
Software Sega CD Simulator

by

Jeff Quinn

Submitted to:

Dr. Donald Schertz

EE 452 Senior Project

May 9, 2001

Table of Contents

Abstract Page 1
Objective Page 2
Inputs and Outputs Page 2
Software Modules Page 3
Module Descriptions Page 5
Conclusion Page 7

Abstract:

The project is a piece of software named “AGES.” It is the development of a
simulator of a Sega CD, a peripheral add-on to a Sega Genesis that includes a CD-drive, a
M68000, a custom VDP (video display processor) chip, a PCM (pulse code modulation)
sound chip, and additional RAM. It will be added to a set of already existing code that
simulates the Sega Genesis and another add-on, the Sega 32X.

Objective:

AGES is a learning project. Simulation of the Sega CD was chosen for the challenge it
presents. Despite four years of effort by numerous individuals, no Sega CD simulator has
been successfully written. This is primarily due to the lack of detailed information about
the CD unit. Furthermore, the system, even without the CD unit, is extraordinarily
complex. It has elements from older low-level-based and modern high-level-based
hardware design styles. This project is sufficiently difficult though not intractable, as
evidenced by the fact that AGES was the first software to successfully simulate the Sega
32X. This project is an indispensable learning experience in the areas of reverse
engineering, hardware architecture, programming, and good methodology.

AGES was written to run on a Windows machine. The interface with Windows has been
written in MFC/C++ but amounts to very little of the actual code. The majority of AGES
was written in optimized Pentium-MMX assembly. The design goal of AGES is
accuracy with optimum speed. This means that trade-offs between speed and memory
usage have favored speed. Trade-offs between executable size and start-up time have
favored executable size. Trade-offs between accuracy of emulation and speed have
favored accuracy.

The specifications set at the beginning of the project were as follows. The software must
be able to run 95% of Sega CD software perfectly, and the software must be able to run
full-speed on a Pentium II 450 Mhz, which is representative of today’s low-end PC
market.

Inputs and Outputs of the project:

The general inputs and outputs for AGES are listed below. Refer to Fig. 1 for a graphical
representation.

Inputs:
• Game control inputs
• Actual game CD
• One binary image of the Sega CD BIOS software

Outputs:
• Game visuals
• Game sounds/music

Fig. 1: AGES inputs and outputs.

The user can place a Sega CD game disc into the CD-drive of his/her computer,
after retrieving a binary image of the Sega CD BIOS software, and interact with the game
software in the same way that he/she would by using a real Sega CD machine. This
means that the picture is displayed in its entirety on the computer monitor (instead of
television), the sound is reproduced in its entirety via the computer’s sound card and
speakers (instead of television speakers), and the input is received via the keyboard or an
attached gaming device (joystick) at the user’s discretion instead of the gaming device
(joystick) native to the Sega CD machine. Aside from these slight differences, the
behavior of the software attempts to duplicate the Sega CD’s behavior exactly. One
notable exception is the speed of the drive. A real Sega CD’s drive was “single speed,”
however, the simulation software, where possible, utilizes the speed of the PC CD-drive
to provide faster performance (E.G. shorter “load times.”)

Software Modules of the project:

AGES is divided into four different blocks, the Sega Genesis Block, the Sega 32X
Block, the Sega CD Block, and the General Block. The first two blocks were written
prior to the beginning of the project and are beyond its scope. The General Block was
also previously written, but not beyond the project’s scope as it required additions to be
made to it to accommodate new functionality needed by the Sega CD Block. The
primary focus of the project was the Sega CD Block itself. Refer to Fig. 2 for an
illustration of the blocks. The dashes indicate what was previously completed and
beyond the scope of the project.

Fig. 2: AGES Block Diagram.

AGES is further broken down into two types of modules, “chip modules” and
“engine modules.” Each chip module is a subset of the simulation containing all code
pertaining to a single chip and a small amount of code that handles the interaction of said
chip with other chips. Engine modules handle interaction with a specific part of the PC
hardware. The first three blocks contain only chip modules. The General Block contains
only engine modules. AGES already has fully written code for all chips located in the
Sega Genesis and Sega 32X and, as previously stated, these are beyond the scope of the
project. AGES also has a complete set of fully written engine modules. This project is
concerned only with the chip modules of the Sega CD and adding code to the engine
modules as needed. No new engine modules were created. Refer to Fig. 3 for an
illustration of all the modules pertaining to the project and how they relate to each other.

Fig. 3: AGES modules in project scope.

Sega CD chip modules:

M68_EMU This module simulates the Motorola 68000 CPU chip. It is not
strictly a Sega CD module, but rather is a general module that is
instantiated twice, once as GEN_M68, and once as SCD_M68.
The SCD_M68 has three inputs and three outputs for accessing
memory. The inputs are data reads in by byte, word, and dword
sizes. The outputs are data writes in byte, word, and dword sizes.
Additionally, it has one input for IRQ level. This module has
already been written and debugged.

SCD This simulates the system registers of the Sega CD, and contains
basic driver information specific to the Sega CD. The inputs and
outputs of this module are the data stored in the registers. This
module is completed and debugged.

SCD_M68_MMU This simulates the memory map of the M68000 located in the Sega
CD. This module takes inputs and outputs from each other module
in the Sega CD block. This module is completed and debugged.

SCD_CDC This simulates the behavior CD controller in the Sega CD. The
controller is used for reading data from CD data tracks. This
module inputs and outputs the data in the sixteen 8-bit CDC
registers. Additionally, this module has an input from the

SCD_CDD. The input is a periodic “read” signal asserted when
the CDD is playing a data track to be decoded and error corrected.
This module is implemented and as far as is known, needs no
further work, though, it is always possible that in the future, a non-
working piece of software, which uses some previously unknown
unimplemented feature or quirk of this piece of hardware, may be
encountered.

SCD_CDD This simulates the behavior of the physical CD drive in the Sega
CD. The drive is used for activating the spindle motor, reading
TOC info, playing tracks, etc. Its inputs are data in the ten 4-bit
Transmit Command Registers. Its outputs are data in the ten 4-bit
Receive Status Registers and a periodic “read” signal (sent to the
SCD_CDC when a data track is being played). This module is
implemented and as far as is known, it needs no further work,
though, it is always possible that in the future, one may encounter a
non-working piece of software which uses some previously
unknown unimplemented feature or quirk of this piece of
hardware.

SCD_PCM This simulates the behavior of the PCM (sound) chip located in the
Sega CD. Its inputs and outputs are the data in the PCM registers.
This module is implemented, but not wholly debugged as the SND
engine additions are not completed (as of April 20, 2001).

SCD_VDP This simulates the behavior of the VDP (graphics) chip located in
the Sega CD. Its inputs and outputs are the data in the VDP
registers. This module is completed and debugged with the
exception of the “fullscreen” graphics feature, as a piece of
software that actually uses it has not yet found.

SCD_TMR This simulates all the timer chips located in the Sega CD. Its
inputs and outputs are the data in the timer registers and an IRQ
level. This module is completed and debugged.

Engine modules:
GFX This handles all interfacing with the host PC’s graphics hardware.

This module inputs raw1 graphics data from all VDP simulation
modules and converts it to a form useable by DirectX for
outputting to the monitor. The GFX module required additional
code to support the needs of the Sega CD simulation modules.
This work has been completed and debugged.

1 In whatever format is native to the chip delivering the data.

SND This handles all interfacing with the host PC’s sound hardware.
This module inputs raw2 sound data from all sound simulation
modules and converts it to a form useable by DirectX for
outputting to the soundcard and speakers. The SND module
required additional code to support the needs of the Sega CD
simulation modules. This work is not yet completed.

FIO This handles all interfacing with the host PC’s file/IO hardware
(E.G. image files off the harddrive or direct use of the CD drive).
It inputs raw3 file/IO data and converts it to a program-wide
consistent binary format for outputting to the various modules.
The FIO module required additional code to support the needs of
the Sega CD simulation modules. This work is completed and
debugged.

Conclusion:
As of the time of this report, the project is not completed nor were all

goals/specifications reached. The reproduction of the Sega CD PCM sound has not been
implemented and the “fullscreen” graphics have not been implemented. The program is
not able to run full-speed on a Pentium II 450 Mhz, though with a feature called “frame-
skipping”, it can give the appearance of operating at full-speed, with a negligible amount
of user-perceivable choppiness. The software is also not capable of meeting the 95%
compatibility figure. At present estimates, it can run about 70% of software perfectly,
and an additional 15% of software with reasonable accuracy, though glitches are present.

Naturally, the project will continue development even beyond the end of the
semester. Some possible additions are improved performance for the CD-ROM drive
code, improved efficiency and accuracy, and various presentational improvements over
the real machine such as bi-linear filtering for the graphics and stereo output for the
sound.

Though the project may seem to be frivolous at first impression, it most certainly
is not. Writing a simulator has provided a unique understanding of microprocessors and
machine architecture. The project was an excellent exercise in gaining valuable reverse
engineering experience. Finally, the project has provided the opportunity to develop
creative ways to optimize the performance of the simulator. These skills were given the
great deal of attention they so rarely receive and will be extremely valuable in future
endeavors.

2 In whatever format is native to the chip delivering the data.
3 In whatever format is native to the chip delivering the data.

