
Appendix A
Software

I. Assembly Code For The Base Unit

Module #1: Setup

; The following "$" commands must be included in every module

$NOMOD51 ; Omit assembler predefined registers.
$INCLUDE(reg515.inc) ; Include 515/535 microcontroller definitions.

NAME SETUP ; Optional parameter; if no name is provided,
 ; the filename will be used by default.

EXTRN CODE (MAIN_LOOP,SERINIT)
EXTRN CODE (LCDINIT,KPD) ; Makes subroutine MAIN_LOOP in the
 ; main.a51 module available to module
 ; setup.a51 .

;***

ST_ADDR equ 8000h ; Set program starting address at 8000h.

CSEG AT ST_ADDR ; Places beginning of code at in a fixed memory
 ; location specified by ST_ADDR = 8000h.
 ; This is referred to as an
 ; "absolute code segment", and cannot be relocated.
BEGIN:
 LJMP START ; Jump to start of program.

ST_SEG SEGMENT CODE ; Reserve RAM space for 80535 initialization
 ; code segment, ST_SEG. Again, since this is a
 ; "generic segment", it is relocatable.

 RSEG ST_SEG ; Places the code segement containing
 ; START at this point in assembled code.

 ; The selected segment remains "active" until
 ; a different segment is specified.

 USING 0 ; Indicates to the assembler that register
 ; bank 0 will be used, but does not
 ; actually select register bank 0.

; Place code for initializations specific to the fundamental operation of the
; EMAC MicroPac 80535 microcontroller board here.

START:
 CLR PSW.4 ; Selects register bank 0.
 CLR PSW.3 ; PSW bits 3 and 4 dictate register bank.

 MOV SP,#60h ; Initialize stack pointer to 60h. Note that

; the stack pointer could be initialized
 ; to any value between 20h and 7Fh. However, the programmer must
 ; ensure (1) stack has enough space to expand adequately, and
 ; (2) does not overwrite user data.

 MOV IEN0,#0 ; Disable all interrupts.

 SETB P5.5 ; Activates the external reset line.
 CLR P5.5 ; De-activates the external reset line.

 SETB P5.0 ; Make A16 of 128K RAM; system can use only
 ; the high 128K of the RAM space.

 ; Note that A16 MUST BE SET, with no exceptions.

 CLR P5.2 ; Disable EEPROM by setting the EEPROM
 ; clock to its low level.

 CLR P5.1 ; Enable memory mapped input/output (MMIO)
 ; to enable the keypad and LCD panel.

; Add other initialization code here specific to the operation of interrupts,
; keypad, LCD, serial port, A/D, etc..

 SETB EAL ; Enable all interrupts
CALL SERINIT

 CALL LCDINIT ; initialize LCD display
 ; this is possible because subroutine LCDINIT
 ; has been made public and has been defined
 ; as external code in module lcd.a51

;CALL KPD
 MOV R0,#2Fh ; Clear a block of RAM (for example only).

CLR_RAM:
MOV @R0,#0
DEC R0

 CJNE R0,#1Fh,CLR_RAM

 LJMP MAIN_LOOP ; Transfer control to MAIN_LOOP code in
 ; module main.a51.

 END

Module #2: Main

; main.a51 (Module #2)
;
; The following "$" commands must be included in every module

$NOMOD51 ; Omit assembler predefined registers.
$INCLUDE(reg515.inc) ; Include 515/535 microcontroller definitions.

NAME MAIN ; Optional parameter; if no name is provided,
 ; the filename will be used by default.

PUBLIC MAIN_LOOP ; Lets other modules access this section of code
 ; from "public domain" utilizing the EXTRN command.

EXTRN CODE (LCDOUT, DISPMENU, KPD, ALERT, ALERTMENU)
;EXTRN CODE (LOAD, SAVE)
 ; Makes subroutines LCDINIT and LCDOUT in the
 ; lcd.a51 module available to module main.a51 .

;***

MAIN SEGMENT CODE ; Reserve RAM space for the generic code
 ; segment, MAIN. The name segment name is referred
 ; to by the following RSEG directive.

 RSEG MAIN ; Selects the MAIN code segement, and makes it
 ; "active" at this point in assembled code.
 ; The selected segment remains "active" until
 ; a different segment is specified.

 USING 0 ; Indicates to the assembler that register
 ; bank 0 will be used, but does not actually
 ; select register bank 0 .

; The module main.a51 should be used primarily to call subroutines in the
; various modules in the project, as opposed to incorporating detailed functions
; within module main.a51 (i.e., main.a51 should be relatively short).

MAIN_LOOP:

 CALL DISPMENU
 CALL KPD

 CJNE A,#31h,SV
 CALL ALERTMENU ;ALERT

SV:
 CJNE A,#32h,LD
 ;CALL SAVE
LD:
 ;CALL LOAD

 ;CALL LCDOUT ; The call to LCDOUT is possible because
 ; subroutine LCDOUT has been made public, and
 ; has been defined as external code in
 ; module lcd.a51 .

LOOP:
JMP LOOP ; Infinite loop.

 END

Module #3: LCD Output Code

$NOMOD51 ; omit assembler micro definitions
$Include(reg515.inc) ; define 515 micro

Name LCD

PUBLIC LCDOUT, LCDINIT
EXTRN CODE (KPD)

LCD_DRVSEGMENTCODE

 RSEG LCD_DRV ; switch to this code segment

USING 0 ; use register_bank 0

;***

; definitions

escflagequ psw.5 ; LCD equate
lcdcmd equ 28h ; value for P2 to select lcd command port

initdata:

 db 38h,08,01,06,0eh,80h,0

LCDOUT:
MOV R2,A ; SAVE CHAR IN R2
MOV P2,#LCDCMD ; POINT TO COMMAND PORT
jnb ESCflag,lcdnt5 ; skip if no ESC
clr escflag
sjmp reg0out ; write directly to lcd reg 0

lcdnt5:
ANL A,#11100000B ; SEE IF ANY OF UPPER 3 BITS SET
JNZ REG1OUT ; IF YES, PRINT IT
MOV A,R2 ; RESTORE CHAR
ANL A,#11111000B ; SEE IF CHAR IS < 7
JZ REG1OUT ; IF LESS, A=0 SO PRINT USER DEF CHAR 0-7

MOV A,R2 ; SEE IF CONTROL CHAR
CJNE A,#0DH,LCNT1 ; IF NOT CR, SKIP

MOVX A,@R1 ; READ COMMAND PORT TO FIND CURSOR POS
SETB ACC.7 ; SET BIT 7 FOR DDRAM ADDR
ANL A,#11100000B ; MOVE TO LEFT (ONLY VALID ON 2 LINE DISPL)
MOV R2,A
SJMP REG0OUT

LCNT1:
CJNE A,#0AH,LCNT2 ; IF NOT LF, SKIP
MOVX A,@R1 ; READ COMMAND PORT TO FIND CURSOR POS
CPL ACC.6 ; SWITCH LINE (ONLY VALID ON 2 LINE DISPL)
SETB ACC.7 ; SET BIT 7 FOR DDRAM ADDR
MOV R2,A
SJMP REG0OUT

LCNT2:
CJNE A,#1BH,LCNT3 ; IF NOT ESC, SKIP
setb ESCflag ; indicate ESC received
JMP LCDEXIT

LCNT3:
CJNE A,#1AH,LCNT4 ; EXIT IF NOT CLEAR SCREEN
MOV R2,#1 ; CLEAR COMMAND
SJMP REG0OUT

; OUTPUT THE CHAR IN R2 TO REG 1
REG1OUT:

MOVX A,@R1 ; READ LCD COMMAND PORT
JB ACC.7,REG1OUT ; LOOP IF BUSY FLAG SET
INC P2 ; POINT TO LCD DATA PORT
MOV A,R2 ; RESTORE CHAR
MOVX @R1,A ; OUTPUT IT

LCNT4:

JMP LCDEXIT

 ; OUTPUT THE CHAR IN R2 TO REG 0
REG0OUT:

MOVX A,@R1 ; READ LCD COMMAND PORT
JB ACC.7,REG0OUT ; LOOP IF BUSY FLAG SET
MOV A,R2 ; RESTORE CHAR
MOVX @R1,A ; OUTPUT IT

 JMP LCDEXIT

;
; LCDINIT: Init the LCD
;
LCDINIT:

clr ESCflag ; indicate no esc found
MOV P2,#LCDCMD ; POINT TO COMMAND PORT
LCALL DLAYA ; 5MS DELAY
LCALL DLAYA ; 5MS DELAY
LCALL DLAYA ; 5MS DELAY
LCALL DLAYA ; 5MS DELAY
MOV A,#30H
MOVX @R1,A ; OUT TO LCD COMMAND PORT
LCALL DLAYA ; 5MS DELAY
MOVX @R1,A ; OUT TO LCD COMMAND PORT
LCALL DLAYA ; 5MS DELAY
MOVX @R1,A ; OUT TO LCD COMMAND PORT

MOV DPTR,#INITDATA ; POINT TO INIT DATA
 ; the last command should take no more than 40 uS.
 mov b,#80 ; for timeout of 80*3 * (12/clock)

LCDINIT2:
movx a,@r1 ; read lcd command port

 jnb acc.7,LCDINIT1 ; exit if not busy
 djnz b,LCDINIT2 ; loop till timeout
 sjmp lcdexit ; exit if timeout

LCDINIT1:
MOVX A,@R1 ; READ LCD COMMAND PORT

 JB ACC.7,LCDINIT1 ; LOOP IF BUSY FLAG SET
 CLR A
 MOVC A,@A+DPTR ; GET BYTE FROM INIT TABLE
 JZ LCDEXIT ; EXIT IF 0
 INC DPTR ; POINT TO NEXT BYTE
 MOVX @R1,A ; OUTPUT BYTE
 SJMP LCDINIT1 ; LOOP

LCDEXIT:
RET

;
; MISCELLANEOUS DELAYS added to keep the LCD from scrolling
; when the buttons are held down

DLAYA:
PUSH ACC

 MOV A,#100
 AJMP DLAYA2

DLAYB:
PUSH ACC

 MOV A,#128
 AJMP DLAYA2

DLAYC:
PUSH ACC

 MOV A,#255
 AJMP DLAYA2

dlayd:
PUSH ACC

 MOV A,#8

DLAYA2:
 PUSH ACC
 MOV A,#0FFH
DLAYA1:
 MOV A,#0FFH
 DJNZ ACC,$; LEVEL 3 LOOP
 POP ACC
 DJNZ ACC,DLAYA2 ; LEVEL 1 LOOP

 POP ACC
RET

END

Module #4: Main Menu

;The following "$" commands must be included in every module

$NOMOD51 ; Omit assembler predefined registers.
$INCLUDE(reg515.inc) ; Include 515/535 microcontroller definitions.

NAME TOPMENU ; Optional parameter; if no name is provided,
 ; the filename will be used by default.

PUBLIC DISPMENU ; Lets other modules access this section of code
 ; from "public domain" utilizing the EXTRN command.

 ; Makes subroutines LCDINIT and LCDOUT in the

 ; lcd.a51 module available to module main.a51.

EXTRN CODE (LCDOUT)

;***

TOPMENU SEGMENT CODE ; Reserve RAM space for the generic code
 ; segment, TOPMENU. The name segment name is referred
 ; to by the following RSEG directive.

 RSEG TOPMENU ; Selects the MAIN code segement, and makes it
 ; "active" at this point in assembled code.
 ; The selected segment remains "active" until
 ; a different segment is specified.

 USING 0 ; Indicates to the assembler that register
 ; bank 0 will be used, but does not actually
 ; select register bank 0 .

; The module main.a51 should be used primarily to call subroutines in the
; various modules in the project, as opposed to incorporating detailed functions
; within module main.a51 (i.e., main.a51 should be relatively short).

DISPMENU:

 ;PUT MAIN MENU CODE HERE FOR DISPLAYING ALERT, SAVE, LOAD

 MOV DPTR,#LINE1 ; initialize pointer

DISPLOOP:

 CLR A
 MOVC A,@A+DPTR
 JZ NEXTLINE

 CALL LCDOUT
 INC DPTR
 SJMP DISPLOOP

LOOPEXIT:

RET

NEXTLINE:
 MOV DPTR,#LINE2

 SJMP DISPLOOP

LINE1:
 db "(1) Alert (2) Save (3) Load ",0

LINE2:
 RET

 END

Module #5: Keypad Code

;***
;
; KEYPAD subroutine: waits for key pressed and returns it in ACC.
; (MODULE #5)
;
;***
$NOMOD51 ; omit assembler micro definitions
$Include(reg515.inc) ; define 515 micro

Name KEYPAD
PUBLIC KPD

EXTRN CODE (LCDOUT)
KEYPAD SEGMENTCODE

 RSEG KEYPAD ; switch to this code segment

USING 0 ; use register_bank 0

; Dempsey Note:
; This code was provided by EMAC
; It is not an efficient way to use keypad
; Normally must do other main code processing
;
; local definitions

KEYSEL EQU 38H ; KEYPAD PORT

KPD:
JNB IE1,KPD ; LOOP TILL KEY PRESSED

 CLR IE1 ; clear for next transition

 PUSH DPH
 PUSH DPL ; SAVE DPTR
 MOV DPTR,#KEYTABL ; POINT TO TRANSLATE TABLE
 MOV P2,#KEYSEL ; POINT TO KEYPAD PORT
 MOVX A,@R1 ; GET KEY FROM PORT
 ANL A,#00011111B ; ONLY 5 BITS
 MOVC A,@A+DPTR ; TRANSLATE TO KEY FROM TABLE (ASCII)
 POP DPL
 POP DPH
 RET

KEYTABL: DB '123C456D789EA0BF'

 END

Module #6: Alert Mode Code

; ALERT MENU (MODULE #6)

$NOMOD51 ; omit assembler micro definitions
$Include(reg515.inc) ; define 515 micro

Name ALERT_MENU

PUBLIC ALERTMENU

EXTRN CODE (KPD,LCDOUT,ALERT,LCDINIT,MAIN_LOOP)

ALRT SEGMENTCODE

 RSEG ALRT ; switch to this code segment

USING 0 ; use register_bank 0

;**

ALERTMENU:

MOV A,#1AH ;CLEARS LCD SCREEN
CALL LCDOUT ;
MOV B,#4
CLR A
MOV DPTR,#ASCII ;MOVES DATA TABLE INTO DPTR
MOVC A,@A+DPTR ;MOVES DPTR INTO ACC
MOV R0,#15 ;MOVES 15 INTO REGISTER 0

ALERTMENU2:

JZ LOOPEXIT
CALL LCDOUT

INC DPTR ;INCREMENTS THE MEMORY LOCATION IN DPTR TO
;THE NEXT LETTER TO DISPLAY

MOVX A,@DPTR

ALERT_LOOP:

DJNZ R0,ALERTMENU2 ;LOOPS UNTIL R0 IS 0 IN ORDER TO DISPLAY ALL THE
;TEXT SAVED IN ACC

 MOV @R1,A ;STORE ID# IN R0
 CALL KPD

 DJNZ B,KPD_LOOP ;WHEN THE LAST ITEM IS REACHED (B=0)
CJNE A,#45H,RETURN ;DOUBLE CHECK KEYPAD FOR E BEFORE DISPLAYING

;EACH ITEM AGAIN
SJMP ENTER ;OTHERWISE WAIT FOR KEY

RETURN:

CJNE A,#42H,ALERTMENU ;DOUBLE CHECKS THE KEYPAD BEFORE RETURNING
 SJMP BACK ;TO THE TOP OF THE LIST (B = BACK TO MAIN MENU)

 ;WAIT FOR KEYPAD ENTRY, ENTER OR NEXT ITEM
 ;IF ENTER: ADD 1 TO A (PUSH A FIRST TO REOPEN SAVED VALUE)
 ;IF NEXT: ADD 2 TO A TO MOVE ONTO THE NEXT ITEM NAME

KPD_LOOP:

 CJNE A,#42H,COMMANDS ;B = BACK TO MAIN MENU
 SJMP BACK

BACK:
 ;IF B IS PRESSED, THE LCD WILL
 MOV A,#1AH ;CLEAR THE SCREEN AND
 CALL LCDOUT ;

JMP MAIN_LOOP ;DISPLAY THE MAIN MENU AGAIN

COMMANDS:

 CJNE A,#46H,ENTER ;F = NEXT
 SJMP NEXT

ENTER:

 CJNE A,#45H,WAIT ;E = ENTER

 MOV A,#0AH ;SKIPS TO THE NEXT LINE ON THE LCD
 CALL LCDOUT
 MOV DPTR,#TRANS ;MOVES "TRANSMITTING..." INTO DPTR
 MOV A,#0DH ;MOVES CURSOR TO BEGINNING OF LINE 2
 CALL LCDOUT

TRANSMITTING: ;THIS CODE DISPLAYS "Transmitting..."
 ;UNDER THE ITEM NAME WHEN THE ALERT

CLR A ;BUTTON IS PRESSED
MOVC A,@A+DPTR
JZ TRANSEXIT
CALL LCDOUT
INC DPTR
CALL TRANSMITTING ;LOOP UNTIL ALL LETTERS ARE DISPLAYED

 CALL ALERT
 MOV A,#1AH ;CLEAR LCD
 CALL LCDOUT ;

 JMP MAIN_LOOP ;AFTER TRANSMISSION, THE LCD WILL
 ;DIPLAY THE MAIN MENU AGAIN
TRANSEXIT:

RET

NEXT:

 MOV A,#1AH ;CLEARS LCD FOR NEXT
CALL LCDOUT ;ITEM TO BE DISPLAYED

 INC DPTR ;MOVES THE DPTR TO THE NEXT LINE ON THE ASCII
;TABLE

 MOVX A,@DPTR ;STORES THE NEXT LINE IN ACC
 MOV R0,#15
 JNZ ALERTMENU2
 SJMP ALERTMENU

WAIT:

 CALL KPD
 JMP KPD_LOOP

LOOPEXIT:

 RET

ASCII:

 ;PUT ASCII TABLE HERE
 ;first item name(in ASCII),ID#

;DB Ph,Hh,Oh,Nh,Eh,sph,sph,sph,sph,sph,sph,sph,sph,sph,sph,IDh
 ;second item
 ;db , , , , , , , , , , , , , , , ,ID2h

 db 50h,48h,4Fh,4Eh,45h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,33h ;PHONE
 db 52h,45h,4Dh,4Fh,54h,45h,20h,20h,20h,20h,20h,20h,20h,20h,20h,55h ;REMOTE
 db 4Bh,45h,59h,53h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,0FFh ;KEYS
 db 48h,45h,41h,44h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,20h,39h ;HEAD

TRANS:

DB "Transmitting....",0 ;Displays "Transmitting...." when alert
 ;button is pressed

 END

Module #7: Serial Port Output Code

; The following "$" commands must be included in every module
$NOMOD51 ; Omit assembler predefined registers.
$INCLUDE(reg515.inc) ; Include 515/535 microcontroller definitions.

NAME SERIAL ; Optional parameter; if no name is provided,
 ; the filename will be used by default.

PUBLIC SERINIT, SEROUT, ALERT; Lets other modules access this section of code
 ; from "public domain" utilizing the EXTRN command.

EXTRN CODE (LCDOUT)
 ; Makes subroutines LCDINIT and LCDOUT in the
 ; lcd.a51 module available to module main.a51 .

MR1BDAT EQU 00010011B
MR2BDAT EQU 00000111B ;Set stop bit length = 1
 ;Put registers in memory spaces

ACR EQU 04H ;Auxiliary Control Register

MR1B EQU 08H ;Mode Register B (1-receiver 2-transmitter)
SRB EQU 09H ;Channel B Status Register
CSRB EQU 09H ;Clock Select Register B
CRB EQU 0AH ;Channel A Command Register
THRB EQU 0BH ;Tx holding register

;***

SERIAL SEGMENT CODE ; Reserve RAM space for the generic code
 ; segment, MAIN. The name segment name is referred
 ; to by the following RSEG directive.

 RSEG SERIAL ; Selects the MAIN code segement, and makes it
 ; "active" at this point in assembled code.
 ; The selected segment remains "active" until
 ; a different segment is specified.

 USING 0 ; Indicates to the assembler that register
 ; bank 0 will be used, but does not actually
 ; select register bank 0 .

SERINIT:

MOV A,#01010000B ;Do from this command, down to 00010000

COM_B_RESET:

MOV P2,#CRB
MOVX @R1,A
ADD A,#-16 ;Subtracts 1 from the upper nibble; loop until = 0000
 ;0101=Reset channel A interrupt

;0100=Reset error status. Clears channel A received break,
; parity error, and overrun error bits.
;0011=Reset transmitter.
;0010=Reset receiver.
;0001=Reset MR pointer. Points MR pointer to MR1.
;0000=No command, exit loop.

JNZ COM_B_RESET ;If the first 4 bits don't equal 0000 jump back to
COM_B_RESET.

COM_B_SETUP:

MOV P2,#MR1B ;Points Mode Register 1B to Port 2
MOV A,#MR1BDAT ;Initializes MR1B receiver first in order to
MOVX @R1,A ;initialize MR2B next for transmission.

MOV A,#MR2BDAT ;Stores mode register parameters in acc
MOVX @R1,A ;Move MR2BDAT into MR2B

MOV P2,#ACR ;
MOV A,#80H ;Points 80H into ACR in Port 2
MOVX @R1,A ;Baud Rate Generator Set Select = 1

 MOV P2,#CSRB ;Set BAUD rate to 1.8kHz
 MOV A,#01000100B
 MOVX @R1,A

MOV A,#00000101B ;Points data bits for CRB into Acc
MOV P2,#CRB ;Points CRB into Port 2
MOVX @R1,A ;Points data bits into CRB at Port 2
RET ;Enables the COM B - transmitter and reciever

ALERT:

 MOV B,#20 ;WILL TRANSMIT THE NUMBER OF TIMES OF THE
;NUMBER STORED IN B

SEROUT:

 MOV A,@R1
 ;POP ACC ;PUTS THE ID# INTO THE ACC

;MOV A,#37H ;Test data to be sent to the transmitter

SEROUTB:

MOV P2,#SRB
PUSH ACC ; SAVE CHAR for later use

SOUTB1:

MOVX A,@R1 ;Point external Port 2 to Acc
JNB ACC.2,SOUTB1 ;Loop until SRB-bit 2 (TXrdy) is ready to transmit
POP ACC
MOV P2,#THRB ;Send out the serial bit stored
MOVX @R1,A

DJNZ B,SEROUT
RET

END

II. VHDL Code For The Remote Unit

-- Re_enable has been commented out because it is not a necessary signal for the code.
-- The purpose of re_enable was to have a second reset so that rst_n could be a main reset
-- and re_enable could be a user reset.

library IEEE;
use IEEE.std_logic_1164.all;
use ieee.numeric_std.all;

entity shftreg is
port

(
clk,rin,enable : in std_logic; -- 2KHz clk input
rst_n : in std_logic;
TTL_out : out unsigned(1 downto 0)
--Q : buffer std_logic_vector(8 downto 0);

);
end shftreg;

architecture smy of shftreg is
signal IQ : std_logic_vector(8 downto 0);
signal TTL_out_w : unsigned(1 downto 0);
signal clk_w : unsigned(3 downto 0);
signal sampler : unsigned(3 downto 0);
signal test_start : unsigned(3 downto 0);
signal bit_counter : unsigned(3 downto 0);
signal latch_out : std_logic;
signal retest_start : std_logic;
signal sample : std_logic;
signal load : std_logic;
signal inc : std_logic;
signal start_bit : std_logic;
signal clr : std_logic;
signal check_compare : std_logic;
signal slow_clk : std_logic;

begin

-- Clock Generation Circuitry

process(rst_n,clk)
begin

if (rst_n = '0') then
clk_w <= (others => '0');

elsif rising_edge(clk) then -- produces a 16 times slower clock for the
clk_w <= clk_w + 1; -- shift register, compare, TTL output code

end if;
end process;
slow_clk <= clk_w(3);

-- Start Bit Detection

process(rst_n,clr,clk)
begin

if rst_n = '0' then
start_bit <= '1';

elsif rising_edge(clk) then
if (rin = '0') then -- latches start_bit low when input drops low

start_bit <= '0';

elsif (clr = '0') then -- resets latch when clr = 0
start_bit <= '1';

-- elsif (re_enable = '0') then
-- start_bit <= '1';

end if;
end if;

end process;

-- UART Circuitry

process(clk, rst_n)
begin

if (rst_n = '0') then
test_start <= (others => '0');
sampler <= "0001";
sample <= '0';
load <= '1';
inc <= '0';
bit_counter <= "0110"; -- set bit_counter to 5 to count all 10 bits
check_compare <= '0';
clr <= '1';
retest_start <= '1';

elsif rising_edge(clk) then

clr <= '1';

-- if (re_enable ='0') then
-- test_start <= (others => '0');
-- sampler <= "0001";
-- sample <= '0';

-- load <= '1';
-- inc <= '0';
-- bit_counter <= "0110";
-- check_compare <= '0';
-- clr <= '1';
-- retest_start <= '1';
-- end if;

if start_bit = '0' then
if (retest_start = '1') then

if (load = '1') then
test_start <= "1000";
load <= '0';

elsif (test_start = "1111" and rin = '0') then
sample <= '1';
retest_start <= '0';

elsif (test_start = "1111" and rin /= '0') then
--RESET the start bit latch above
clr <= '0';
load <= '1';

else
test_start <= test_start + 1;

end if;
end if;

if (sample = '1') then -- count 16 times then sample bit
sampler <= sampler + 1;

end if;

if (sampler = "0100") then -- limits check_compare clk period
check_compare <= '0';

end if;

if (sampler = "1111") then -- counts 9 bits
bit_counter <= bit_counter + 1;

end if;

if (bit_counter = "1111" and rin = '1') then
-- all bits have been counted and
-- stop bit = 1

check_compare <= '1'; -- allows for comparing in shift
-- register

-- RESETS
clr <= '0'; -- resets the start-bit latch
load <= '1'; -- resets test_start
sample <= '0'; -- stops sampler counting
retest_start <= '1'; -- activates the start-bit sampler
bit_counter <= "0110"; -- resets bit_counter

elsif (bit_counter = "1111" and rin /= '1') then
-- all bits have been counted
-- and stop-bit not = 1

-- RESETS -- same resets as above

clr <= '0';
load <= '1';
sample <= '0';
bit_counter <= "0110";
retest_start <= '1';

end if;
end if;

end if;
end process;

-- Shift Register Circuitry

process(slow_clk,rst_n)
begin
if rst_n = '0' then

IQ <= (others => '0');
elsif rising_edge(slow_clk) then

case enable is
when '0' => null;
when '1' => IQ <= IQ(7 downto 0) & rin; -- shifts the bits through

-- the register(MSB first)
when others => null;

end case;

-- if (re_enable = '0') then
-- IQ <= (others => '0'); -- resets register if re_enable = 0
-- end if;

end if;
Q <= IQ;

end process;

-- Latch Circuitry\Compare Circuitry

process(rst_n,slow_clk)
begin

if rst_n = '0' then
latch_out <= '0';

elsif rising_edge(slow_clk) then
-- if (re_enable = '0') then
-- latch_out <= '0'; -- resets latch if re_enable = 0

if (IQ = "000000001" and check_compare = '1') then
-- compares input to preset ID code

latch_out <= '1'; -- holds TTL output high until reset by user
elsif (IQ = “000000001” and check_compare = ‘1’) then

latch_out <= ‘0’; --turns audible tone off when user presses
--button on the base unit

end if;
end if;

end process;

-- TTL Output Generation Circuitry

process(rst_n, TTL_out_w, clk) is
begin

if(rst_n = '0') then
TTL_out_w <= (others => '0');

elsif rising_edge(clk) then

if(latch_out = '1') then
TTL_out_w <= TTL_out_w + 1; -- creates TTL output wave to

end if; -- speaker for tone generation
end if;

end process;

TTL_out <= TTL_out_w;

end smy;

Appendix B
Data Sheets and Pin Assignments

Transceiver Data Sheet

Transceiver Pin Assignments

CPLD Pin Assignments

MACH 4 64/32 Memory Cell Space (Size Constraints for the MACH 4)

Product Data Sheet

Dimensions L X W X H

Base Unit: 6” X 4” X 3”
Remote Unit .5” X .5” X .125”

Number of remote units: 8

Power Supply Min Typ Max Unit

Operating Voltage

Base Unit: 7 15 Vdc
Remote Unit: 2.7 3.3 13 Vdc

Current Consumption

Base Unit: 45 85 mA
Remote Unit: 10 13 29 mA

Power:

Base Unit: .315 1.3 W
Remote Unit: 27 43 377 mW

Operational Temp: 0 70 oC

The values on this data sheet were estimated due to the fact that nothing has
actually been built and tested in the lab yet. The dimensions for the base unit were based
off of the dimensions of a Micro Pac 8051 microcontroller board and an LCD screen.
The remote unit dimensions were based off another remote unit device that was found
during a patent search. The power supply ratings were based off of the microcontroller
board for the base unit and the receiver for the remote unit.

Appendix C
Product Manufacturing Pricing

Remote unit:

Processor: AT tiny 12L-4sc: 8-pin surface mount/ 4MHz/ in-system programmable --- $1.46

Receiver: RXM-433-LC-S-ND Surface mount 433MHz receiver --- $9.85

Speaker: P9902 TR-ND: 8.5mm x 8.5mm/ 92dB/ surface mount/ 2.5KHzà2.7KHz range --- $2.234

Custom-made Casing: Estimated at $1.50

Antenna: part of board.

Battery: P189-ND Panasonic CR2032: 3V/ 220mAh/ 20mm --- $0.21675

Battery Holder: BA2032 SM-Bulk-ND: Surface mount coin 20mm battery holder --- $0.35

Audible Alert Off Button: P8006S Momentary switch --- $0.099

PCB: $.65 / sq in. = 1 x 1 in. = $0.65

HCP = $16.36
LCP = .1*TPC = $1.82
TPC = HCP/.9 = $18.18

Base Unit:

Processor: ATMEL AT 90S1200-4YC --- $2.05

LCD: Vacuum fluorescent display/ 2x20 lines --- $4.95

Keypad: $2.00

Custom-made Casing: Estimated at: $2.5 - $3

Transmitter: TXM-433-LC-ND surface mount 433MHz transmitter --- $4.90

Power Supply: Diamond 35-6-500D: 6V/ 500mA --- $1.53/per unit

Antenna: $1

PCB 2 x 2 in * $0.65 = $2.60

HCP = $21.53
LCP = .1*TPC = $2.39
TPC = HCP/.9 = $23.92

Total cost of package: $96.64 (with 4 remote units)

This pice is very high due to the expensive transmitter, receiver, LCD, and
keypad. If the product were actually produced by a major company, an ASIC chip with a
transceiver built in would be used. This would lower the price of each remote and base
unit $10. A major company would also have better connections, so the LCD and keypad
would be found at a much cheaper price. I estimate that the cost of the total product
would be approximately $60 cheaper if a major production company were building it.

Appendix D
Other Works

Patent Number WO0217265:

A remote control locator system (10) that can be retro-fitted to any existing remote
control device in a straightforward manner. The remote control locator system (10)
comprises a sending unit (20) and a receiving unit (30, 130). The sending unit (20)
includes a transmitter residing (28) in a sending unit housing (26) and an activation
mechanism (25) coupled to the transmitter (28) to send a locator signal when the
activation mechanism (25) is activated by a user. The receiving unit (30, 130) includes a
receiver (46) residing in a receiving unit housing (38) to receive the locator signal and to
emit an audible sound when the receiver (46) receives the locator signal.

Sharper Image Item Finder: $50

Key Ringer Item Finder: $30

Standards

Code of Federal Regulations Par 15-Title 47: Radio Frequency Demodulation.

UART standards for packing and unpacking serial bit streams.

Appendix D
Schedule of Tasks

January
Week 4: Finish all assignments for EE 419 and 451.

February
Week 1: Begin hardware design for remote the remote units and work on

the web page .

Week 2: Begin simulation of hardware, review microcontroller code, and
work on the web page.

Week 3: Debug and test simulations and review microcontroller code.

Week 4: Finish all simulation and begin building in lab, review
microcontroller code, and work on web page.

March
Week 1: Build the hardware for the remote units and test.

Week 2: Continue testing of hardware and reviewing microcontroller
language.

Week 3: Finish testing the remote units and finish review of microcontroller
language.

Week 4: Begin writing the microcontroller software and work on the web
page.

April
Week 1: Write main menu and LCD software.

Week 2: Debug any problems with written software, and write, the modes
different modes of operation software.

Week 3: Debug all software and begin the implementation of the
combination of the hardware with the software.

Week 4: Test the software and hardware combination.

May
Week 1: Write the final project report and the oral presentation and finish

the web page.

Appendix E
References

1. Dempsey, Dr. Gary. EE 451 Lab Instructor. Illinois: Bradley, 2002.

2. Huggins, Dr. Brian. Senior Project Advisor. Illinois: Bradley, 2002-2003.

3. Key Ringer. www.keyringer.com

4. Lattice Semiconductor Corporation. www.latticesemiconductor.com, M4(LV) Data
 Sheets.

5. Philips Semiconductors. SC26C92 Dual Universal Asynchronous
 Receiver/Transmitter (DUART) Data Sheet. 1997.

6. Quatech. www.quatech.com, Asynchronous Serial Communication Overview.

7. Sánchez, José. Senior Project Advisor. Illinois: Bradley, 2003.

8. Sedra, Adel S., and Kenneth C. Smith. Microelectronic Circuits. New York: Oxford,
 1998.

9. Sharper Image. www.sharperimage.com, Item Finder.

