shftreg;

architecture smy of shftreg is
signal IQ : std_logic_vector(8 downto 0);
signal TTL_out_w : unsigned(1 downto 0);
signal clk_w : unsigned(3 downto 0);
signal sampler : unsigned(3 downto 0);
signal test_start : unsigned(3 downto 0);
signal bit_counter : unsigned(3 downto 0);
signal latch_out : std_logic;
signal retest_start : std_logic;
signal sample : std_logic;
signal load : std_logic;
signal inc : std_logic;
signal start_bit : std_logic;
signal clr : std_logic;
signal check_compare : std_logic;
signal slow_clk : std_logic;

begin

27

-- Clock Generation Circuitry

process(rst_n,clk)
begin

if (rst_n = '0') then
clk_w <= (others => '0');

elsif rising_edge(clk) then -- produces a 16 times slower clock for the
clk_w <= clk_w + 1; -- shift register, compare, TTL output code

end if;
end process;
slow_clk <= clk_w(3);

-- Start Bit Detection

process(rst_n,clr,clk)
begin

if rst_n = '0' then
start_bit <= '1';

elsif rising_edge(clk) then
if (rin = '0') then -- latches start_bit low when input drops low

start_bit <= '0';

elsif (clr = '0') then -- resets latch when clr = 0
start_bit <= '1';

-- elsif (re_enable = '0') then
-- start_bit <= '1';

end if;
end if;

end process;

-- UART Circuitry

process(clk, rst_n)
begin

if (rst_n = '0') then
test_start <= (others => '0');
sampler <= "0001";
sample <= '0';
load <= '1';
inc <= '0';
bit_counter <= "0110"; -- set bit_counter to 5 to count all 10 bits
check_compare <= '0';
clr <= '1';
retest_start <= '1';

elsif rising_edge(clk) then

clr <= '1';

-- if (re_enable ='0') then
-- test_start <= (others => '0');
-- sampler <= "0001";
-- sample <= '0';

28

-- load <= '1';
-- inc <= '0';
-- bit_counter <= "0110";
-- check_compare <= '0';
-- clr <= '1';
-- retest_start <= '1';
-- end if;

if start_bit = '0' then
if (retest_start = '1') then

if (load = '1') then
test_start <= "1000";
load <= '0';

elsif (test_start = "1111" and rin = '0') then
sample <= '1';
retest_start <= '0';

elsif (test_start = "1111" and rin /= '0') then
--RESET the start bit latch above
clr <= '0';
load <= '1';

else
test_start <= test_start + 1;

end if;
end if;

if (sample = '1') then -- count 16 times then sample bit
sampler <= sampler + 1;

end if;

if (sampler = "0100") then -- limits check_compare clk period
check_compare <= '0';

end if;

if (sampler = "1111") then -- counts 9 bits
bit_counter <= bit_counter + 1;

end if;

if (bit_counter = "1111" and rin = '1') then
-- all bits have been counted and
-- stop bit = 1

check_compare <= '1'; -- allows for comparing in shift
-- register

-- RESETS
clr <= '0'; -- resets the start-bit latch
load <= '1'; -- resets test_start
sample <= '0'; -- stops sampler counting
retest_start <= '1'; -- activates the start-bit sampler
bit_counter <= "0110"; -- resets bit_counter

elsif (bit_counter = "1111" and rin /= '1') then
-- all bits have been counted
-- and stop-bit not = 1

-- RESETS -- same resets as above

29

clr <= '0';
load <= '1';
sample <= '0';
bit_counter <= "0110";
retest_start <= '1';

end if;
end if;

end if;
end process;

-- Shift Register Circuitry

process(slow_clk,rst_n)
begin
if rst_n = '0' then

IQ <= (others => '0');
elsif rising_edge(slow_clk) then

case enable is
when '0' => null;
when '1' => IQ <= IQ(7 downto 0) & rin; -- shifts the bits through

-- the register(MSB first)
when others => null;

end case;

-- if (re_enable = '0') then
-- IQ <= (others => '0'); -- resets register if re_enable = 0
-- end if;

end if;
Q <= IQ;

end process;

-- Latch Circuitry\Compare Circuitry

process(rst_n,slow_clk)
begin

if rst_n = '0' then
latch_out <= '0';

elsif rising_edge(slow_clk) then
-- if (re_enable = '0') then
-- latch_out <= '0'; -- resets latch if re_enable = 0

if (IQ = "000000001" and check_compare = '1') then
-- compares input to preset ID code

latch_out <= '1'; -- holds TTL output high until reset by user
elsif (IQ = “000000001” and check_compare = ‘1’) then

latch_out <= ‘0’; --turns audible tone off when user presses
--button on the base unit

end if;
end if;

end process;

-- TTL Output Generation Circuitry

30

process(rst_n, TTL_out_w, clk) is
begin

if(rst_n = '0') then
TTL_out_w <= (others => '0');

elsif rising_edge(clk) then

if(latch_out = '1') then
TTL_out_w <= TTL_out_w + 1; -- creates TTL output wave to

end if; -- speaker for tone generation
end if;

end process;

TTL_out <= TTL_out_w;

end smy;

31

Appendix B
Data Sheets and Pin Assignments

Transceiver Data Sheet

32

Transceiver Pin Assignments

33

CPLD Pin Assignments

MACH 4 64/32 Memory Cell Space (Size Constraints for the MACH 4)

34

Product Data Sheet

Dimensions L X W X H

Base Unit: 6” X 4” X 3”
Remote Unit .5” X .5” X .125”

Number of remote units: 8

Power Supply Min Typ Max Unit

Operating Voltage

Base Unit: 7 15 Vdc
Remote Unit: 2.7 3.3 13 Vdc

Current Consumption

Base Unit: 45 85 mA
Remote Unit: 10 13 29 mA

Power:

Base Unit: .315 1.3 W
Remote Unit: 27 43 377 mW

Operational Temp: 0 70 oC

The values on this data sheet were estimated due to the fact that nothing has
actually been built and tested in the lab yet. The dimensions for the base unit were based
off of the dimensions of a Micro Pac 8051 microcontroller board and an LCD screen.
The remote unit dimensions were based off another remote unit device that was found
during a patent search. The power supply ratings were based off of the microcontroller
board for the base unit and the receiver for the remote unit.

35

Appendix C
Product Manufacturing Pricing

Remote unit:

Processor: AT tiny 12L-4sc: 8-pin surface mount/ 4MHz/ in-system programmable --- $1.46

Receiver: RXM-433-LC-S-ND Surface mount 433MHz receiver --- $9.85

Speaker: P9902 TR-ND: 8.5mm x 8.5mm/ 92dB/ surface mount/ 2.5KHzà2.7KHz range --- $2.234

Custom-made Casing: Estimated at $1.50

Antenna: part of board.

Battery: P189-ND Panasonic CR2032: 3V/ 220mAh/ 20mm --- $0.21675

Battery Holder: BA2032 SM-Bulk-ND: Surface mount coin 20mm battery holder --- $0.35

Audible Alert Off Button: P8006S Momentary switch --- $0.099

PCB: $.65 / sq in. = 1 x 1 in. = $0.65

HCP = $16.36
LCP = .1*TPC = $1.82
TPC = HCP/.9 = $18.18

Base Unit:

Processor: ATMEL AT 90S1200-4YC --- $2.05

LCD: Vacuum fluorescent display/ 2x20 lines --- $4.95

Keypad: $2.00

Custom-made Casing: Estimated at: $2.5 - $3

Transmitter: TXM-433-LC-ND surface mount 433MHz transmitter --- $4.90

Power Supply: Diamond 35-6-500D: 6V/ 500mA --- $1.53/per unit

Antenna: $1

PCB 2 x 2 in * $0.65 = $2.60

HCP = $21.53
LCP = .1*TPC = $2.39
TPC = HCP/.9 = $23.92

Total cost of package: $96.64 (with 4 remote units)

This pice is very high due to the expensive transmitter, receiver, LCD, and
keypad. If the product were actually produced by a major company, an ASIC chip with a
transceiver built in would be used. This would lower the price of each remote and base
unit $10. A major company would also have better connections, so the LCD and keypad
would be found at a much cheaper price. I estimate that the cost of the total product
would be approximately $60 cheaper if a major production company were building it.

36

Appendix D
Other Works

Patent Number WO0217265:

A remote control locator system (10) that can be retro-fitted to any existing remote
control device in a straightforward manner. The remote control locator system (10)
comprises a sending unit (20) and a receiving unit (30, 130). The sending unit (20)
includes a transmitter residing (28) in a sending unit housing (26) and an activation
mechanism (25) coupled to the transmitter (28) to send a locator signal when the
activation mechanism (25) is activated by a user. The receiving unit (30, 130) includes a
receiver (46) residing in a receiving unit housing (38) to receive the locator signal and to
emit an audible sound when the receiver (46) receives the locator signal.

Sharper Image Item Finder: $50

Key Ringer Item Finder: $30

Standards

Code of Federal Regulations Par 15-Title 47: Radio Frequency Demodulation.

UART standards for packing and unpacking serial bit streams.

37

Appendix D
Schedule of Tasks

January
Week 4: Finish all assignments for EE 419 and 451.

February
Week 1: Begin hardware design for remote the remote units and work on

the web page .

Week 2: Begin simulation of hardware, review microcontroller code, and
work on the web page.

Week 3: Debug and test simulations and review microcontroller code.

Week 4: Finish all simulation and begin building in lab, review
microcontroller code, and work on web page.

March
Week 1: Build the hardware for the remote units and test.

Week 2: Continue testing of hardware and reviewing microcontroller
language.

Week 3: Finish testing the remote units and finish review of microcontroller
language.

Week 4: Begin writing the microcontroller software and work on the web
page.

April
Week 1: Write main menu and LCD software.

Week 2: Debug any problems with written software, and write, the modes
different modes of operation software.

Week 3: Debug all software and begin the implementation of the
combination of the hardware with the software.

Week 4: Test the software and hardware combination.

May
Week 1: Write the final project report and the oral presentation and finish

the web page.

38

Appendix E
References

1. Dempsey, Dr. Gary. EE 451 Lab Instructor. Illinois: Bradley, 2002.

2. Huggins, Dr. Brian. Senior Project Advisor. Illinois: Bradley, 2002-2003.

3. Key Ringer. www.keyringer.com

4. Lattice Semiconductor Corporation. www.latticesemiconductor.com, M4(LV) Data
 Sheets.

5. Philips Semiconductors. SC26C92 Dual Universal Asynchronous
 Receiver/Transmitter (DUART) Data Sheet. 1997.

6. Quatech. www.quatech.com, Asynchronous Serial Communication Overview.

7. Sánchez, José. Senior Project Advisor. Illinois: Bradley, 2003.

8. Sedra, Adel S., and Kenneth C. Smith. Microelectronic Circuits. New York: Oxford,
 1998.

9. Sharper Image. www.sharperimage.com, Item Finder.

