
Jeffrey Quinn

Software Sega CD Simluator

The project is a piece of software named “AGES.” It is the development of a
simulator of a Sega CD, a peripheral add-on to a Sega Genesis that includes a CD-drive, a
M68000, a custom VDP (video display processor) chip, a PCM (pulse code modulation)
sound chip, and additional RAM. It will be added to a set of already existing code that
simulates the Sega Genesis and another add-on, the Sega 32X.

Inputs and Outputs of the project:

The general inputs and outputs for AGES are listed below. Refer to Fig. 1 for a graphical
representation.

Inputs:
• Game control inputs
• Actual game CD
• One binary image of the Sega CD BIOS software

Outputs:
• Game visuals
• Game sounds/music

Fig. 1: AGES inputs and outputs.

Description:
The user will be able to place a Sega CD game disc into the CD-drive of his/her

computer, after retrieving a binary image of the Sega CD BIOS software, and interact
with the game software in the same way that he/she would by using a real Sega CD
machine. This means that the picture will be displayed in its entirety on the computer
monitor (instead of television), the sound will be reproduced in its entirety via the
computer’s sound card and speakers (instead of television speakers), and the input will be
received via the keyboard or an attached gaming device (joystick) at the user’s discretion
instead of the gaming device (joystick) native to the Sega CD machine. Aside from these
slight differences, the behavior of the software shall attempt to duplicate the behavior
exactly. One notable exception is the speed of the drive. A real Sega CD’s drive was
“single speed,” however, the simulation software will utilize the speed of the PC CD-
drive to provide faster performance (E.G. shorter “load times.”)

Software Modules of the project:

AGES is divided into four different blocks, the Sega Genesis Block, the Sega 32X
Block, the Sega CD Block, and the General Block. The first two blocks are written
already and are beyond the scope of the project. The General Block also has been
written, but is not beyond the project’s scope as it will require additions to be made to it
to accommodate new functionality needed by the Sega CD Block. The primary focus of
the project is the Sega CD Block itself. Refer to Fig. 2 for an illustration of the blocks.
The dashes indicate what is already completed and beyond the scope of the project.

Fig. 2: AGES Block Diagram.

AGES is further broken down into two types of modules, “chip modules” and
“engine modules.” Each chip module is a subset of the simulation containing all code
pertaining to a single chip and a small amount code that handles the interaction of said
chip with other chips. Engine modules handle interaction with a specific part of the PC
hardware. The first three blocks contain only chip modules. The General Block contains
only engine modules. AGES already has fully written code for all chips located in the
Sega Genesis and Sega 32X, and as previously stated, these are beyond the scope of the
project. AGES also has a complete set of fully written engine modules. This project is
concerned only with the chip modules of the Sega CD and adding code to the engine
modules as needed. No new engine modules will be created. Refer to Fig. 3 for an
illustration of the all modules pertaining to the project and how they relate to each other.

Fig. 3: AGES modules in project scope.

Sega CD chip modules:

M68_EMU This module simulates the Motorola 68000 CPU chip. It is not
strictly a Sega CD module, but rather is a general module that is
instantiated twice, once as GEN_M68, and once as SCD_M68. It
has three inputs and three outputs for accessing memory. The
inputs are read data in byte, word, and dword sizes. The outputs
are write data in byte, word, and dword sizes. Additionally, it has
one input for IRQ level. This module has already been written and
debugged.

SCD This simulates the system registers of the Sega CD, and contains
basic driver information specific to the Sega CD. The inputs and
outputs of this module are the data stored in the registers. This
module is not yet written.

SCD_M68_MMU This simulates the memory map of the M68000 located in the Sega
CD. This modules takes inputs and outputs from each other
module in the Sega CD block. This module is not yet written.

SCD_CDC This simulates the behavior CD controller in the Sega CD. The
controller is used for reading data from CD data tracks. This
module inputs and outputs the data in the sixteen 8-bit CDC
registers. Additionally, this module takes an input from the
SCD_CDD. The input is a periodic “read” signal asserted when
the CDD is playing a data track to be decoded and error corrected.
This module is not yet written.

SCD_CDD This simulates the behavior of the physical CD drive in the Sega
CD. The drive is used for activating the spindle motor, reading
TOC info, playing tracks, etc… Its inputs are data in the ten 4-bit
Transmit Command Registers. Its outputs are data in the ten 4-bit
Receive Status Registers and a periodic “read” signal (sent to the
SCD_CDC when a data track is being played). This module is not
yet written.

SCD_PCM This simulates the behavior of the PCM (sound) chip located in the
Sega CD. Its inputs and outputs are the data in the PCM registers.
This module is not yet written.

SCD_VDP This simulates the behavior of the VDP (graphics) chip located in
the Sega CD. Its inputs and outputs are the data in the VDP
registers. This module is not yet written.

SCD_TMR This simulates all the timer chips located in the Sega CD. Its
inputs and outputs are the data in the timer registers and an IRQ
level. This module is not yet written.

Engine modules:
GFX This handles all interfacing with the host PC’s graphics hardware.

This module inputs raw1 graphics data from all VDP simulation
modules and converts it to a form useable by DirectX for
outputting to the monitor. This module is already written, but will
require additional code to support the needs of the Sega CD
simulation modules.

1 In whatever format is native to the chip delivering the data.

SND This handles all interfacing with the host PC’s sound hardware.
This module inputs raw2 sound data from all sound simulation
modules and converts it to a form useable by DirectX for
outputting to the soundcard and speakers. This module is already
written, but will require additional code to support the needs of the
Sega CD simulation modules.

FIO This handles all interfacing with the host PC’s file/IO hardware.
(E.G. image files off the harddrive or direct use of the CD drive) It
inputs raw3 file/IO data and converts it to a program-wide
consistent binary format for outputting to the various modules.
This module is already written, but will require additional code to
support the needs of the Sega CD simulation modules.

2 In whatever format is native to the chip delivering the data.
3 In whatever format is native to the chip delivering the data.

