
Synchronized Strobe for Video Camera

Project By:
Jeff Baskett and Jason Zubo

Faculty Advisor:
Dr. James Irwin

May 12, 2001

Bradley University
College of Engineering and Technology

Department of Electrical and Computer Engineering

http://cegt201.bradley.edu/projects/proj2001/vidstrob

ii

Abstract

The system controls a strobe that will be synchronized with the shutter on a

video camera. Based on the shutter, the strobe will fire during each frame of

video to freeze high-speed motion, preventing any blurring effects. Inputs

into the system are the synchronized video signal from the camera and the

intensity of the light read by the sensor. The output from the system is the

intensity setting of the light to the strobe. The recorded image will be

analyzed to determine the effectiveness of the system.

iii

Table of Contents

Abstract ii

Table of Contents iii

Table of Figures iv

I. Introduction 1

II. Functional Description 1

Objective of Research 1

Significance of Research 1

Design 2

Video Recorder 2
Sync Pulse Circuitry 3
Strobe 4
Sensor and Power Compensation 4
Microprocessor and DMX Interface 6
RS-485 Interface 7
Trouble Shooting and Modifications 8

III. Results 10

IV. Parts List 10

V. Schedule of Tasks 10

VI. Appendix A. EMAC programs 11

iv

Table of Figures

Figure 1 – Block Diagram 1

Figure 2 – 12 Pin Connector 2

Figure 3 – Video Signal 3

Figure 4 – Sync Pulse Circuit Schematic 3

Figure 5 – Sync Signal 4

Figure 6 – Sensor Circuit Schematic 5

Figure 7 – Sensor Circuit Output 5

Figure 8 – Window Detector Schematic 6

Figure 9 – Software Flowchart 6

Figure 10 – Microprocessor Output 7

Figure 11– Ground Block Schematic 8

Figure 12 – Strobe Firing Delay (10 ms) 9

Figure 13 – Strobe Firing Delay (2.5 ms) 9

Figure 14 – Strobe Firing Delay (< 1 ms) 9

Figure 15 – Dependency Chart 10

1

Introduction

Observing fast-moving objects using a video camera with a relatively slow shutter
speed produces frames of video containing blurred objects. The Mechanical Engineering
department at Bradley uses water tables to analyze fluids. Using a camera with a slow
shutter speed does not allow them to obtain precise data for the velocity vectors of the
fluids. By synchronizing a strobe light with the opening of the shutter, stop-motion
effects will allow for accurate analysis of high-speed fluids

Functional Description

Objective of Research
The Mechanical Engineering (ME) department currently uses a video camera to

analyze the motion of fluids in water table tests. Fluids moving at high speeds create
blurred images on individual video frames. This greatly reduces the accuracy of
measurements. The goal of this project is to eliminate these blurred images. The final
synchronized system will create a stop-motion effect in every frame of video. With this
stop-motion photography system, the ME department will be able to obtain more precise
data of high speed motion in the analysis of their fluid systems.

Significance of Research

This project will allow for more detailed analysis of high-speed motion. Its
applications are not limited to fluids research. This system could also be used in the
study of kinetics. The motion of a runner, high-speed projectiles, and other numerous
physics, athletic, and physical therapy applications could use this system to increase the
accuracy of experimental measurements. While this research is not revolutionary, the
systems applications are widespread and useful for many different disciplines.

Figure 1 Block Diagram

Reflected
Light

 Viewed
 Image

Sync Pulse
Circuitry

 Video
 Recorder Sensor

 Power
Compensation

Strobe

 Rs-485
InterfaceMicroprocessor

Image

2

Design

Video Recorder
The video recorder being used is the Sony XC-75 black and white module. The

VD (vertical sync pulse) signal from the video camera contains the information telling
when the shutter is going to be open. The VD signal from the camera was not functional,
so the video signal, which has the VD signal embedded in it was manipulated. This
video signal and its respective ground were obtained from an output from the 12-pin
connector on the rear of the camera. We also used the 12-pin connector for supplying the
necessary 12 volts dc to the camera. See Figure 2 for a diagram of the 12-pin connector.
The video signal from the camera can be seen in Figure 3.

Pin Number Function
1 Gnd
2 DC +12V
3 Video Output (Gnd)
4 Video Output
5 HD Output (Gnd)
6 HD Output
7 VD Output
8 Clock Output (Gnd)
9 Clock Output
10 Gnd
11 DC +12V
12 VD Output (Gnd)

Figure 2 12 Pin Connector

1

2

3

5
4

7

6

8

9

10

11 12

3

Figure 3 Video Signal

Sync Pulse Circuitry
The sync pulse circuitry will create the sync signal used trigger the firing of the

strobe. First, the vertical sync pulse had to be obtained from the composite video signal.
To obtain the sync pulse from the video signal seen above, we had to rectify and invert
the signal with a precision rectifier and we used a schmitt trigger to make the pulse
square. The schematic for the sync pulse circuitry can be seen in Figure 4. The final
sync signal can be seen in Figure 5.

Figure 4 Sync Pulse Circuitry Schematic

Shown in
Figure 5.

4

Figure 5 Sync signal

Strobe
Our design uses a single strobe to create a stop-motion effect for each frame of

video. The strobe that was used is the Snapshot DMX/D. It was used because it allowed
for control of rate, intensity, and duration. It was also capable of rates up to 60 flashes per
second, which is twice as fast as the video camera takes pictures.

Sensor and Power Compensation
The sensor circuit utilized an EG&G Vactec PhotoDiode with a current to voltage

converter. The sensor circuit gathers the reflected light from the image. The schematic
for the sensor circuitry can be seen in Figure 6. Theoretically, the output of the sensor
circuit is fed to the power compensation circuitry, which consists of a window detector.
The sensor circuit was mainly used for determining when the strobe was firing. A low
pass filter with a cutoff of 200 Hz was added to the sensor circuit to produce a smooth
curve. The window detector has two outputs, increment and decrement. These outputs
are inputs to the microprocessor and tell the software when to increment or decrement the
intensity of the strobe. Although the window detector was built and tested, it was never
used with the system. The output pulse from the sensor circuitry can be seen in Figure 7.
The schematic for the window detector can be seen in Figure 8.

5

Figure 6 Schematic of Sensor Circuitry

Figure 7 Output from Sensor Circuitry

6

Figure 8 Schematic for Window Detector

Microprocessor and DMX interface
The microprocessor is responsible for producing an appropriate DMX signal

when the sync signal triggers a software interrupt. The software has a preset value for the
intensity of the light. This value was found through experimentation with various
intensity levels to find one that produced the best results. Originally this value would be
incremented or decremented based on the output from the power compensation circuitry,
but we never implemented this function in the final design. A flowchart of the software
is shown in Figure 9.

Figure 9 Software Flow Chart

7

The software simply waits for an interrupt and outputs the appropriate signal to
the RS-485 interface. The main loop simply initializes the microprocessor and data then
waits in an infinite loop. The timing interrupt triggers the DMX output. When the timing
interrupt is triggered there is a delay added to output data at the next frame of picture
(1/30 s). The software would then read the light sensor data, change the intensity value
based on the sensor, and output the DMX signal. In the final design the delay and sensor
feedback are removed due to inaccuracies with the strobe light. The signal is sent out
using the external UART on the EMAC board. The DMX signal that is sent consists of a
22 bit break, a two bit mark after break, an 11 bit start code (low), one start bit, 8 data
bits, and two stop bits. In TTL logic a break is high and a mark after break is low, while
in RS-485 a break is low and a mark after break is high. This data must be sent at 250
kbaud. The signal from the microprocessor is shown in Figure 10. Channel 1 is the output
from the microprocessor and channel 2 is diode rectified and inverted for the RS-485
interface. The DMX standard uses low breaks and high mark after breaks. The RS-485
interface did not invert the signal so a TTL inverter was used.

Figure 10 Microprocessor output

The output shown actually contains 25 packets of data. This was due to a problem
with the strobe ignoring packets of data due to addressing problems.

RS-485 Interface
The RS-485 driver used was the MAX1480C. The DMX standard calls for

differential inputs of an RS-485 signal. The TTL level signal from the microprocessor

8

was converted to a differential signal with this RS-485 driver. We chose the MAX1480C
because of its ability to achieve a bit rate of 250 kbaud and for its full isolation. Because
of the abundant noise inherent with firing a strobe light we needed full isolation to keep
voltage spikes from reaching the EMAC board.

Trouble Shooting and Modifications
The first major problem encountered was in learning how to use the UART on the

microprocessor. The initialization of the UART is a very involved process that was
difficult to troubleshoot. Since the UART would not operate until initialized properly, it
was extremely difficult to find problems. The major difficulty was that different library
files were needed to operate the UART, after this problem was solved the UART
operated properly.

Another problem we encountered was the need to invert the DMX signal from the
microprocessor. We were able to fire the strobe without the inversion, but the strobe fired
at full speed(60Hz) and we were unable to synchronize it with the DMX signal. Dr.
Schertz found the problem and after inversion the strobe operated more consistently.

 There were also problems with the number of data packets that were sent to the
strobe light. The strobe light has a certain DMX address that determines which data
packets it will read. This is how DMX-512 can control 512 lights with one signal. If we
did not send a certain number of packets the strobe would ignore the data, and not flash.
We also found that the more packets of data we sent, the more stable the strobe fired. We
experimented with various amounts of packets until we were satisfied using 25 data
packets, each containing identical intensity information.

Grounding our electronics and the strobe was a small problem. We originally had
all grounds tied together to earth ground. This put the EMAC board in a precarious
position, possibly enabling voltage spikes to reach the board through ground. After
separating the electronics from earth ground and tying the power supply commons to the
EMAC ground we eliminated noise and the possibility for damaging the board. A block
schematic is seen in Figure 11.

Figure 11 Ground Block Schematic

Differential
DMX Signal

Common
Lines

EMAC
Ground

EMAC
BOARD

Electronics
Earth
Ground

Ground
Isolation

Strobe

Power
Supplies

9

An apparently insurmountable obstacle was encountered when we discovered the
inconsistency of the delay between when the strobe received the data and when it fired.
Based on the specifications for the camera, we knew that we had a 4 ms window in which
to fire the strobe. However, when we closely examined when the strobe was firing after
it received the data, we found that the delay before the strobe flash varied from 1 ms to
10 ms thus making it impossible for us to know when the strobe was going to fire. The
firing inconsistency would also prevent the synchronization of the strobe and the shutter.
The variance in when the strobe fires is seen in Figures 12, 13, 14. Channel 1 is the
DMX data stream and channel 2 is the output from the sensor circuit. After writing off
our project altogether, we decided to test the system. The strobe’s lack of precision
proved to be a minor problem. Since the strobe was still flashing once for every frame of
video we were still able to see stop-motion effects.

The intensity of the strobe proved to be another inconsistency. The output from
the sensor circuitry showed that the strobe’s intensity fluctuated in a periodic manner.
Figures 11, 12, and 13 also show the strobe intensity as being inconsistent. Channel 2 is
the output from the sensor circuit. It is clearly seen Figure 13 that the three peaks on the
sensor circuit output signal are all of different magnitudes. This rendered the power
compensation circuitry useless. Buttons manually controlled the increment and
decrement interrupts.

After setting up our expo display and attempting to run the system, we found that
noise was slowly building on the sync signal causing the microprocessor to output data
sporadically. In a moment of pure genius a low pass filter with a cutoff of 1 KHz was
added to the sync signal. Problem: solved.

Figure 11 10 ms delay Figure 12 2.5 ms delay Figure 13 < 1 ms delay

10

Results

The Synchronized Video Strobe was successfully demonstrated at the student
expo. We performed several experiments in which we recorded high-speed motion with
the synchronized strobe in operation and with room light. Experiments included a drop
of water, swinging a golf club, spinning a wheel, breaking a light bulb, spinning a
football, and spinning a frisbee. By viewing these experiments frame by frame, stop
motion effects were clearly evident using the synchronized video strobe. These images
and a short movie of the experiments can be viewed on the project web-site under week
16 accomplishments (http://cegt201.bradley.edu/projects/proj2001/vidstrob/). In the
experiments with room lighting, images that were clear and precise with the strobe were
blurry. The system would be very beneficial for obtaining precise data in an experiment
involving high-speed motion.

Although the system proved useless to the ME department, a Caterpillar engineer
has expressed interest in using the system for analyzing AC generators.

Parts List

• Strobe – American DJ Snap Shot DMX/D
• Video Camera - Sony XC-75
• RS-485 Interface - MAX1480C
• Sensor - EG&G Vactec PhotoDiode
• EMAC Evaluation Board

Schedule of Tasks

At the beginning of the semester we set up the dependency chart seen in Figure
15. We were fairly consistent with our schedule and we completed the project in time for
the expo.

11

Figure 15 Dependency Chart

12

Appendix A. EMAC programs

Final Program
;**************************************
;Synchronized Video Strobe interrupt driven DMX controller
;Senior Project
;Jason Zubo and Jeff Baskett
;Advisor: Dr. Irwin
;**************************************

;**************************************
;
; Initialization Code
;**************************************
;$NOMOD51 ; disable predefined 8051 registers
;$INCLUDE(reg515.inc)
$include(mod515.inc)
START equ 8000h

;***
;Jump table for interrupts

org start + 4Bh ;EX2 interrupt (timing)
ljmp timing

 org start + 53H ;EX3 interrupt (increment)

 ljmp increment

 org start + 5Bh ;EX4 interrupt (decrement)
 ljmp decrement

org START + 100h
jmp setup
;UART initialization

MR0ADAT EQU 00000001B ;extend baudrate 1
MR1ADAT EQU 00010011B ;no RTS, Rx int on RxRDY, char mode, no parity, 8 data
MR2ADAT EQU 00001111B ;normal, no TxRTS, no CTS, 2 stop bit
MR1BDAT EQU 00010011B ;no RTS, Tx int on RxRDY, char mode, no parity, 8 data
MR2BDAT EQU 00001111B ;normal, no TxRTS, no CTS, 2 stop bit

MR0A EQU 00H
MR1A EQU 00H ;Mode register (MR1A,MR2A) (rd/wr)
CSRA EQU 01H ;Clock select register A (wr)
SRA EQU 01H ;Status Register A
CRA EQU 02H ;Command Register A (wr)
THRA EQU 03H ;Tx holding register
ACR EQU 04H ;Auxiliary Control Register (wr)
MR1B EQU 08H ;Mode Register B
CSRB EQU 09H ;Clock Register B
SRB EQU 09H ;Status Register B
CRB EQU 0AH ;Command Register B
THRB EQU 0BH ;Tx holding Register
UARTIN EQU 0dh
IPCR EQU 04H
setup:

mov IEN0,#90h ;IENO (A8h) is interrupt enable 0.
;Bit7 = 1 = global interrupt enabled.
;Bit4 = 1 = 80C535 serial COM0
;interrupt enabled.

mov IEN1,#00h ;Disable all individual interrupts.
;IEN1 (B8h) is interrupt enable 1.

mov SP,#2Fh ;Initialize stack pointer.
;
;Initializations specific to
;the 80C535

 setb p5.5 ;reset
clr p5.5
setb P5.0 ;Make bit A16 of 128K Ram "high".
clr P5.2 ;Disable EEPROM.

;
;Note port P5.1 = 1 is required to write to D/A converter

13

;since the D/A converter is included in the MMIO (Memory Mapped I/O).
;

clr P5.1 ;Enable MMIO (memory mapped IO).
setb EAL ;Enable interrupts
setb EX2 ;Enable timing interrupt(#2)
setb EX3 ;Enable increment interrupt
setb EX4 ;enable decrement interrupt
setb I2FR ;set interrupt 2 (timing) to positive edge triggered
setb I3FR ;set increment interrupt to positive edge trigger

MOV R0,#7FH ; clear 128 bytes of RAM

CLR_RAM:

 MOV @R0,#0
 DJNZ R0,clr_ram

 mov a, #01010000B ;reset ports
CRINIT:

 MOV P2,#CRA
 MOVX @R1,A
 MOV P2,#CRB
 MOV @R1,A
 ADD A,#-16
 JNZ CRINIT ;Subtract 1 from uper nibble until loop is zero

 mov a, #10110000B ;set MR to zero
 mov P2, #CRA
 movx @R1, a

 mov P2,#MR0A
 mov a,#00000001B
 movx @R1,a

 MOV P2,#MR1A ;Setup protocol for PORT A
 MOV A,#MR1ADAT
 MOVX @R1,A
 MOV A,#MR2ADAT
 MOVX @R1,A

 MOV P2,#MR1B ;Setup protocol for PORT B
 MOV A,#MR1BDAT
 MOVX @R1,A
 MOV A,#MR2BDAT
 MOVX @R1,A

 MOV P2,#ACR ;select baud rate
 MOV A,#00H
 MOVX @R1,A ;select set 1 of baud rates
 MOV P2,#CSRA
 MOV A,#11001100B
 MOVX @R1,A ;Rx and Tx at 9600 for A
 MOV P2,#CSRB
 MOVX @R1,A ;Rx and Tx at 9600 for B
 MOV P2,#CRA
 MOV A,#00000101B ;Enable Txer and Rxer
 MOV @R1,A
 MOV P2,#CRB
 MOVX @R1,A ;same for B
 mov 8400h, #0011101000111010B ;intensity initialization

;
;End 80C535 memory and I/O initialization.
;

 main :

 cpl p4.7
 sjmp main

14

timing:
 clr EAL ;disable all interrupts
 cpl p4.1
 nop
 jb p4.1, exit

mov a, #01100000B ;start break
 mov P2, #CRB
 movx @R1, a

 mov R5, #0001H
 wait2:

mov R6, #0047h
wait1:

djnz R6, wait1
 djnz R5, wait2 ;88us wait

mov a, #01110000B ;stop break (mark after break)
 mov P2, #CRB
 movx @R1, a

mov R6, #000Fh
wait3:

djnz R6, wait3

mov a, #01100000B ;start code
 mov P2, #CRB
 movx @R1, a

 mov R5, #0001H
 wait6:

mov R6, #015h
wait5:

djnz R6, wait5
 djnz R5, wait6

mov a, #01110000B ;stop break (mark after break)
 mov P2, #CRB
 movx @R1, a

 mov a, 8400h
 mov R6, #025h

SEROUTB:
mov P2, #SRB
push acc ;save char

intensity_out:

 movx a, @R1
 jnb acc.2, intensity_out ;loop till ready
 pop acc

mov P2, #THRB ;output intensity
movx @R1, a
nop

 djnz R6, seroutB

exit:
 setb EAL
reti

increment:
clr EAL ;disable all interrupts
mov a, 8400h
inc a
mov 8400h, a
cpl p4.6
setb EAL

reti
decrement:

clr EAL ;disable all interrupts
mov a, 8400h
dec a
mov 8400h, a
cpl p4.5

15

setb EAL
reti

end

Jose’s sample UART code
;**
;Jose Sanchez and Matthew Rickert
;serial.a51 - Test program for EMAC using Serial Port
;Last Updated - March 30, 2000
;**

$INCLUDE(mod515.a51)

STARD EQU 8000H ; start address for program
 ORG stard
 JMP SETUP

MR1ADAT EQU 00010011B ;no RTS, Rx int on RxRDY, char mode, no parity, 8 data
MR2ADAT EQU 00000111B ;normal, no TxRTS, no CTS, 1 stop bit
MR1BDAT EQU 00010011B ;no RTS, Tx int on RxRDY, char mode, no parity, 8 data
MR2BDAT EQU 00000111B ;normal, no TxRTS, no CTS, 1 stop bit
;
MR1A EQU 00H ;Mode register (MR1A,MR2A) (rd/wr)
CSRA EQU 01H ;Clock select register A (wr)
SRA EQU 01H ;Status Register A
CRA EQU 02H ;Command Register A (wr)
THRA EQU 03H ;Tx holding register
ACR EQU 04H ;Auxiliary Control Register (wr)
MR1B EQU 08H ;Mode Register B
CSRB EQU 09H ;Clock Register B
SRB EQU 09H ;Status Register B
CRB EQU 0AH ;Command Register B
THRB EQU 0BH ;Tx holding Register

SETUP:

 MOV IEN0,#0 ; Disable all interrupts
 MOV SP,#70H ; Initialize STACK

 ; * 80535 initialization requirements
 SETB P5.5 ; do a reset
 CLR P5.5 ; bring it low
 SETB P5.0 ; make A16 of 128K Ram, high
 CLR P5.2 ; disable EEPROM
 clr P5.1 ; enable memory mapped IO
 ; end 80535 stuff

 MOV R0,#7FH ; clear 128 bytes of RAM

CLR_RAM:

 MOV @R0,#0
 DJNZ R0,clr_ram

INIT2681:

 MOV A,#01010000B ;Do Reset command for ports A and B.

CRINIT:

 MOV P2,#CRA
 MOVX @R1,A
 MOV P2,#CRB
 MOV @R1,A
 ADD A,#-16
 JNZ CRINIT ;Subtract 1 from uper nibble until loop is zero

 MOV P2,#MR1A ;Setup protocol for PORT A
 MOV A,#MR1ADAT
 MOVX @R1,A
 MOV A,#MR2ADAT
 MOVX @R1,A

 MOV P2,#MR1B ;Setup protocol for PORT B

16

 MOV A,#MR1BDAT
 MOVX @R1,A
 MOV A,#MR2BDAT
 MOVX @R1,A

 MOV P2,#ACR ;select baud rate
 MOV A,#80H
 MOVX @R1,A ;select set 2 of baud rates
 MOV P2,#CSRA
 MOV A,#10111011B
 MOVX @R1,A ;Rx and Tx at 9600 for A
 MOV P2,#CSRB
 MOVX @R1,A ;Rx and Tx at 9600 for B
 MOV P2,#CRA
 MOV A,#00000101B ;Enable Txer and Rxer
 MOV @R1,A
 MOV P2,#CRB
 MOVX @R1,A ;same for B

LOOP:

 MOV A,#33h

SEROUTB:

 MOV P2,#SRB
 PUSH ACC ; SAVE CHAR

SOUTB1:

 MOVX A,@R1
 JNB ACC.2,SOUTB1 ; LOOP TILL TXrdy
 POP ACC
 MOV P2,#THRB ; SEND IT OUT
 MOVX @R1,A

END

Mod515.inc

; 80515 MOD FILE
; REV. 1.1 Feb 24, 2000

$SAVE
$NOLIST

IEN0 DATA 0A8H ;INTERRUPT ENABLE REGISTER 0
IP0 DATA 0A9H ;INTERRUPT PRIORITY REGISTER 0
IEN1 DATA 0B8H ;INTERRUPT ENABLE REGISTER 1
IP1 DATA 0B9H ;INTERRUPT PRIORITY REGISTER 1
IRCON DATA 0C0H ;INTERRUPT REQUEST CONTROL
CCEN DATA 0C1H ;COMPARE/CAPTURE ENABLE
CCL1 DATA 0C2H ;COMPARE/CAPTURE REGISTER 1 - LOW BYTE
CCH1 DATA 0C3H ;COMPARE/CAPTURE REGISTER 1 - HIGH BYTE
CCL2 DATA 0C4H ;COMPARE/CAPTURE REGISTER 2 - LOW BYTE
CCH2 DATA 0C5H ;COMPARE/CAPTURE REGISTER 2 - HIGH BYTE
CCL3 DATA 0C6H ;COMPARE/CAPTURE REGISTER 3 - LOW BYTE
CCH3 DATA 0C7H ;COMPARE/CAPTURE REGISTER 3 - HIGH BYTE
T2CON DATA 0C8H ;TIMER 2 CONTROL
CRCL DATA 0CAH ;COMPARE/RELOAD/CAPTURE - LOW BYTE
CRCH DATA 0CBH ;COMPARE/RELOAD/CAPTURE - HIGH BYTE
TL2 DATA 0CCH ;TIMER 2 - LOW BYTE
TH2 DATA 0CDH ;TIMER 2 - HIGH BYTE
ADCON DATA 0D8H ;A/D CONVERTER CONTROL
ADDAT DATA 0D9H ;A/D CONVERTER DATA
DAPR DATA 0DAH ;D/A CONVERTER PROGRAM REGISTER
P4 DATA 0E8H ;PORT 4
P5 DATA 0F8H ;PORT 5
INT3 BIT 090H ;P1.0 - EXTERNAL INTERRUPT 3/CAPTURE 0/COMPARE 0
INT4 BIT 091H ;P1.1 - EXTERNAL INTERRUPT 4/CAPTURE 1/COMPARE 1
INT5 BIT 092H ;P1.2 - EXTERNAL INTERRUPT 5/CAPTURE 2/COMPARE 2

17

INT6 BIT 093H ;P1.3 - EXTERNAL INTERRUPT 6/CAPTURE 3/COMPARE 3
INT2 BIT 094H ;P1.4 - EXTERNAL INTERRUPT 2
T2EX BIT 095H ;P1.5 - TIMER 2 EXTERNAL RELOAD TRIGGER INPUT
CLKOUT BIT 096H ;P1.6 - SYSTEM CLOCK OUTPUT
T2 BIT 097H ;P1.7 - TIMER 2 INPUT
ET2 BIT 0ADH ;IEN0.5 - TIMER 2 INTERRUPT ENABLE
WDT BIT 0AEH ;IEN0.6 - WATCHDOG TIMER RESET
EAL BIT 0AFH ;IEN0.7 - GLOBAL INTERRUPT ENABLE
EADC BIT 0B8H ;IEN1.0 - A/D CONVERTER INTERRUPT ENABLE
EX2 BIT 0B9H ;IEN1.1 - EXTERNAL INTERRUPT 2 ENABLE
EX3 BIT 0BAH ;IEN1.2 - EXTERNAL INTERRUPT 3/CAPTURE/COMPARE INTERRUPT 0 ENABLE
EX4 BIT 0BBH ;IEN1.3 - EXTERNAL INTERRUPT 4/CAPTURE/COMPARE INTERRUPT 1 ENABLE
EX5 BIT 0BCH ;IEN1.4 - EXTERNAL INTERRUPT 5/CAPTURE/COMPARE INTERRUPT 2 ENABLE
EX6 BIT 0BDH ;IEN1.5 - EXTERNAL INTERRUPT 6/CAPTURE/COMPARE INTERRUPT 3 ENABLE
SWDT BIT 0BEH ;IEN1.6 - WATCHDOG TIMER START
EXEN2 BIT 0BFH ;IEN1.7 - TIMER 2 EXTERNAL RELOAD INTERRUPT ENABLE
IADC BIT 0C0H ;IRCON.0 - A/D CONVERTER INTERRUPT REQUEST
IEX2 BIT 0C1H ;IRCON.1 - EXTERNAL INTERRUPT 2 EDGE FLAG
IEX3 BIT 0C2H ;IRCON.2 - EXTERNAL INTERRUPT 3 EDGE FLAG
IEX4 BIT 0C3H ;IRCON.3 - EXTERNAL INTERRUPT 4 EDGE FLAG
IEX5 BIT 0C4H ;IRCON.4 - EXTERNAL INTERRUPT 5 EDGE FLAG
IEX6 BIT 0C5H ;IRCON.5 - EXTERNAL INTERRUPT 6 EDGE FLAG
TF2 BIT 0C6H ;IRCON.6 - TIMER 2 OVERFLOW FLAG
EXF2 BIT 0C7H ;IRCON.7 - TIMER 2 EXTERNAL RELOAD FLAG
T2I0 BIT 0C8H ;T2CON.0 - TIMER 2 INPUT SELECT BIT 0
T2I1 BIT 0C9H ;T2CON.1 - TIMER 2 INPUT SELECT BIT 1
T2CM BIT 0CAH ;T2CON.2 - COMPARE MODE
T2R0 BIT 0CBH ;T2CON.3 - TIMER 2 RELOAD MODE SELECT BIT 0
T2R1 BIT 0CCH ;T2CON.4 - TIMER 2 RELOAD MODE SELECT BIT 1
I2FR BIT 0CDH ;T2CON.5 - EXTERNAL INTERRUPT 2 FALLING/RISING EDGE FLAG
I3FR BIT 0CEH ;T2CON.6 - EXTERNAL INTERRUPT 3 FALLING/RISING EDGE FLAG
T2PS BIT 0CFH ;T2CON.7 - PRESCALER SELECT BIT
F1 BIT 0D1H ;PSW.1 - FLAG 1
MX0 BIT 0D8H ;ADCON.0 - ANALOG INPUT CHANNEL SELECT BIT 0
MX1 BIT 0D9H ;ADCON.1 - ANALOG INPUT CHANNEL SELECT BIT 1
MX2 BIT 0DAH ;ADCON.2 - ANALOG INPUT CHANNEL SELECT BIT 2
ADM BIT 0DBH ;ADCON.3 - A/D CONVERSION MODE
BSY BIT 0DCH ;ADCON.4 - BUSY FLAG
CLK BIT 0DEH ;ADCON.6 - SYSTEM CLOCK ENABLE
BD BIT 0DFH ;ADCON.7 - BAUD RATE ENABLE
$RESTORE

